Convexity, Starlikeness, and Prestarlikeness of Wright Functions
Abstract
:1. Introduction
2. Preliminaries
- (i)
- (ii)
- (iii)
- for
3. Main Results
4. Prestarlikeness of Wright Functions
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wright, E.M. On the coefficients of power series having exponential singularities. J. Lond. Math. Soc. 1933, 8, 71–79. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized Bessel function. Proc. Lond. Math. Soc. Ser. II 1935, 38, 257–270. [Google Scholar] [CrossRef]
- Wright, E.M. The asymptotic expansion of the generalized hypergeometric function. J. Lond. Math. Soc. 1935, 10, 287–293. [Google Scholar]
- Wright, E.M. The generalized Bessel function of order greater than one. Quart. J. Math. Oxford Ser. 11 1940, 36, 48. [Google Scholar] [CrossRef]
- Luchko, Y. On the asymptotics of zeros of the Wright function. Z. Anal. Anwend. 2000, 19, 597–622. [Google Scholar] [CrossRef] [Green Version]
- Boyadjiev, L.; Luchko, Y. Multi-dimensional α-fractional diffusion-wave equation and some properties of its fundamental solution. Comput. Math. Appl. 2017, 73, 2561–2572. [Google Scholar] [CrossRef]
- Gorenflo, R.; Mainardi, F.; Srivastava, H.M. Special functions in fractional relaxation-oscillation and fractional diffusion-wave phenomena. In Proceedings VIII International Colloquium on Differential Equations, Plovdiv 1997; Bainov, D., Ed.; VSP: Utrecht, The Netherlands, 1998; pp. 195–202. [Google Scholar]
- Luchko, Y. Multi-dimensional fractional wave equation and some properties of its fundamental solution. Commun. Appl. Ind. Math. 2014, 6, e-485. [Google Scholar]
- Luchko, Y. Wave-diffusion dualism of the neutral-fractional processes. J. Comput. Phys. 2015, 293, 40–52. [Google Scholar] [CrossRef]
- Luchko, Y. On some new properties of the fundamental solution to the multi-dimensional space- and time-fractional diffusion-wave equation. Mathematics 2017, 5, 76. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y. Subordination principles for the multi-dimensional space-time-fractional diffusion-wave equation. Theory Probab. Math. Statist. 2018, 98, 121–141. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Pagnini, G. The Wright functions as solutions of the time-fractional diffusion equations. Appl. Math. Comput. 2003, 141, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Mainardi, F.; Pagnini, G. The role of the Fox–Wright functions in fractional sub-diffusion of distributed order. J. Comput. Appl. Math. 2007, 207, 245–257. [Google Scholar] [CrossRef]
- Buckwar, E.; Luchko, Y. Invariance of a partial differential equation of fractional order under the Lie group of scaling transformations. J. Math. Anal. Appl. 1998, 227, 81–97. [Google Scholar] [CrossRef] [Green Version]
- Luchko, Y.; Gorenflo, R. Scale-invariant solutions of a partial differential equation of fractional order. Fract. Calc. Appl. Anal. 1998, 1, 63–78. [Google Scholar]
- Kiryakova, V. Generalized Fractional Calculus and Applications; Jons Wiley: New York, NY, USA, 1994. [Google Scholar]
- Krätzel, E. Integral transformations of Bessel-type. In Proceedings of the Conference General Function and Operation Calary; Dimovski, I., Ed.; Publishing House of Bulgarian Academy of Sciences: Sofia, Bulgaria, 1979; pp. 148–155. [Google Scholar]
- Mikusiński, J. On the function whose Laplace transform is exp(−sαλ), 0 < α < 1. Stud. Math. 1959, 18, 191–198. [Google Scholar]
- Stanković, B. On the function of E. M. Wright. Publ. Inst. Math. 1970, 10, 113–124. [Google Scholar]
- Gorenflo, R.; Kilbas, A.A.; Mainardi, F.; Rogosin, S. Mittag–Leffler Functions, Related Topics and Applications, 2nd ed.; Springer: Berlin, Germany, 2020. [Google Scholar]
- Gorenflo, R.; Luchko, Y.; Mainardi, F. Analytical properties and applications of the Wright function. J. Fract. Calc. Appl. Anal. 1999, 2, 383–414. [Google Scholar]
- Kochubei, A.; Luchko, Y. Handbook of Fractional Calculus with Applications, Volume 1: Basic Theory; de Gruyter: Berlin, Germany, 2019. [Google Scholar]
- Robertson, M.S. On the theory of univalent functions. Ann. Math. 1936, 37, 374–408. [Google Scholar] [CrossRef]
- Ruscheweyh, S. Coefficient conditions for starlike functions. Glasgow Math. J. 1987, 29, 141–142. [Google Scholar] [CrossRef] [Green Version]
- Mondal, S.R.; Swaminathan, A. On the positivity of certain trigonometric sums and their applications. Comput. Math. Appl. 2011, 62, 3871–3883. [Google Scholar] [CrossRef] [Green Version]
- Ruscheweyh, S. Convolutions in Geometric Function Theory; Les Presses de l’Université de Montréal: Montreal, QC, Canada, 1982; Volume 83. [Google Scholar]
- Sheil-Small, T.; Silverman, H.; Silvia, E. Convolution multipliers and starlike functions. J. Anal. Math. 1982, 41, 181–192. [Google Scholar] [CrossRef]
- Duren, P.L. Univalent Functions, Grundlehren der Mathematischen Wissenschaften; Band 259; Springer: New York, NY, USA; Berlin/Heidelberg, Germany; Tokyo, Japan, 1983. [Google Scholar]
- Remmert, R. Theory of Complex Functions. Graduate Texts in Mathematics; Readings in Mathematics; Springer: New York, NY, USA, 1991; Volume 122. [Google Scholar]
- Cekim, B.; Shehata, A.; Srivastava, H.M. Two-sided inequalities for the Struve and Lommel functions. Quaest. Math. 2018, 41, 985–1003. [Google Scholar] [CrossRef]
- Prajapat, J.K. Certain geometric properties of the Wright functions. Integral Transform. Spec. Funct. 2015, 26, 203–212. [Google Scholar] [CrossRef]
- Rehman, M.S.U.; Ahmad, Q.Z.; Srivastava, H.M.; Khan, B.; Khan, N. Partial sums of generalized q-Mittag–Leffler functions. AIMS Math. 2020, 5, 408–420. [Google Scholar] [CrossRef]
- Mustafa, N. Geometric properties of normalized Wright functions. Math. Comput. Appl. 2016, 21, 14. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Selvakumaran, K.A.; Purohit, S.D. Inclusion properties for certain subclasses of analytic functions defined by using the generalized Bessel functions. Malaya J. Mater. 2015, 3, 360–367. [Google Scholar]
- Srivastava, H.M.; Bansal, D. Close-to-convexity of a certain family of q-Mittag–Leffler functions. J. Nonlinear Var. Anal. 2017, 1, 61–69. [Google Scholar]
- Tang, H.; Srivastava, H.M.; Deniz, E.; Li, S.-H. Third-order differential superordination involving the generalized Bessel functions. Bull. Malays. Math. Sci. Soc. 2015, 38, 1669–1688. [Google Scholar] [CrossRef]
- Saliu, A.; Noor, K.I.; Hussain, S.; Darus, M. On Bessel Functions Related with Certain Classes of Analytic Functions with respect to Symmetrical Points. J. Math. 2021, 2021, 6648710. [Google Scholar] [CrossRef]
- Raza, M.; Din, M.U.; Malik, S.N. Certain geometric properties of normalized Wright functions. J. Funct. Spaces 2016, 2016, 1896154. [Google Scholar] [CrossRef] [Green Version]
- Baricz, A.; Toklu, E.; Kadiolu, E. Radii of starlikeness and convexity of Wright functions. Math. Commun. 2016, 23, 97–117. [Google Scholar]
- Maharana, S.; Prajapat, J.K.; Bansal, D. Geometric properties of Wright function. Math. Bohem. 2018, 143, 99–111. [Google Scholar] [CrossRef] [Green Version]
- Sangal, P.; Swaminathan, A. Starlikeness of Gaussian hypergeometric functions using positivity techniques. Bull. Malays. Math. Sci. Soc. 2018, 41, 507–521. [Google Scholar] [CrossRef]
- Koumandos, S.; Ruscheweyh, S. On a conjecture for trigonometric sums and starlike functions. J. Approx. Theory 2007, 149, 42–58. [Google Scholar] [CrossRef]
- Fejer, L. Untersuchungen uber Potenzreihen mit mehrfach monotoner Koeffizientenfolge. Acta Litt. Sci. 1936, 8, 89–115. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, D.; Din, M.U.; Raza, M.; Malik, S.N.; Tang, H. Convexity, Starlikeness, and Prestarlikeness of Wright Functions. Mathematics 2022, 10, 3858. https://doi.org/10.3390/math10203858
Liu D, Din MU, Raza M, Malik SN, Tang H. Convexity, Starlikeness, and Prestarlikeness of Wright Functions. Mathematics. 2022; 10(20):3858. https://doi.org/10.3390/math10203858
Chicago/Turabian StyleLiu, Dong, Muhey U Din, Mohsan Raza, Sarfraz Nawaz Malik, and Huo Tang. 2022. "Convexity, Starlikeness, and Prestarlikeness of Wright Functions" Mathematics 10, no. 20: 3858. https://doi.org/10.3390/math10203858
APA StyleLiu, D., Din, M. U., Raza, M., Malik, S. N., & Tang, H. (2022). Convexity, Starlikeness, and Prestarlikeness of Wright Functions. Mathematics, 10(20), 3858. https://doi.org/10.3390/math10203858