From Dual Connections to Almost Contact Structures
Abstract
:1. Introduction
2. Gauge Transformations and Parallelism
- 1.
- 2.
- ∇ is a metric connection for the metric g.
3. From Dual Connections to Almost Contact Manifold
3.1. Gauge Equation of Dual Connections
- 1.
- M of dimension admits an almost cosymplectic structure (almost contact structure),
- 2.
- The gauge equation of dual connections on M admits a skew-symmetric solution θ such that
- 1.
- The gauge equation of dual connections on M admits a skew-symmetric solution of rank .
- 2.
- M admits an almost cosymplectic structure (almost contact structure).
- 3.
- W admits an almost symplectic structure.
- 4.
- The gauge equation of dual connections on W admits a skew-symmetric solution of rank
- 1.
- The gauge equation of dual connections on M admits a skew-symmetric solution θ such that
- 2.
- M admits an almost symplectic structure (almost contact structure).
- 3.
- W admits an almost cosymplectic structure (almost contact structure).
- 4.
- The gauge equation of dual connections on W admits a skew-symmetric solution θ such that
- 1.
- 2.
- 1.
- 2.
- g is ∇-paralell, i.e., ,
- 3.
- or
3.2. Gauge Equation of Self-Dual Connections
- 1.
- M admits an almost contact metric structure;
- 2.
- there exists a metric on M, such that the gauge equation of self-dual connections with respect to it admits a skew-symmetric solution θ of rank
- 1.
- The gauge equation of self-dual connections on M admits a skew-symmetric solution θ, such that
- 2.
- M admits an almost contact metric structure.
- 3.
- has an almost Hermitian structure.
- 4.
- The gauge equation of self-dual connections on W admits a skew-symmetric solution θ, such that
3.3. Gauge Equation of Torsionless Dual Connections, Modular Class, and Cosymplectic Manifold (Symplectic Mapping Torus)
- 1.
- M Admits a cosymplectic structure.
- 2.
- The gauge equation of dual torsionless connections admits a skew-symmetric solution θ, such that and the modular class of the image of θ vanishes.
- 1.
- The gauge equation of dual torsionless connections on admits a skew-symmetric solution θ, such that and the modular class of image of θ vanish.
- 2.
- admits a cosymplectic structure.
- 3.
- W admits a symplectic structure.
- 4.
- The gauge equation of dual torsionless connections on W admits a skew-symmetric solution θ, such that
- 1.
- The gauge equation of dual torsion-less connections on admits a skew-symmetric solution θ such that
- 2.
- admits a symplectic structure.
- 3.
- W admits an cosymplectic structure.
- 4.
- The gauge equation of dual torsionless connections on W admits a skew-symmetric solution θ, such that and the modular class of image of θ vanish.
3.4. Gauge Equation of the Levi-Civita Connection and the Existence of Co-Khaler Structure in Dimension Three
3.4.1. Gauge Equation in the Levi-Civita Case
3.4.2. Gauge Equation Solution and Pseudo-Kahler Structure
- 1.
- M admits a pseudo-Kahler structure.
- 2.
- There exists a metric g, such that the gauge equation of self-dual torsionless connections on M admits a skew-symmetric solution θ of rank .
3.5. Gauge Equation Solution and Curvature
3.6. Gauge Equation Solution and K-Cosymplectic Structures
3.6.1. Co-Kähler Structure in Dimension Three and Gauge Equation Solutions
- 1.
- M admits a co-Kähler structure(Kähler mapping torus).
- 2.
- There exists a metric on M, such that the gauge equation of the Levi-Civita connection admits a nonzero skew-symmetric solution.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Amari, S.I.; Barndorff-Nielsen, O.E.; Kass, R.E.; Lauritzen, S.L.; Rao, C.R. Differential Geometry in Statistical Inference; American Oriental Series; Institute of Mathematical Statistics: Ann Arbor, MI, USA, 1987. [Google Scholar]
- Amari, S.I. Differential-Geometrical Methods in Statistics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012; Volume 28. [Google Scholar]
- Sasaki, S. On differentiable manifolds with certain structures which are closely related to almost contact structure, I. Tohoku Math. J. 1960, 12, 459–476. [Google Scholar] [CrossRef]
- Cabrerizo, J.; Fernández, M.; Gómez, J. On the existence of almost contact structure and the contact magnetic field. Acta Math. Hung. 2009, 125, 191–199. [Google Scholar] [CrossRef]
- Chinea, D.; Gonzalez, C. A classification of almost contact metric manifolds. Ann. Mat. Pura Appl. 1990, 156, 15–36. [Google Scholar] [CrossRef]
- Gromov, M.L. Stable mappings of foliations into manifolds. Math. USSR-Izv. 1969, 3, 671. [Google Scholar] [CrossRef]
- Lutz, R. Sur l’existence de certaines formes différentielles remarquables sur la sphere S3. CR Acad. Sci. Paris Sér. AB 1970, 270, A1597–A1599. [Google Scholar]
- Martinet, J. Formes de contact sur les variétés de dimension 3. In Proceedings of Liverpool Singularities Symposium II; Springer: Berlin/Heidelberg, Germany, 1971; pp. 142–163. [Google Scholar]
- Etnyre, J.B. Contact structures on 5-manifolds. arXiv 2012, arXiv:1210.5208. [Google Scholar]
- Casals, R.; Pancholi, D.M.; Presas, F. Almost contact 5-manifolds are contact. Ann. Math. 2015, 182, 429–490. [Google Scholar] [CrossRef]
- Borman, M.S.; Eliashberg, Y.; Murphy, E. Existence and classification of overtwisted contact structures in all dimensions. Acta Math. 2015, 215, 281–361. [Google Scholar] [CrossRef] [Green Version]
- Barden, D. Simply connected five-manifolds. Ann. Math. 1965, 82, 365–385. [Google Scholar] [CrossRef]
- Libermann, P. Sur quelques exemples de structures pfaffiennes et presque cosymplectiques. Ann. Mat. Pura Appl. 1962, 60, 153–172. [Google Scholar] [CrossRef]
- Albert, C. Le théoreme de réduction de Marsden-Weinstein en géométrie cosymplectique et de contact. J. Geom. Phys. 1989, 6, 627–649. [Google Scholar] [CrossRef]
- Libermann, M.P. Sur les automorphismes infinitesimaux des structures syplectiques et des structures de contact. Coll. Géom. Differ. Glob. 1959, 1958, 37–58. [Google Scholar]
- Blair, D.E. Riemannian Geometry of Contact and Symplectic Manifolds; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Li, H. Topology of co-symplectic/co-Kähler manifolds. Asian J. Math. 2008, 12, 527–544. [Google Scholar] [CrossRef]
- Bazzoni, G.; Goertsches, O. K-cosymplectic manifolds. Ann. Glob. Anal. Geom. 2015, 47, 239–270. [Google Scholar] [CrossRef] [Green Version]
- Chinea, D.; de León, M.; Marrero, J.C. Topology of cosymplectic manifolds. J. Math. Pures Appl. 1993, 72, 567–591. [Google Scholar]
- Cappelletti-Montano, B.; De Nicola, A.; Yudin, I. A survey on cosymplectic geometry. Rev. Math. Phys. 2013, 25, 1343002. [Google Scholar] [CrossRef]
- Fujimoto, A.; Muto, H. On cosymplectic manifolds. Tensor NS 1974, 28, 43–52. [Google Scholar]
- Olszak, Z. Locally conformal almost cosymplectic manifolds. In Colloquium Mathematicum; Institute of Mathematics Polish Academy of Sciences: Warszawa, Poland, 1989; Volume 57, pp. 73–87. [Google Scholar]
- Olszak, Z. On almost cosymplectic manifolds. Kodai Math. J. 1981, 4, 239–250. [Google Scholar] [CrossRef]
- De León, M.; Saralegi, M. Cosymplectic reduction for singular momentum maps. J. Phys. Math. Gen. 1993, 26, 5033. [Google Scholar] [CrossRef]
- Tischler, D. On fibering certain foliated manifolds overS1. Topology 1970, 9, 153–154. [Google Scholar] [CrossRef] [Green Version]
- Guillemin, V.; Miranda, E.; Pires, A.R. Codimension one symplectic foliations and regular Poisson structures. Bull. Braz. Math. Soc. New Ser. 2011, 42, 607–623. [Google Scholar] [CrossRef] [Green Version]
- Boyom, M.N. Foliations-webs-hessian geometry-information geometry-entropy and cohomology. Entropy 2016, 18, 433. [Google Scholar] [CrossRef] [Green Version]
- Atkins, R. Existence of parallel sections of a vector bundle. J. Geom. Phys. 2011, 61, 309–311. [Google Scholar] [CrossRef]
- Petersen, P. Riemannian Geometry; Springer: Berlin/Heidelberg, Germany, 2006; Volume 171. [Google Scholar]
- Opozda, B. Bochner’s technique for statistical structures. Ann. Glob. Anal. Geom. 2015, 48, 357–395. [Google Scholar] [CrossRef] [Green Version]
- Sasaki, S.; Hatakeyama, Y. On differentiable manifolds with certain structures which are closely related to almost contact structure. II. Tohoku Math. J. Second. Ser. 1961, 13, 281–294. [Google Scholar] [CrossRef]
- Ehresmann, C. Sur les variétés presque complexes. In Proceedings of the International Congress of Mathematicians, Cambridge, MA, USA, 6 September 1950; Volume 2, pp. 412–419. [Google Scholar]
- Vaisman, I. Symplectic curvature tensors. Monatshefte Math. 1985, 100, 299–327. [Google Scholar] [CrossRef]
- Bourgeois, F.; Cahen, M. A variational principle for symplectic connections. J. Geom. Phys. 1999, 30, 233–265. [Google Scholar] [CrossRef]
- Motomiya, K. A study on almost contact manifolds. Tohoku Math. J. Second Ser. 1968, 20, 73–90. [Google Scholar] [CrossRef]
- Obata, M. Affine connections on manifolds with almost complex, quaternion or Hermitian structure. In Japanese Journal of Mathematics: Transactions and Abstracts; The Mathematical Society of Japan: Tokyo, Japan, 1956; Volume 26, pp. 43–77. [Google Scholar]
- Bieliavsky, P.; Cahen, M.; Gutt, S.; Rawnsley, J.; Schwachhöfer, L. Symplectic connections. Int. J. Geom. Methods Mod. Phys. 2006, 3, 375–420. [Google Scholar] [CrossRef]
- Lichnerowicz, A. Variétés localement kählériennes. Séminaire Bourbaki 1954, 2, 91–107. [Google Scholar]
- Atkins, R. Determination of the metric from the connection. arXiv 2006, arXiv:math-ph/0609075. [Google Scholar]
- Tondeur, P. Geometry of Foliations; Number 90 in Monographs in Mathematics; Springer Science & Business Media: Berlin/Heidelberg, Germany, 1997. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gnandi, E.; Puechmorel, S. From Dual Connections to Almost Contact Structures. Mathematics 2022, 10, 3822. https://doi.org/10.3390/math10203822
Gnandi E, Puechmorel S. From Dual Connections to Almost Contact Structures. Mathematics. 2022; 10(20):3822. https://doi.org/10.3390/math10203822
Chicago/Turabian StyleGnandi, Emmanuel, and Stéphane Puechmorel. 2022. "From Dual Connections to Almost Contact Structures" Mathematics 10, no. 20: 3822. https://doi.org/10.3390/math10203822
APA StyleGnandi, E., & Puechmorel, S. (2022). From Dual Connections to Almost Contact Structures. Mathematics, 10(20), 3822. https://doi.org/10.3390/math10203822