A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection
Abstract
:1. Introduction
2. Literature Review
2.1. Supplier Selection Criteria
2.2. Supplier Selection Methods
3. Development of the Hybrid Supplier Selection Model
3.1. The Methodology
3.2. Identification of Supplier Selection Criteria
3.2.1. Relationships
3.2.2. Company Management
3.2.3. Cost
3.2.4. Delivery
3.2.5. Quality
3.2.6. Production Management
3.2.7. Engineering and Technology Management
3.2.8. Service
3.3. Establishment of Supplier Rating System
3.3.1. Fuzzy Set Method
3.3.2. FTOPSIS Model
4. Analysis and Application
4.1. Data Collection
4.2. Factor Analysis Results
4.3. Application of the SEM Approach
4.4. Application of the Model
4.4.1. Background of the Case Company and Problem Description
4.4.2. Supplier Performance Evaluation by Group DMs
4.4.3. Application of the Supplier Rating System
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Limitations and Future Research
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Selection Dimensions and Criteria for SS
Selection Dimension | Code | Selection Criterion |
Relationships | R1 | Ease of communication |
R2 | Family relationships | |
R3 | Friendship | |
R4 | Business partnerships | |
R5 | Merger and acquisition relationships | |
R6 | Information sharing (sales forecasts, production plans, delivery status, stock level) | |
R7 | Joint decision-making (product and process design/modification, quality improvement) | |
R8 | Supplier participation in new product development | |
Company Management | CM1 | Company development potential |
CM2 | Corporate financial performance | |
CM3 | Corporate reputation | |
CM4 | Production capability | |
CM5 | Organisational structure | |
CM6 | Position function and definition of authority | |
CM7 | Special job qualification | |
CM8 | Regular training | |
CM9 | Occupational health and safety management system | |
Cost | C1 | Product price |
C2 | Product cost | |
C3 | Corporate tax rate | |
C4 | Business and payment terms | |
C5 | Cost reduction plan | |
Delivery | D1 | Lead time |
D2 | On-time rate | |
D3 | Order fulfilment rate | |
D4 | Geographical location | |
D5 | Type of delivery | |
D6 | Emergency order processing system and cooperation | |
D7 | Order scheduling plan | |
D8 | Progress control of product processing | |
D9 | Guidance document for delivery control | |
Quality | Q1 | Passed the quality management system certification |
Q2 | Quality system operation | |
Q3 | Document management | |
Q4 | Quality improvement action | |
Q5 | Correction and prevention of quality problems | |
Q6 | Quality control of the production process (TQM, Six Sigma project, QQC activity) | |
Q7 | Configuration of quality inspection staff | |
Q8 | Configuration of quality inspection equipment | |
Q9 | Quality inspection document | |
Q10 | Statistical process control | |
Production Management | PM1 | Effective means of detection and control |
PM2 | Differentiation and identification of materials | |
PM3 | Configuration and application of detection instruments | |
PM4 | Environmental certification | |
PM5 | Timely handling of bad materials | |
PM6 | Product identification | |
PM7 | Visual management | |
PM8 | 5S implementation | |
PM9 | Operational guidelines and standards | |
PM10 | Supplier management measures | |
PM11 | Strategic preparation of long-term materials required | |
PM12 | Timely capture the market status of materials | |
Engineering and Technology Management | ETM1 | Engineering Change Notice (ECN) control system |
ETM2 | R&D equipment and software | |
ETM3 | New product development system | |
ETM4 | R&D recruitment | |
ETM5 | Product update | |
ETM6 | Product customisation | |
ETM7 | Normative engineering drawings | |
ETM8 | Guidance on engineering materials | |
ETM9 | Rationality of jig and fixture | |
ETM10 | Management of jig and fixture | |
ETM11 | Management of engineering documents | |
Service | S1 | Response speed |
S2 | Efficient information system | |
S3 | Emergency priority | |
S4 | Customer complaint system and fault correction system | |
S5 | Solicit customer feedback | |
S6 | Professional service staff |
References
- Gallear, D.; Ghobadian, A.; He, Q.; Kumar, V.; Hitt, M. Relationship between routines of supplier selection and evaluation, risk perception and propensity to form buyer–supplier partnerships. Prod. Plan. Control 2021, 1–17. [Google Scholar] [CrossRef]
- Sureeyatanapas, P.; Sriwattananusart, K.; Niyamosoth, T.; Sessomboon, W.; Arunyanart, S. Supplier selection towards uncertain and unavailable information: An extension of TOPSIS method. Oper. Res. Perspect. 2018, 5, 69–79. [Google Scholar] [CrossRef]
- McCardle, J.G.; Rousseau, M.B.; Krumwiede, D. The effects of strategic alignment and competitive priorities on operational performance: The role of cultural context. Oper. Manag. Res. 2019, 12, 4–18. [Google Scholar] [CrossRef]
- Kant, R.; Dalvi, M.V. Development of questionnaire to assess the supplier evaluation criteria and supplier selection benefits. Benchmarking Int. J. 2017, 24, 359–383. [Google Scholar] [CrossRef]
- Wetzstein, A.; Hartmann, E.; Benton, W.C., Jr.; Hohenstein, N.-O. A systematic assessment of supplier selection literature—State-of-the-art and future scope. Int. J. Prod. Econ. 2016, 182, 304–323. [Google Scholar] [CrossRef]
- Xie, L.; Ma, J.; Goh, M. Supply chain coordination in the presence of uncertain yield and demand. Int. J. Prod. Res. 2020, 59, 4342–4358. [Google Scholar] [CrossRef]
- Nădăban, S.; Dzitac, S.; Dzitac, I. Fuzzy TOPSIS: A General View. Procedia Comput. Sci. 2016, 91, 823–831. [Google Scholar] [CrossRef]
- Zhang, Z.; Lei, J.; Cao, N.; To, K.; Ng, K. Evolution of supplier selection criteria and methods. In Proceedings of the Second Globelics Conference Innovation Systems and Development, Emerging Opportunities and Challenges, Beijing, China, 16–20 October 2004. [Google Scholar]
- Dickson, G.W. An Analysis of Vendor Selection Systems and Decisions. J. Purch. 1966, 2, 5–17. [Google Scholar] [CrossRef]
- Dutta, P.; Jaikumar, B.; Arora, M.S. Applications of data envelopment analysis in supplier selection between 2000 and 2020: A literature review. Ann. Oper. Res. 2021, 315, 1399–1454. [Google Scholar] [CrossRef]
- Krause, D.R.; Pagell, M.; Curkovic, S. Toward a measure of competitive priorities for purchasing. J. Oper. Manag. 2001, 19, 497–512. [Google Scholar] [CrossRef]
- Akarte, M.M.; Surendra, N.V.; Ravi, B.; Rangaraj, N. Web based casting supplier evaluation using analytical hierarchy process. J. Oper. Res. Soc. 2001, 52, 511–522. [Google Scholar] [CrossRef]
- Stević, Ž. Criteria for supplier selection: A literature review. Int. J. Eng. Bus. Enterp. Appl. 2017, 19, 23–27. [Google Scholar]
- Deshmukh, A.J.; Chaudhari, A.A. A Review for Supplier Selection Criteria and Methods; Shah, K., Gorty, V.R.L., Phirke, A., Eds.; Springer: Berlin/Heidelberg, Germany, 2011; Volume 145, pp. 283–291. [Google Scholar]
- Govindan, K.; Rajendran, S.; Sarkis, J.; Murugesan, P. Multi criteria decision making approaches for green supplier evaluation and selection: A literature review. J. Clean. Prod. 2015, 98, 66–83. [Google Scholar] [CrossRef]
- Durmić, E.; Stević, Z.; Chatterjee, P.; Vasiljević, M.; Tomašević, M. Sustainable supplier selection using combined FUCOM—Rough SAW model. Rep. Mech. Eng. 2020, 1, 34–43. [Google Scholar] [CrossRef]
- Badi, I.; Academy, M.L.; Pamucar, D. Supplier selection for steelmaking company by using combined Grey-Marcos methods. Decis. Mak. Appl. Manag. Eng. 2020, 3, 37–48. [Google Scholar] [CrossRef]
- Kazemitash, N.; Fazlollahtabar, H.; Abbaspour, M. Rough Best-Worst Method for Supplier Selection in Biofuel Companies based on Green criteria. Oper. Res. Eng. Sci. Theory Appl. 2021, 4, 1–12. [Google Scholar] [CrossRef]
- Garg, R.K. Structural equation modeling of E-supplier selection criteria in mechanical manufacturing industries. J. Clean. Prod. 2021, 311, 127597. [Google Scholar] [CrossRef]
- Nguyen, P.-H.; Tsai, J.-F.; Lin, M.-H.; Hu, Y.-C. A Hybrid Model with Spherical Fuzzy-AHP, PLS-SEM and ANN to Predict Vaccination Intention against COVID-19. Mathematics 2021, 9, 3075. [Google Scholar] [CrossRef]
- Jakhar, S.K.; Barua, M.K. An integrated model of supply chain performance evaluation and decision-making using structural equation modelling and fuzzy AHP. Prod. Plan. Control 2013, 25, 938–957. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Yoon, K. Methods for Multiple Attribute Decision Making. In Multiple Attribute Decision Making; Springer: Berlin/Heidelberg, Germany, 1981; pp. 58–191. [Google Scholar]
- Yoon, K. A reconciliation among discrete compromise solutions. J. Oper. Res. Soc. 1987, 38, 277–286. [Google Scholar] [CrossRef]
- Hwang, C.-L.; Lai, Y.-J.; Liu, T.-Y. A new approach for multiple objective decision making. Comput. Oper. Res. 1993, 20, 889–899. [Google Scholar] [CrossRef]
- Bottani, E.; Rizzi, A. A fuzzy TOPSIS methodology to support outsourcing of logistics services. Supply Chain Manag. Int. J. 2006, 11, 294–308. [Google Scholar] [CrossRef]
- Kizielewicz, B.; Bączkiewicz, A. Comparison of Fuzzy TOPSIS, Fuzzy VIKOR, Fuzzy WASPAS and Fuzzy MMOORA methods in the housing selection problem. Procedia Comput. Sci. 2021, 192, 4578–4591. [Google Scholar] [CrossRef]
- Zadeh, L.A. Fuzzy sets. Inf. Control. 1965, 8, 338–353. [Google Scholar] [CrossRef]
- Zadeh, L.A. The concept of a linguistic variable and its application to approximate reasoning—I. Inf. Sci. 1975, 8, 199–249. [Google Scholar] [CrossRef]
- Liou, T.-S.; Wang, M.-J.J. Ranking fuzzy numbers with integral value. Fuzzy Sets Syst. 1992, 50, 247–255. [Google Scholar] [CrossRef]
- Abbasbandy, S.; Hajjari, T. A new approach for ranking of trapezoidal fuzzy numbers. Comput. Math. Appl. 2009, 57, 413–419. [Google Scholar] [CrossRef]
- Feng, Y. Gaussian fuzzy random variables. Fuzzy Sets Syst. 2000, 111, 325–330. [Google Scholar] [CrossRef]
- Bellman, R.E.; Zadeh, L.A. Decision-making in a fuzzy environment. Manag. Sci. 1970, 17, B-141–B-164. [Google Scholar] [CrossRef]
- Dağdeviren, M.; Yavuz, S.; Kılınç, N. Weapon selection using the AHP and TOPSIS methods under fuzzy environment. Expert Syst. Appl. 2009, 36, 8143–8151. [Google Scholar] [CrossRef]
- Şengül, Ü.; Eren, M.; Shiraz, S.E.; Gezder, V.; Şengül, A.B. Fuzzy TOPSIS method for ranking renewable energy supply systems in Turkey. Renew. Energy 2015, 75, 617–625. [Google Scholar] [CrossRef]
- Govindan, K.; Darbari, J.D.; Agarwal, V.; Jha, P. Fuzzy multi-objective approach for optimal selection of suppliers and transportation decisions in an eco-efficient closed loop supply chain network. J. Clean. Prod. 2017, 165, 1598–1619. [Google Scholar] [CrossRef]
- Ristono, A.; Santoso, P.B.; Tama, I.P. A literature review of design of criteria for supplier selection. J. Ind. Eng. Manag. 2018, 11, 680–696. [Google Scholar]
- Hoque, I.; Rana, M.B. Buyer–supplier relationships from the perspective of working environment and organisational performance: Review and research agenda. Manag. Rev. Q. 2019, 70, 1–50. [Google Scholar] [CrossRef]
- Mady, M.T.; Mady, T.T.; Mady, S.T. Procurement performance and manufacturer-supplier relationships: A multivariate analysis in Kuwaiti manufacturing companies. J. Bus. Ind. Mark. 2014, 29, 417–426. [Google Scholar] [CrossRef]
- Kannan, D.; Khodaverdi, R.; Olfat, L.; Jafarian, A.; Diabat, A. Integrated fuzzy multi criteria decision making method and multi-objective programming approach for supplier selection and order allocation in a green supply chain. J. Clean. Prod. 2013, 47, 355–367. [Google Scholar] [CrossRef]
- Olorunniwo, F.; Jolayemi, J. Using supplier selection sub-criteria: Selected illustrative demographic analyses. Int. J. Bus. Perform. Supply Chain Model. 2014, 6, 94–108. [Google Scholar] [CrossRef]
- Kannan, G.; Haq, A.N. Analysis of interactions of criteria and sub-criteria for the selection of supplier in the built-in-order supply chain environment. Int. J. Prod. Res. 2007, 45, 3831–3852. [Google Scholar] [CrossRef]
- DeCampos, H.A.; Rosales, C.R.; Narayanan, S. Supply chain horizontal complexity and the moderating impact of inventory turns: A study of the automotive component industry. Int. J. Prod. Econ. 2021, 245, 108377. [Google Scholar] [CrossRef]
- Lim, A.-F.; Lee, V.-H.; Foo, P.-Y.; Ooi, K.-B.; Tan, G.W.H. Unfolding the impact of supply chain quality management practices on sustainability performance: An artificial neural network approach. Supply Chain. Manag. 2022, 27, 611–624. [Google Scholar] [CrossRef]
- Schonberger, R.J.; Gilbert, J.P. Just-in-Time Purchasing: A Challenge for U.S. Industry. Calif. Manag. Rev. 1983, 26, 54–68. [Google Scholar] [CrossRef]
- Luis, F.; Amaral, A.; Oliveira, J. Quality 4.0: The EFQM 2020 Model and Industry 4.0 Relationships and Implications. Sustainability 2021, 13, 3107. [Google Scholar]
- Bao, B.; Ma, J.; Goh, M. Short- and long-term repeated game behaviours of two parallel supply chains based on government subsidy in the vehicle market. Int. J. Prod. Res. 2020, 58, 7507–7530. [Google Scholar] [CrossRef]
- Punniyamoorty, M.; Mathiyalagan, P.; Lakshmi, G. A combined application of structural equation modeling (SEM) and analytic hierarchy process (AHP) in supplier selection. Benchmarking Int. J. 2012, 19, 70–92. [Google Scholar] [CrossRef]
- Choi, T.Y.; Hartley, J.L. An exploration of supplier selection practices across the supply chain. J. Oper. Manag. 1996, 14, 333–343. [Google Scholar] [CrossRef]
- Chou, S.; Chang, Y. A decision support system for supplier selection based on a strategy-aligned fuzzy SMART approach. Expert Syst. Appl. 2008, 34, 2241–2253. [Google Scholar] [CrossRef]
- Chou, Y.-C.; Sun, C.-C.; Yen, H.-Y. Evaluating the criteria for human resource for science and technology (HRST) based on an integrated fuzzy AHP and fuzzy DEMATEL approach. Appl. Soft Comput. 2012, 12, 64–71. [Google Scholar] [CrossRef]
- Ravikumar, M.; Marimuthu, K.; Parthiban, P.; Zubar, H.A. Evaluating lean execution performance in Indian MSMEs using SEM and TOPSIS models. Int. J. Oper. Res. 2016, 26, 104–125. [Google Scholar] [CrossRef]
- Junior, F.R.L.; Osiro, L.; Carpinetti, L.C.R. A comparison between Fuzzy AHP and Fuzzy TOPSIS methods to supplier selection. Appl. Soft Comput. 2014, 21, 194–209. [Google Scholar] [CrossRef]
- Dillman, D.A.; Smyth, J.D.; Christian, L.M. Internet, Phone, Mail, and Mixed-Mode Surveys: The Tailored Design Method; John Wiley & Sons: Hoboken, NJ, USA, 2014. [Google Scholar]
- Karaveg, C.; Thawesaengskulthai, N.; Chandrachai, A. A combined technique using SEM and TOPSIS for the commercialization capability of R & D project evaluation. Decis. Sci. Lett. 2015, 4, 379–396. [Google Scholar]
- Deshmukh, A.; Vasudevan, H.; Principal, D. Analysis of Supplier Selection Criteria in Traditional as well as Green Supply Chain Management in Indian MSMEs. Int. J. Bus. Quant. Econ. Appl. Manag. Res. 2016, 3, 73–85. [Google Scholar]
- Dash, G.; Paul, J. CB-SEM vs PLS-SEM methods for research in social sciences and technology forecasting. Technol. Forecast. Soc. Change 2021, 173, 121092. [Google Scholar] [CrossRef]
Linguistic Term for Rating | Abbreviation | Triangular FNs |
---|---|---|
Very poor | VP | (0, 1, 2) |
Poor | P | (1, 3, 5) |
Medium | M | (3, 5, 7) |
Good | G | (6, 7, 9) |
Very good | VG | (8, 9, 10) |
Evaluation Dimension | Eigenvalue | Variance% | Factors Extracted |
---|---|---|---|
Relationships | 1.909 | 31.825 | 3 |
1.482 1.135 | 24.702 18.917 | ||
Company Management | 3.146 | 34.957 | 2 |
2.673 | 29.705 | ||
Cost | 1.886 | 37.724 | 2 |
1.727 | 34.538 | ||
Delivery | 2.855 | 31.725 | 3 |
2.493 | 27.702 | ||
1.717 | 19.075 | ||
Quality | 3.546 | 35.463 | 2 |
3.243 | 32.430 | ||
Production Management | 3.99 | 33.248 | 3 |
2.597 | 21.639 | ||
2.555 | 21.291 | ||
Engineering and Technology Management | 4.284 | 38.942 | 2 |
3.465 | 31.497 | ||
Service | 2.184 | 36.406 | 2 |
1.813 | 30.209 |
Causal Path | Point Estimate | t-Value | Significant Effect |
---|---|---|---|
R <--- SS | 0.30 | 2.58 | Significant |
CM <--- SS | 0.56 | 4.07 | Significant |
C <--- SS | 0.78 | 6.34 | Significant |
D <--- SS | 0.86 | 6.19 | Significant |
Q <--- SS | 0.94 | 8.88 | Significant |
PM <--- SS | 0.91 | 10.17 | Significant |
ETM <--- SS | 0.92 | 9.72 | Significant |
S <--- SS | 0.67 | 4.57 | Significant |
Selection Dimension | Weight of the Selection Dimension | Selection Criterion | Weight of the Selection Criterion in the Dimension | Weight of the Selection Criterion |
---|---|---|---|---|
R | 0.051 | CA | 0.348 | 0.0176 |
BC | 0.308 | 0.0156 | ||
SPSCM | 0.343 | 0.0173 | ||
CM | 0.094 | OM | 0.453 | 0.0426 |
HRM | 0.548 | 0.0517 | ||
C | 0.131 | P | 0.530 | 0.0696 |
PT | 0.470 | 0.0617 | ||
D | 0.145 | DM | 0.301 | 0.0436 |
LM | 0.335 | 0.0485 | ||
OSC | 0.364 | 0.0527 | ||
Q | 0.158 | QMS | 0.513 | 0.0812 |
PQC | 0.487 | 0.0770 | ||
PM | 0.153 | EM | 0.427 | 0.0654 |
SM | 0.354 | 0.0543 | ||
RMM | 0.359 | 0.0550 | ||
ETM | 0.155 | TMS | 0.519 | 0.0803 |
EAM | 0.481 | 0.0746 | ||
S | 0.113 | AS | 0.551 | 0.0621 |
RC | 0.449 | 0.0507 |
Expert | Gender | Age | Education | Work Experience | Job Title |
---|---|---|---|---|---|
DM1 | Male | 30–39 | Academia | 11–15 years | Supervisor |
DM2 | Female | 30–39 | Academia | 6–10 years | Staff |
DM3 | Female | 30–39 | Academia | Above 15 years | Staff |
R | CM | C | D | Q | PM | ETM | S | |
---|---|---|---|---|---|---|---|---|
A1 | G, M, M | M, M, P | M, M, G | M, G, G | M, P, M | M, M, G | G, M, M | G, M, M |
A2 | M, M, P | P, M, M | G, M, M | G, M, G | P, P, M | M, M, P | M, G, G | G, M, M |
A3 | M, P, P | G, G, M | G, VG, G | M, G, G | G, G, VG | M, G, G | M, G, VG | G, G, G |
A4 | P, M, VP | G, VG, G | VG, VG, G | G, G, G | G, G, G | M, G, G | G, M, G | M, G, M |
A5 | P, P, M | G, G, M | M, G, M | M, G, G | M, M, M | P, M, G | G, G, M | G, P, M |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
R | (3.78, 5.59, 7.61) | (2.08, 4.22, 6.26) | (1.44, 3.56, 5.59) | (0.00, 2.47, 4.12) | (1.44, 3.56, 5.59) |
CM | (2.08, 4.22, 6.26) | (2.08, 4.22, 6.26) | (4.76, 6.26, 8.28) | (6.60, 7.61, 9.32) | (4.76, 6.26, 8.28) |
C | (3.78, 5.59, 7.61) | (3.78, 5.59, 7.61) | (6.60, 7.61, 9.32) | (7.27, 8.28, 9.65) | (3.78, 5.59, 7.61) |
D | (4.76, 6.26, 8.28) | (4.76, 6.26, 8.28) | (4.76, 6.26, 8.28) | (6.00, 7.00, 9.00) | (4.76, 6.26, 8.28) |
Q | (2.08, 4.22, 6.26) | (1.44, 3.56, 5.59) | (6.60, 7.61, 9.32) | (6.00, 7.00, 9.00) | (1.44, 3.56, 5.59) |
PM | (3.78, 5.59, 7.61) | (2.08, 4.22, 6.26) | (5.24, 6.80, 8.57) | (5.24, 6.80, 8.57) | (2.62, 4.72, 6.80) |
ETM | (3.78, 5.59, 7.61) | (4.76, 6.26, 8.28) | (5.24, 6.80, 8.57) | (4.76, 6.26, 8.28) | (4.76, 6.26, 8.28) |
S | (3.78, 5.59, 7.61) | (3.78, 5.59, 7.61) | (6.00, 7.00, 9.00) | (3.78, 5.59, 7.61) | (3.00, 5.00, 7.00) |
A1 | A2 | A3 | A4 | A5 | |
---|---|---|---|---|---|
R | (0.03, 0.04, 0.05) | (0.01, 0.03, 0.04) | (0.01, 0.02, 0.04) | (0.00, 0.02, 0.03) | (0.01, 0.02, 0.04) |
CM | (0.02, 0.04, 0.06) | (0.02, 0.04, 0.06) | (0.05, 0.06, 0.08) | (0.07, 0.08, 0.09) | (0.05, 0.06, 0.08) |
C | (0.05, 0.08, 0.10) | (0.05, 0.08, 0.10) | (0.09, 0.10, 0.13) | (0.10, 0.11, 0.13) | (0.05, 0.08, 0.10) |
D | (0.08, 0.10, 0.13) | (0.08, 0.10, 0.13) | (0.08, 0.10, 0.13) | (0.10, 0.11, 0.15) | (0.08, 0.10, 0.13) |
Q | (0.04, 0.07, 0.11) | (0.02, 0.06, 0.09) | (0.11, 0.13, 0.16) | (0.10, 0.12, 0.15) | (0.02, 0.06, 0.09) |
PM | (0.07, 0.10, 0.14) | (0.04, 0.08, 0.11) | (0.09, 0.12, 0.15) | (0.09, 0.12, 0.15) | (0.05, 0.08, 0.12) |
ETM | (0.07, 0.10, 0.14) | (0.09, 0.11, 0.15) | (0.09, 0.12, 0.16) | (0.09, 0.11, 0.15) | (0.09, 0.11, 0.15) |
S | (0.05, 0.07, 0.10) | (0.05, 0.07, 0.10) | (0.08, 0.09, 0.11) | (0.05, 0.07, 0.10) | (0.04, 0.06, 0.09) |
R | CM | C | D | Q | PM | ETM | S | |
---|---|---|---|---|---|---|---|---|
D (A1, A+) | 0.00 | 0.05 | 0.05 | 0.02 | 0.09 | 0.03 | 0.03 | 0.03 |
D (A2, A+) | 0.01 | 0.05 | 0.05 | 0.02 | 0.10 | 0.07 | 0.01 | 0.03 |
D (A3, A+) | 0.02 | 0.02 | 0.01 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
D (A4, A+) | 0.03 | 0.00 | 0.00 | 0.00 | 0.01 | 0.00 | 0.01 | 0.03 |
D (A5, A+) | 0.02 | 0.02 | 0.05 | 0.02 | 0.10 | 0.05 | 0.01 | 0.04 |
D (A1, A−) | 0.02 | 0.04 | 0.08 | 0.13 | 0.05 | 0.09 | 0.13 | 0.07 |
D (A2, A−) | 0.02 | 0.04 | 0.08 | 0.13 | 0.05 | 0.07 | 0.14 | 0.07 |
D (A3, A−) | 0.02 | 0.05 | 0.10 | 0.13 | 0.09 | 0.11 | 0.15 | 0.09 |
D (A4, A−) | 0.02 | 0.06 | 0.11 | 0.15 | 0.08 | 0.11 | 0.14 | 0.07 |
D (A5, A−) | 0.02 | 0.05 | 0.08 | 0.13 | 0.05 | 0.08 | 0.14 | 0.07 |
Alternative | D+ | D− | CC | Rank |
---|---|---|---|---|
A1 | 0.30 | 0.61 | 0.67 | 3 |
A2 | 0.35 | 0.60 | 0.63 | 5 |
A3 | 0.07 | 0.74 | 0.91 | 1 |
A4 | 0.09 | 0.73 | 0.89 | 2 |
A5 | 0.32 | 0.61 | 0.65 | 4 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, H.; Zhang, B.; Ni, W. A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection. Mathematics 2022, 10, 3505. https://doi.org/10.3390/math10193505
Sun H, Zhang B, Ni W. A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection. Mathematics. 2022; 10(19):3505. https://doi.org/10.3390/math10193505
Chicago/Turabian StyleSun, Hongyi, Bingqian Zhang, and Wenbin Ni. 2022. "A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection" Mathematics 10, no. 19: 3505. https://doi.org/10.3390/math10193505
APA StyleSun, H., Zhang, B., & Ni, W. (2022). A Hybrid Model Based on SEM and Fuzzy TOPSIS for Supplier Selection. Mathematics, 10(19), 3505. https://doi.org/10.3390/math10193505