Finite and Infinite Hypergeometric Sums Involving the Digamma Function
Abstract
:1. Introduction
2. Preliminaries
3. Finite Sums Involving Digamma Function
4. Infinite Sums Involving Digamma Function
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hansen, E.R. A Table of Series and Products; Prentice-Hall: Englewood Cliffs, NJ, USA, 1975. [Google Scholar]
- Brychkov, Y.A. Handbook of Special Functions: Derivatives Integrals Series and Other Formulas; Chapman and Hall: Boca Raton, FL, USA; CRC Press: Boca Raton, FL, USA, 2008. [Google Scholar]
- De Doelder, P. On some series containing ψ(x) − ψ(y) and (ψ(x) − ψ(y))2 for certain values of x and y. J. Comput. Appl. Math. 1991, 37, 125–141. [Google Scholar] [CrossRef]
- Coffey, M.W. On one-dimensional digamma and polygamma series related to the evaluation of Feynman diagrams. J. Comput. Appl. Math. 2005, 183, 84–100. [Google Scholar] [CrossRef]
- Miller, A.R. Summations for certain series containing the digamma function. J. Phys. A Math. Theor. 2006, 39, 3011. [Google Scholar] [CrossRef]
- Cvijović, D. Closed-form summations of certain hypergeometric-type series containing the digamma function. J. Phys. A Math. Theor. 2008, 41, 455205. [Google Scholar] [CrossRef]
- Apelblat, A. Differentiation of the Mittag-Leffler functions with respect to parameters in the Laplace transform approach. Mathematics 2020, 8, 657. [Google Scholar] [CrossRef]
- Apelblat, A.; González-Santander, J.L. The Integral Mittag-Leffler, Whittaker and Wright Functions. Mathematics 2021, 9, 3255. [Google Scholar] [CrossRef]
- Paris, R.B.; Kaminski, D. Asymptotics and Mellin-Barnes Integrals; Cambridge University Press: Cambridge, UK, 2001; Volume 85. [Google Scholar]
- Fejzullahu, B.X. Parameter derivatives of the generalized hypergeometric function. Integral Transform. Spec. Funct. 2017, 28, 781–788. [Google Scholar] [CrossRef]
- Sofotasios, P.; Brychkov, Y.A. On derivatives of hypergeometric functions and classical polynomials with respect to parameters. Integral Transform. Spec. Funct. 2018, 29, 852–865. [Google Scholar] [CrossRef]
- Oldham, K.B.; Myland, J.; Spanier, J. An Atlas of Functions: With Equator, the Atlas Function Calculator; Springer: Cham, Switzerand, 2009. [Google Scholar]
- Lebedev, N.N. Special Functions and Their Applications; Prentice-Hall Inc.: Hoboken, NJ, USA, 1965. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series: More Special Functions; CRC Press: Boca Raton, FL, USA, 1986; Volume 3. [Google Scholar]
- Olver, F.W.; Lozier, D.W.; Boisvert, R.F.; Clark, C.W. NIST Handbook of Mathematical Functions; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Andrews, G.E.; Askey, R.; Roy, R.; Roy, R. Special Functions; Cambridge University Press: Cambridge, UK, 1999; Volume 71. [Google Scholar]
- Qureshi, M.; Jabee, S.; Ahamad, D. Evaluation of some explicit summation formulae for truncated Gauss function and applications. TWMS J. Appl. Eng. Math. 2022, 12, 52. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
González-Santander, J.L.; Sánchez Lasheras, F. Finite and Infinite Hypergeometric Sums Involving the Digamma Function. Mathematics 2022, 10, 2990. https://doi.org/10.3390/math10162990
González-Santander JL, Sánchez Lasheras F. Finite and Infinite Hypergeometric Sums Involving the Digamma Function. Mathematics. 2022; 10(16):2990. https://doi.org/10.3390/math10162990
Chicago/Turabian StyleGonzález-Santander, Juan Luis, and Fernando Sánchez Lasheras. 2022. "Finite and Infinite Hypergeometric Sums Involving the Digamma Function" Mathematics 10, no. 16: 2990. https://doi.org/10.3390/math10162990
APA StyleGonzález-Santander, J. L., & Sánchez Lasheras, F. (2022). Finite and Infinite Hypergeometric Sums Involving the Digamma Function. Mathematics, 10(16), 2990. https://doi.org/10.3390/math10162990