Approximation of the Fixed Point of the Product of Two Operators in Banach Algebras with Applications to Some Functional Equations
Abstract
:1. Introduction
2. Analytical Tools
3. Existence, Uniqueness and Approximation of a Fixed Point of the Product of Two Operators in Banach Algebras
- (i)
- A and B are -lipschitzian with -functions φ and ψ respectively,
- (ii)
- and are bounded,
- (iii)
- for all
4. Nonlinear Differential Equations with Nonlocal Initial Condition
- (i)
- The partial mappings are continuous and the mapping is -Lipschitzian.
- (ii)
- There exist , two continuous functions and two nondecreasing, continuous functions such that
- (iii)
- There is a constant such that
4.1. Existence and Uniqueness of Solutions
4.2. Numerical Method to Approximate the Solution
4.3. Numerical Experiments
5. Nonlinear Integral Equations
- (i)
- The partial mappings and are continuous.
- (ii)
- There exist , , two continuous functions and two nondecreasing continuous functions such that
5.1. Existence and Uniqueness of Solutions
5.2. A Numerical Method to Approximate the Solution
5.3. Numerical Experiments
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985; ISBN 3-540-13928-1. [Google Scholar]
- Djebali, S.; Sahnoun, Z. Nonlinear alternatives of Schauder and Krasnosel’skii types with applications to Hammerstein integral equations in L1-spaces. J. Differ. Equ. 2010, 249, 2061–2075. [Google Scholar] [CrossRef] [Green Version]
- Byszewski, L. Theorems about the existence and uniqueness of solutions of a semilinear evolution nonlocal Cauchy problem. J. Math. Anal. Appl. 1991, 162, 494–505. [Google Scholar] [CrossRef] [Green Version]
- Byszewski, L. Existence and Uniqueness of Mild and Classical Solutions of Semilinear Functional-Differential Evolution Nonlocal Cauchy Problem; Selected Problems of Mathematics; Cracow University of Technology: Krakow, Poland, 1995. [Google Scholar]
- Deng, K. Exponential decay of solutions of semilinear parabolic equations with nonlocal initial conditions. J. Math. Anal. Appl. 1993, 179, 630–637. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C. Multi-valued mappings and fixed points I. Nonlinear Funct. Anal. Appl. 2005, 10, 359–378. [Google Scholar] [CrossRef] [Green Version]
- O’Regan, D. New fixed point results for 1-set contractive set-valued maps. Comput. Math. Appl. 1998, 35, 27–34. [Google Scholar] [CrossRef] [Green Version]
- Ben Amar, A.; Chouayekh, S.; Jeribi, A. Fixed point theory in a new class of Banach algebras and application. Afr. Mat. 2013, 24, 705–724. [Google Scholar] [CrossRef]
- Dhage, B.C. On some nonlinear alternatives of Leray-Schauder type and functional integral equations. Arch. Math. (Brno) 2006, 42, 11–23. [Google Scholar]
- Jeribi, A.; Kaddachi, N.; Krichen, B. Existence results for a system of nonlinear integral equations in Banach algebras under weak topology. Fixed Point Theory 2017, 18, 247–267. [Google Scholar] [CrossRef] [Green Version]
- Jeribi, A.; Krichen, B. Nonlinear functional analysis in Banach spaces and Banach algebras: Fixed point theory under weak topology for nonlinear operators and block operator matrices with applications. In Monographs and Research Notes in Mathematics; CRC Press/Taylor and Francis: Boca Raton, FL, USA, 2015. [Google Scholar]
- Dhage, B.C. On some variants of Schauder’s fixed point principle and applications to nonlinear integral equations. J. Math. Phy. Sci. 1988, 25, 603–611. [Google Scholar]
- Cichon, M.; Metwali, M.M.A. On a fixed point theorem for the product of operators. J. Fixed Point Theory Appl. 2016, 18, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C. On a fixed point theorem in Banach algebras with aplications. Appl. Math. Lett. 2005, 18, 273–280. [Google Scholar] [CrossRef] [Green Version]
- Dhage, B.C. A hybrid fixed point theorem in Banach algebras with applications. Commun. Appl. Nonlinear Anal. 2006, 13, 71–84. [Google Scholar]
- Akyüz-Daşcioǧlu, A.; Sezer, M. Chebyshev polynomial solutions of systems of higher-order linear Fredholm-Volterra integro-differential equations. J. Frankl. Inst. 2005, 342, 688–701. [Google Scholar] [CrossRef]
- Argyros, I.K.; Ezquerro, J.A.; Hernández, M.A.; Hilout, S.; Romero, N.; Velasco, A.I. Expanding the applicability of secant like methods for solving nonlinear equations. Carphatian J. Math. 2015, 31, 11–30. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D.; López Linares, A.J. Fixed point techniques and Schauder bases to approximate the solution of the first order nonlinear mixed Fredholm-Volterra integro-differential equation. J. Comput. Appl. Math. 2013, 252, 52–61. [Google Scholar] [CrossRef]
- Berenguer, M.I.; Gámez, D. A computational method for solving a class of two dimensional Volterra integral equations. J. Comput. Appl. Math. 2017, 318, 403–410. [Google Scholar] [CrossRef]
- Dzhumabaev, D.S. On one approach to solve the linear boundary value problems for Fredholm integro differential equations. J. Comput. Appl. Math. 2016, 294, 342–357. [Google Scholar] [CrossRef]
- Heydari, M.H.; Hooshmandasl, M.R.; Mohammadi, F.; Cattani, C. Wavelets method for solving systems of nonlinear singular fractional Volterra integro-differential equations. Commun. Nonlinear Sci. 2014, 19, 37–48. [Google Scholar] [CrossRef]
- Maleknejad, K.; Basirat, B.; Hashemizadeh, E. A Berstein operational matrix approach for solving a system of high order linear Volterra-Fredholm integro-differential equations. Math. Comput. Model. 2012, 55, 1363–1372. [Google Scholar] [CrossRef]
- Micula, S. On some iterative numerical methods for a Volterra functional integral equation of the second kind. J. Fixed Point Theory Appl. 2017, 19, 1815–1824. [Google Scholar] [CrossRef]
- Saberi-Nadjafi, J.; Tamamgar, M. The variational iteration method: A highly promising method for solving the system of integro-differential equations. Comput. Math. Appl. 2008, 56, 346–351. [Google Scholar] [CrossRef] [Green Version]
- Boyd, D.W.; Wong, J.S.W. On nonlinear contractions. Proc. Am. Math. Soc. 1969, 20, 458–464. [Google Scholar] [CrossRef]
- Pata, V. A fixed point theorem in metric spaces. J. Fixed Point Theory Appl. 2011, 10, 299–305. [Google Scholar] [CrossRef]
- Brezis, H. Functional Analysis, Sobolev Spaces and Partial Differential Equations; Universitext; Springer: New York, NY, USA, 2011; ISBN 978-0-387-70913-0. [Google Scholar]
- Gelbaum, B.R.; Gil de Lamadrid, J. Bases of tensor products of Banach spaces. Pac. J. Math. 1961, 11, 1281–1286. [Google Scholar] [CrossRef]
- Semadeni, Z. Product Schauder bases and approximation with nodes in spaces of continuous functions. Bull. Acad. Polon. Sci. 1963, 11, 387–391. [Google Scholar]
t | with | with | |
---|---|---|---|
0.2526360625738145 | 0.2506238401703868 | ||
0.2512245431325148 | 0.2506151528771704 | ||
0.2510208953229317 | 0.2506066551064274 | ||
0.2510087458298449 | 0.2505983412941664 | ||
0.2509968386936278 | 0.2505902060799007 | ||
0.2509851672563384 | 0.2505822442972077 | ||
0.2509737250885047 | 0.2505744509661791 | ||
0.2509625059364119 | 0.2505668212861210 | ||
0.2509515037642987 | 0.2505593506272617 | ||
1 | 0.2509407127451644 | 0.2505520345235613 | |
t | with | with | |
---|---|---|---|
0.2715154513364088 | 0.2714532970472882 | ||
0.2961167353030552 | 0.2961332465465061 | ||
0.3207837845940706 | 0.3208140511167786 | ||
0.3454635279153586 | 0.3454958547548318 | ||
0.3701445199310059 | 0.3701788114857308 | ||
0.3948268789541488 | 0.3948630864085328 | ||
0.4195107187398104 | 0.4195488540144761 | ||
0.4441962543294659 | 0.4442362958308083 | ||
0.4688837174935067 | 0.4689256009587782 | ||
1 | 0.4935733558651244 | 0.4936169655580174 | |
t | with | with | |
---|---|---|---|
0.1099446333333333 | 0.1099595576568532 | ||
0.1198179180577049 | 0.1199472782251611 | ||
0.1297511699020331 | 0.1299327014013851 | ||
0.1396866403161547 | 0.1399156114644378 | ||
0.1496116012197044 | 0.1498957849652041 | ||
0.1595251486759711 | 0.1598729913214837 | ||
0.1694262809122463 | 0.1698469898893412 | ||
0.1793140741901599 | 0.1798175262525480 | ||
0.1891875688779072 | 0.1897843325246908 | ||
1 | 0.1990457618518603 | 0.1997471266515799 | |
t | with | with | |
---|---|---|---|
0.0999495927525812 | 0.0999734131829520 | ||
0.1998269806205324 | 0.1999419676240642 | ||
0.2997014781005956 | 0.2999105694862292 | ||
0.3995761128223367 | 0.3998792008487213 | ||
0.4994508163308592 | 0.4998478468962116 | ||
0.5993255387084228 | 0.5998164954408373 | ||
0.6992002390137386 | 0.6997851365136741 | ||
0.7990748839377436 | 0.7997537620153589 | ||
0.8989494465775325 | 0.8997223654190059 | ||
1 | 1 | 0.9988239054111422 | 0.9996909415162489 |
t | with | with | |
---|---|---|---|
0.0098078897681979 | 0.0098501736202539 | ||
0.0191334693414161 | 0.0197640067592651 | ||
0.0288588703908235 | 0.0297138485291223 | ||
0.0387456185368957 | 0.0396854768250511 | ||
0.0486866179763731 | 0.0496708731179798 | ||
0.0586657967463166 | 0.0596654694199951 | ||
0.0686685394448633 | 0.0696660302996126 | ||
0.0786865051341015 | 0.0796705375310556 | ||
0.0887140587924687 | 0.0896776281114000 | ||
1 | 0.0987473453913395 | 0.0996863636633998 | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben Amara, K.; Berenguer, M.I.; Jeribi, A. Approximation of the Fixed Point of the Product of Two Operators in Banach Algebras with Applications to Some Functional Equations. Mathematics 2022, 10, 4179. https://doi.org/10.3390/math10224179
Ben Amara K, Berenguer MI, Jeribi A. Approximation of the Fixed Point of the Product of Two Operators in Banach Algebras with Applications to Some Functional Equations. Mathematics. 2022; 10(22):4179. https://doi.org/10.3390/math10224179
Chicago/Turabian StyleBen Amara, Khaled, Maria Isabel Berenguer, and Aref Jeribi. 2022. "Approximation of the Fixed Point of the Product of Two Operators in Banach Algebras with Applications to Some Functional Equations" Mathematics 10, no. 22: 4179. https://doi.org/10.3390/math10224179
APA StyleBen Amara, K., Berenguer, M. I., & Jeribi, A. (2022). Approximation of the Fixed Point of the Product of Two Operators in Banach Algebras with Applications to Some Functional Equations. Mathematics, 10(22), 4179. https://doi.org/10.3390/math10224179