Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application
Abstract
:1. Introduction
- (1)
- A contraction if, for all , there exists such that
- (2)
- A nonexpansive mapping if
- (3)
- Quasi-non-expansive if, for all and , we have
2. Preliminaries
- (i)
- If φ satisfies Condition (C), then φ satisfies Condition
- (ii)
- If φ satisfies Condition and , then φ is quasi-non-expansive.
3. Convergence Analysis
4. Numerical Example
5. Application
- (i).
- is continuous increasing with .
- (ii).
- is weakly continuous and satisfies the weak Lipschitz condition with Lipschitz constant , such that
- (iii).
- is weakly continuous and weakly satisfies the Lipschitz condition with Lipschitz constant such that
- (iv).
- Function is continuous with
- (v).
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef] [Green Version]
- Aoyama, K.; Kohsaka, F. Fixed point theorem for α-nonexpansive mappings in Banach spaces. Nonlinear Anal. Theory Methods Appl. 2011, 74, 4387–4391. [Google Scholar] [CrossRef]
- Piri, H.; Daraby, B.; Rahrovi, S.; Ghasemi, M. Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces by new faster iteration process. Numer. Algorithms 2019, 81, 1129–1148. [Google Scholar] [CrossRef]
- Pant, R.; Shukla, R. Approximating fixed points of generalized α-nonexpansive mappings in Banach spaces. Numer. Funct. Anal. Optim. 2017, 38, 248–266. [Google Scholar] [CrossRef]
- Ariza-Ruiz, D.; Linares, C.H.; Llorens-Fuster, E.; Moreno-Gálvez, E. On α-nonexpansive mappings in Banach spaces. Carpathian J. Math. 2016, 32, 13–28. [Google Scholar] [CrossRef]
- Chen, Y.-A.; Wen, D.-J. Convergence analysis of an accelerated iteration for monotone generalized α-nonexpansive mappings with a partial order. J. Funct. Spaces 2019, 2019, 2789819. [Google Scholar]
- Shukla, R.; Pant, R.; de la Sen, M. Generalized α-nonexpansive mappings in Banach spaces. Fixed Point Theory Appl. 2016, 2017, 4. [Google Scholar] [CrossRef] [Green Version]
- Banach, S. Surles operations dans les ensembles abstraites et leurs applications. Fundam. Math. 1922, 3, 133–187. [Google Scholar] [CrossRef]
- Picard, E. Memoire sur la theorie des equations aux derivees partielles et la methode des approximations successives. J. Math. Pures Appl. 1890, 6, 145–210. [Google Scholar]
- Berinde, V.; Takens, F. Iterative Approximation of Fixed Points; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.; Regan, D.O.; Sahu, D. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Abbas, M.; Nazir, T. Some new faster iteration process applied to constrained minimization and feasibility problems. Mat. Vesn. 2014, 66, 223–234. [Google Scholar]
- Thakur, D.; Thakur, B.S.; Postolache, M. New iteration scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef] [Green Version]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef] [Green Version]
- Abbas, M.; Asghar, M.W.; de la Sen, M. Approximation of the solution of delay fractional differential equation using AA-iterative scheme. Mathematics 2022, 10, 273. [Google Scholar] [CrossRef]
- Phuengrattana, W. Approximating fixed points of Suzuki-generalized nonexpansive mappings. Nonlinear Anal. Hybrid Syst. 2011, 5, 583–590. [Google Scholar] [CrossRef]
- Ali, J.; Ali, F.; Kumar, P. Approximation of fixed points for Suzuki’s generalized nonexpansive mappings. Mathematics 2019, 7, 522. [Google Scholar] [CrossRef] [Green Version]
- Dhompongsa, S.; Inthakon, W.; Kaewkhao, A. Edelstein’s method and fixed point theorems for some generalized nonexpansive mappings. J. Math. Anal. Appl. 2009, 350, 12–17. [Google Scholar] [CrossRef] [Green Version]
- García-Falset, J.; Llorens-Fuster, E.; Suzuki, T. Fixed point theory for a class of generalized nonexpansive mappings. J. Math. Anal. Appl. 2011, 375, 185–195. [Google Scholar] [CrossRef] [Green Version]
- Uddin, I.; Imdad, M.; Ali, J. Convergence theorems for a hybrid pair of generalized nonexpansive mappings in Banach spaces. Bull. Malays. Math. Sci. Soc. 2015, 38, 695–705. [Google Scholar] [CrossRef]
- Opial, Z. Weak convergence of the sequence of successive approximations for nonexpansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Senter, H.; Dotson, W. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regan, D.; Sahu, D. Fixed Point Theory for Lipschitzian-Type Mappings with Applications; Springer: Berlin/Heidelberg, Germany, 2009; Volume 6. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Courier Corporation: Chelmsford, MA, USA, 2010. [Google Scholar]
- Clarkson, J.A. Uniformly convex spaces. Trans. Am. Math. Soc. 1936, 40, 396–414. [Google Scholar] [CrossRef]
- Schu, J. Weak and strong convergence to fixed points of asymptotically nonexpansive mappings. Bull. Aust. Math. Soc. 1991, 43, 153–159. [Google Scholar] [CrossRef] [Green Version]
- Sadhu, R.; Nahak, C. Generalized α-nonexpansive multivalued mappings in Cat (0) space. J. Adv. Math. Stud. 2019, 12, 268–283. [Google Scholar]
- El-Sayed, A.; Omar, Y.M. On the weak solutions of a delay composite functional integral equation of Volterra-Stieltjes type in reflexive Banach space. Mathematics 2022, 10, 245. [Google Scholar] [CrossRef]
- Gripenberg, G.; Londen, S.-O.; Staffans, O. Volterra Integral and Functional Equations; Cambridge University Press: Cambridge, UK, 1990; Volume 34. [Google Scholar]
- Malique, M.A. Numerical Treatment of Oscillatory Delay and Mixed Functional Differential Equations Arising in Modelling; The University of Liverpool: Liverpool, UK, 2012. [Google Scholar]
Name | Algorithms |
---|---|
Noor | |
Agarwal et al. | |
Abbas et al. | |
Thakur et al. | |
Ullah et al. | |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Beg, I.; Abbas, M.; Asghar, M.W. Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application. Mathematics 2022, 10, 4375. https://doi.org/10.3390/math10224375
Beg I, Abbas M, Asghar MW. Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application. Mathematics. 2022; 10(22):4375. https://doi.org/10.3390/math10224375
Chicago/Turabian StyleBeg, Ismat, Mujahid Abbas, and Muhammad Waseem Asghar. 2022. "Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application" Mathematics 10, no. 22: 4375. https://doi.org/10.3390/math10224375
APA StyleBeg, I., Abbas, M., & Asghar, M. W. (2022). Convergence of AA-Iterative Algorithm for Generalized α-Nonexpansive Mappings with an Application. Mathematics, 10(22), 4375. https://doi.org/10.3390/math10224375