Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator
Abstract
:1. Introduction
2. Preliminary Outcomes
3. Main Outcomes
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Mittag-Leffler, G.M. Sur la nouvelle fonction Eα(x). C. R. Acad. Sci. Paris 1903, 137, 554–558. [Google Scholar]
- Wima, A. Über den Fundamental satz in der Theorie der Funcktionen Eα(x). Acta Math. 1905, 29, 191–201. [Google Scholar] [CrossRef]
- Wima, A. Über die Nullstellun der Funktionen Eα(x). Acta Math. 1905, 29, 217–234. [Google Scholar] [CrossRef]
- Srivastava, H.M. On an extension of the Mittag-Leffler function. Yokohama Math. J. 1968, 16, 77–88. [Google Scholar]
- Prabhakar, T.R. A singular integral equation with a generalized Mittag-Leffler function in the kernel. Yokohama Mah. J. 1971, 19, 7–15. [Google Scholar]
- Srivastava, H.M.; Tomovski, Ž. Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel. Appl. Math. Comput. 2009, 211, 198–210. [Google Scholar] [CrossRef]
- Tomovski, Ž.; Hilfer, R.; Srivastava, H.M. Fractional and operational calculus with generalized fractional derivative operators and Mittag-Leffler type functions. Integral Transform. Spec. Funct. 2010, 21, 797–814. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some families of Mittag-Leffler type functions and associated operators of fractional calculus (survey). TWMS J. Pure Appl. Math. 2016, 7, 123–145. [Google Scholar]
- Srivastava, H.M.; Kılıçman, A.; Abdulnaby, Z.E.; Ibrahime, R.W. Generalized convolution properties based on the modified Mittag-Leffler function. J. Nonlinear Sci. Appl. 2017, 10, 4284–4294. [Google Scholar] [CrossRef]
- Kumar, D.; Choi, J.; Srivastava, H.M. Solution of a general family of fractional kinetic equations associated with the generalized Mittag-Leffler function. Nonlinear Funct. Anal. Appl. 2018, 23, 455–471. [Google Scholar]
- Saxena, R.K.; Nishimoto, K. N-fractional calculus of generalized Mittag-Leffler functions. J. Fract. Calc. 2010, 37, 43–52. [Google Scholar]
- Srivastava, H.M.; Bansal, M.; Harjule, P. A study of fractional integral operators involving a certain generalized multi-index Mittag-Leffler function. Math. Meth. Appl. Sci. 2018, 41, 6108–6121. [Google Scholar] [CrossRef]
- Kilbas, A.A.; Saigo, M.; Saxena, R.K. Generalized Mittag-Leffler function and generalized fractional calculus operators. Integral Transform. Spec. Funct. 2004, 15, 31–49. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Fernandez, A.; Baleanu, D. Some new fractional-calculus connections between Mittag-Leffler functions. Mathematics 2019, 7, 485. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Gaboury, S.; Ghanim, F. Partial sums of certain classes of meromorphic functions related to the Hurwitz-Lerch zeta function. Moroc. J. Pure Appl. Anal. 2015, 1, 38–50. [Google Scholar] [CrossRef]
- Rahman, G.; Baleanub, D.; Al-Qurashid, M.; Purohite, S.D.; Mubeen, S.; Arshada, M. The extended Mittag-Leffler function via fractional calculus. J. Nonlinear Sci. Appl. 2017, 10, 4244–4253. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Frasin, B.A.; Pescar, V. Univalence of integral operators involving Mittag-Leffler functions. Appl. Math. Inf. Sci. 2017, 3, 635–641. [Google Scholar] [CrossRef]
- Agarwal, P.; Al-Mdallal, Q.; Cho, Y.J.; Jain, S. Fractional differential equations for the generalized Mittag-Leffler function. Adv. Differ. Equ. 2018, 58, 1–8. [Google Scholar] [CrossRef]
- Agarwal, R.; Sharma, U.P.; Agarwalb, R.P. Bicomplex Mittag-Leffler function and associated properties. J. Math. Comput. Sci. 2022, 15, 48–60. [Google Scholar] [CrossRef]
- Ali, R.S.; Mubeen, S.; Ahmad, M.M. A class of fractional integral operators with multi-index Mittag-Leffler k-function and Bessel k-function of first kind. J. Math. Comput. Sci. 2021, 22, 266–281. [Google Scholar]
- Al-Janaby, H.F.; Ahmad, M.Z. Differential inequalities related to Sălăgean type integral operator involving extended generalized Mittag-Leffler function. J. Phys. Conf. Ser. 2019, 1132, 63–82. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Darus, M. Differential Subordination results for Mittag-Leffler type functions with bounded turning property. Math. Slovaca 2019, 69, 1–10. [Google Scholar] [CrossRef]
- Khana, O.; Araci, S.; Saifa, M. Fractional calculus formulas for Mathieu-type series and generalized Mittag-Leffler function. J. Math. Comput. Sci. 2020, 20, 122–130. [Google Scholar] [CrossRef]
- Long, P.; Murugusundaramoorthyb, G.; Tangc, H.; Wanga, W. Subclasses of analytic and bi-univalent functions involving a generalized Mittag-Leffler function based on quasisubordination. J. Math. Comput. Sci. 2022, 26, 379–394. [Google Scholar] [CrossRef]
- Rashid, S.; Hammouch, Z.; Ashraf, R.; Chu, Y. New Computation of Unified Bounds via a More General Fractional Operator Using Generalized Mittag-Leffler Function in the Kernel. Comput. Model. Eng. Sci. 2021, 126, 359–378. [Google Scholar] [CrossRef]
- Parmar, R.K. A class of extended Mittag-Leffler functions and their properties related to integral transforms and fractional calculus. Mathematics 2015, 3, 1069–1082. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Parmar, R.K.; Chopra, P. A class of extended fractional derivative operators and associated generating relations involving hypergeometric functions. Axioms 2012, 1, 238–258. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Saxen, R.K.; Parmar, R.K. Some families of the incomplete H-Functions and the incomplete Ĥ-functions and associated integral transforms and operators of fractional calculus with applications. Russ. J. Math. Phys. 2018, 25, 116–138. [Google Scholar] [CrossRef]
- Mocanu, S.S.M.P.T. Differential subordinations and univalent functions. Mich. Math. J. 1981, 28, 157–171. [Google Scholar]
- Goodman, A.W. Univalent Functions; I. Tampa: Mariner, FL, USA, 1983. [Google Scholar]
- Littlewood, J.E. On equalities in the theory of functions. Proc. Lond. Math. Soc. 1925, 23, 481–519. [Google Scholar] [CrossRef]
- Littlewood, J.E. Lectures on the Theory of Functions; Oxford University Press: Oxford, UK; London, UK, 1944. [Google Scholar]
- Rogosinski, W. On subordinate functions. Math. Proc. Camb. Philos. Soc. 1939, 35, 1–26. [Google Scholar] [CrossRef]
- Rogosinski, W. On the coefficients of subordinate functions. Proc. Lond. Math. Soc. 1945, 48, 48–82. [Google Scholar] [CrossRef]
- Alexander, J.W. Functions which map the interior of the unit circle upon simple regions. Ann. Math. 1915, 17, 12–22. [Google Scholar] [CrossRef]
- Ruscheweyh, S. New criteria for univalent functions. Proc. Am. Math. Soc. 1975, 49, 109–115. [Google Scholar] [CrossRef]
- Sălxaxgean, G.S. Subclasses of univalent functions. Lect. Notes Math. 1983, 1013, 362–372. [Google Scholar]
- Mohammed, A.; Darus, M. Integral operators on new families of meromorphic functions of complex order. J. Inequal. App. 2011, 2011, 1–12. [Google Scholar] [CrossRef]
- Al-Janaby, H.F.; Ghanim, F.; Darus, M. On The Third-Order Complex Differential Inequalities of ξ-Generalized Hurwitz Lerch Zeta Functions. Mathematics 2020, 8, 845. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. Some analytical merits of Kummer-type function associated with Mittag-Leffler parameters. Arab. J. Basic Appl. Sci. 2021, 28, 255–263. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Geometric properties of the meromorphic functions class through special functions associated with a linear operator. Adv. Contin. Discret. Model. 2022, 1, 1–15. [Google Scholar] [CrossRef]
- Oros, G.; Oros, G.I. Applications of Sälägean Differential Operator at the Class of Meromorphic Functions. Lib. Math. 2006, XXVI, 61–67. [Google Scholar]
- Ghanim, F.; Al-Janaby, H.F. Inclusion and Convolution Features of Univalent Meromorphic Functions Correlating with Mittag-Leffler Function. Filomat 2020, 34, 2141–2150. [Google Scholar] [CrossRef]
- Mohammed, A.; Darus, M. Starlikeness properties of a new integral operator for meromorphic functions. J. App. Math. 2011, 2011, 1–8. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F.; Bazighifan, O. Some new extensions on fractional differential and integral properties for Mittag-Leffler confluent hypergeometric function. Fractal Fract. 2021, 5, 143. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Janaby, H.F. An analytical study on Mittag-leffler-confluent hypergeometric functions with fractional integral operator. Math Meth Appl Sci. 2020. [Google Scholar] [CrossRef]
- Ghanim, F.; Al-Shaqsi, K.; Darus, M.; Al-Janaby, H.F. Subordination Properties of Meromorphic Kummer Function Correlated with Hurwitz Lerch Zeta Function. Mathematics 2021, 9, 192. [Google Scholar] [CrossRef]
- Ghanim, F.; Bendak, S.; Hawarneh, A.A. Certain implementations in fractional calculus operator involving Mittag- Leffler confluent hypergeometric functions. Proc. R. Soc. Math. Phys. Eng. Sci. 2022, 478. [Google Scholar] [CrossRef]
- Ghanim, F. Certain Properties of Classes of Meromorphic Functions Defined by a Linear Operator and Associated with the Hurwitz Lerch Zeta Function. Adv. Stud. Contemp. Math. (ASCM) 2017, 27, 175–180. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ghanim, F.; Al-Janaby, H.F.; Al-Momani, M.; Batiha, B. Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator. Mathematics 2022, 10, 3243. https://doi.org/10.3390/math10183243
Ghanim F, Al-Janaby HF, Al-Momani M, Batiha B. Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator. Mathematics. 2022; 10(18):3243. https://doi.org/10.3390/math10183243
Chicago/Turabian StyleGhanim, F., Hiba F. Al-Janaby, Marwan Al-Momani, and Belal Batiha. 2022. "Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator" Mathematics 10, no. 18: 3243. https://doi.org/10.3390/math10183243
APA StyleGhanim, F., Al-Janaby, H. F., Al-Momani, M., & Batiha, B. (2022). Geometric Studies on Mittag-Leffler Type Function Involving a New Integrodifferential Operator. Mathematics, 10(18), 3243. https://doi.org/10.3390/math10183243