On Energy Release Rate for Propagation of a Straight Crack in a Cosserat Elastic Body
Abstract
:1. Introduction
2. Preliminaries
- -
- the components of the displacement vector field;
- -
- the components of the microrotation vector;
- -
- the components of the strain tensor;
- -
- the components of the couple strain tensor;
- -
- the permutation symbol (the Ricci’s tensor);
- -
- the components of the stress tensor;
- -
- the components of the couple stress tensor;
- -
- the reference mass density;
- -
- the components of the microinertia;
- -
- the components of the body force;
- -
- the components of the couple body force;
- -
- are the director cosines of the unit normal, outward to the boundary ;
- -
- the components of the surface traction vector;
- -
- the components of the couple surface traction vector;
- -
- the dynamic energy release rate;
- -
- the component elements of the vector of displacement;
- -
- the component elements of the tensor of Cosserat displacement.
3. Basic Results
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Altenbach, H.; Öchsner, A. Cellular and Porous Materials in Structures and Processes; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Öchsner, A.; Augustin, C. Multifunctional Metallic Hollow Sphere Structures; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Eringen, A.C. Theory of thermo-microstretch elastic solids. Int. J. Eng. Sci. 1990, 28, 1291–1301. [Google Scholar] [CrossRef]
- Eringen, A.C. Microcontinuum Field Theories; Springer: Berlin/Heidelberg, Germany, 1999. [Google Scholar]
- Iesan, D.; Pompei, A. Equilibrium theory of microstretch elastic solids. Int. J. Eng. Sci. 1995, 33, 399–410. [Google Scholar] [CrossRef]
- Iesan, D.; Quintanilla, R. Thermal stresses in microstretch bodies. Int. J. Eng. Sci. 2005, 43, 885–907. [Google Scholar] [CrossRef]
- Ciarletta, M. On the bending of microstretch elastic plates. Int. J. Eng. Sci. 1995, 37, 1309–1318. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The size-dependent thermoelastic vibrations of nanobeams subjected to harmonic excitation and rectified sine wave heating. Mathematics 2020, 8, 1128. [Google Scholar] [CrossRef]
- Abouelregal, A.E.; Marin, M. The response of nanobeams with temperature-dependent properties using state-space method via modified couple stress theory. Symmetry 2020, 12, 1276. [Google Scholar] [CrossRef]
- Zhang, L.; Bhatti, M.M.; Michaelides, E.E.; Marin, M.; Ellahi, R. Hybrid nanofluid flow towards an elastic surface with tantalum and nickel nanoparticles, under the influence of an induced magnetic field. Eur. Phys. J. Spec. Top. 2022, 231, 521–533. [Google Scholar] [CrossRef]
- Ghita, C.; PopbIleana, N.; Popescu, N. Existence result of an effective stress for an isotropic visco-plastic composite. Comput. Mater. Sci. 2012, 64, 52–56. [Google Scholar] [CrossRef]
- Marin, M.; Florea, O. On temporal behaviour of solutions in thermoelasticity of porous micropolar bodies. An. St. Univ. Ovidius Constanta 2014, 22, 169–188. [Google Scholar] [CrossRef]
- Pop, N. An algorithm for solving nonsmooth variational inequalities arising in fricti-onal quasistatic contact problems. Carpathian J. Math. 2008, 24, 110–119. [Google Scholar]
- Marin, M.; Ellahi, R.; Vlase, S.; Bhatti, M.M. On the decay of exponential type for the solutions in a dipolar elastic body. J. Taibah Univ. Sci. 2020, 14, 534–540. [Google Scholar] [CrossRef] [Green Version]
- Vlase, S.; Năstac, C.; Marin, M.; Mihălcică, M. A Method for the Study of teh Vibration of Mechanical Bars Systems with Symmetries. Acta Tech. Napoc. Ser. Appl. Math. Mech. Eng. 2017, 60, 539–544. [Google Scholar]
- Marin, M.; Agarwal, R.P.; Mahmoud, S.R. Nonsimple material problems addressed by the Lagrange’s identity. Bound. Value Probl. 2013, 2013, 135. [Google Scholar] [CrossRef]
- Vlase, S.; Marin, M.; Scutaru, M.L.; Munteanu, R. Coupled transverse and torsional vibrations in a mechanical system with two identical beams. Aip Adv. 2017, 7, 065301. [Google Scholar] [CrossRef]
- Craciun, E.-M.; Barbu, L. Compact closed form solution of the incremental plane states in a prestressed elastic composite with an elliptical hole. Z. Angew. Math. Mech. ZAMM 2015, 95, 193–199. [Google Scholar] [CrossRef]
- Craciun, E.-M.; Sadowski, T.; Rabaea, A. Stress concentration in an anisotropic body with three equal collinear cracks in Mode II of fracture. I. Analytical study. Z. Angew. Math. Mech. ZAMM 2014, 94, 721–729. [Google Scholar] [CrossRef]
- Straughan, B. Heat Waves. In Applied Mathematical Sciences; Springer: New York, NY, USA, 2011; Volume 177. [Google Scholar]
- Marin, M.; Chirilă, A.; Othman, M.I.A. An extension of Dafermos’s results for bodies with a dipolar structure. Appl. Math. Comput. 2019, 361, 680–688. [Google Scholar] [CrossRef]
- Eringen, A.C. Fracture; Liebowitz, H., Ed.; Academic Press: New York, NY, USA, 1968; Volume 2. [Google Scholar]
- Freund, L.B. Energy flux into the tip of an extending crack in an elastic solid. J. Elast. 1972, 2, 341–349. [Google Scholar] [CrossRef]
- Gurtin, M.E. Thermodynamics and choesive zone in fracture. ZAMP 1979, 30, 991–1003. [Google Scholar]
- Gurtin, M.E.; Yatomi, C. On the energy release rate in elastodynamic crack propagation. Arch. Rat. Mech. Anal. 1980, 74, 231–247. [Google Scholar] [CrossRef]
- Nishioka, T.; Alturi, S.N. Path-independent integrals, energy release rates, and general solutions of near-tip fields in mixed-mode dynamic fracture mechanics. Eng. Fract. Mech. 1983, 18, 1–22. [Google Scholar] [CrossRef]
- Zhang, A.B.; Wang, L. Theoretical model of crack branching in magnetoelectric thermoelastic materials. Int. J. Solids Struct. 2014, 51, 1340–1349. [Google Scholar] [CrossRef]
- Tian, W.; Rajapakse, R.K. Theoretical model for crack branching in magnetoelectroelastic solids. Int. J. Appl. Electromagn. Mech. 2008, 27, 53–74. [Google Scholar] [CrossRef]
- Gourgiotis, P.A.; Piccolroaz, A. Steady-state propagation of a mode II crack in couple stress elasticity. Int. J. Fract. 2014, 188, 119–145. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marin, M.; Vlase, S.; Tuns, I. On Energy Release Rate for Propagation of a Straight Crack in a Cosserat Elastic Body. Mathematics 2022, 10, 3226. https://doi.org/10.3390/math10183226
Marin M, Vlase S, Tuns I. On Energy Release Rate for Propagation of a Straight Crack in a Cosserat Elastic Body. Mathematics. 2022; 10(18):3226. https://doi.org/10.3390/math10183226
Chicago/Turabian StyleMarin, Marin, Sorin Vlase, and Ioan Tuns. 2022. "On Energy Release Rate for Propagation of a Straight Crack in a Cosserat Elastic Body" Mathematics 10, no. 18: 3226. https://doi.org/10.3390/math10183226
APA StyleMarin, M., Vlase, S., & Tuns, I. (2022). On Energy Release Rate for Propagation of a Straight Crack in a Cosserat Elastic Body. Mathematics, 10(18), 3226. https://doi.org/10.3390/math10183226