Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System
Abstract
:1. Introduction
2. Preliminaries
3. Results of the Paper
- Case (1):
- When
- Case (2):
- When
- (H1).
- The nonlinear function is measurable and continuous, and a positive constant p exists such that
- (H2).
- For brevity, we assume the following:
- Step I. In the first step, we show the boundedness of the set , in I. For an arbitrary and , one reachesThen, utilizing hypothesis and , we haveUtilizing Definition 2, we have
- Step II. In this step, we prove that the operator T is completely continuous. To do this, we assume that , which is mapped into an equicontinuous family by T. Then, for any and with , one obtains
- Step III. The last step to show that T is continuous. We make two more hypotheses:
- (H3).
- Let .
- (H4).
- Let , z be a positive constant.
Utilizing the above hypothesis, we obtain
- (H3a).
- Let .
- (H4a).
- Let , z is a positive constant.
4. Observability
4.1. Linear Case
4.2. Nonlinear Case
- , for some positive c.
- (1)
- The situation of an observable system at time t, and
- (2)
- The situation of completely observable system .
- , for some .
- A positive constant in , for some ,
- (1)
- The situation of an observable system at time t, and
- (2)
- The situation of completely observable system for all t.
5. Examples
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giusti, A. On infinite order differential operators in fractional viscoelasticity. arXiv 2017, arXiv:1701.06350. [Google Scholar] [CrossRef] [Green Version]
- Teng, L.; Iu, H.H.; Wang, X.; Wang, X. Chaotic behavior in fractional-order memristor-based simplest chaotic circuit using fourth degree polynomial. Nonlinear Dyn. 2014, 77, 231–241. [Google Scholar] [CrossRef]
- Sapora, A.; Cornetti, P.; Carpinteri, A.; Baglieri, O.; Santagata, E. The use of fractional calculus to model the experimental creep-recovery behavior of modified bituminous binders. Mater. Struct. 2016, 49, 45–55. [Google Scholar] [CrossRef]
- Hanert, E.; Schumacher, E.; Deleersnijder, E. Front dynamics in fractional-order epidemic models. J. Theor. Biol. 2011, 279, 9–16. [Google Scholar] [CrossRef] [Green Version]
- Tamilalagan, P.; Balasubramaniam, P. Approximate controllability of fractional stochastic differential equations driven by mixed fractional Brownian motion via resolvent operators. Int. J. Control 2017, 90, 1713–1727. [Google Scholar] [CrossRef]
- Khan, Z.; Khan, J.; Saifullah, S.; Ali, A. Dynamics of Hidden Attractors in Four-Dimensional Dynamical Systems with Power Law. J. Funct. Spaces 2022, 2022, 3675076. [Google Scholar] [CrossRef]
- Ahmad, S.; Ullah, A.; Partohaghighi, M.; Saifullah, S.; Akgül, A.; Jarad, F. Oscillatory and complex behaviour of Caputo-Fabrizio fractional order HIV-1 infection model. AIMS Math. 2021, 7, 4778–4792. [Google Scholar] [CrossRef]
- Naim, M.; Sabbar, Y.; Zahri, M.; Ghanbari, B.; Zeb, A.; Gul, N.; Djilali, S.; Lahmidi, F. The impact of dual time delay and Caputo fractional derivative on the long-run behavior of a viral system with the non-cytolytic immune hypothesis. Phys. Scr. 2022, 97, 124002. [Google Scholar] [CrossRef]
- Naim, M.; Sabbar, Y.; Zeb, A. Stability characterization of a fractional-order viral system with the non-cytolytic immune assumption. Math. Model. Numer. Simul. Appl. 2022, 2, 164–176. [Google Scholar] [CrossRef]
- Zeb, A.; Atangana, A.; Khan, Z.A.; Djillali, S. A robust study of a piecewise fractional order COVID-19 mathematical model. Alex. Eng. J. 2022, 61, 5649–5665. [Google Scholar] [CrossRef]
- Zeb, A.; Kumar, P.; Erturk, V.S.; Sitthiwirattham, T. A new study on two different vaccinated fractional-order COVID-19 models via numerical algorithms. J. King Saud Univ. Sci. 2022, 34, 101914. [Google Scholar] [CrossRef] [PubMed]
- Khan, A.; Ali, A.; Ahmad, S.; Saifullah, S.; Nonlaopon, K.; Akgül, A. Nonlinear Schrödinger equation under non-singular fractional operators: A computational study. Results Phys. 2022, 43, 106062. [Google Scholar] [CrossRef]
- Alqahtani, R.; Ahmad, S.; Akgül, A. Dynamical analysis of bio-ethanol production model under generalized nonlocal operator in Caputo sense. Mathematics 2021, 9, 2370. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, H.; Hui, N. Prediction of Agricultural Water Consumption in 2 Regions of China Based on Fractional-Order Cumulative Discrete Grey Model. J. Math. 2021, 2021, 3023385. [Google Scholar] [CrossRef]
- Li, X.; Liu, Z.; Tisdell, C. Existence and exact controllability of fractional evolution inclusions with damping. Math. Methods Appl. Sci. 2017, 40, 4548–4559. [Google Scholar] [CrossRef]
- Kumar, A.; Muslim, M.; Sakthivel, R. Controllability of the second-order nonlinear differential equations with non-instantaneous impulses. J. Dyn. Control Syst. 2018, 24, 325–342. [Google Scholar] [CrossRef]
- Sakthivel, R.; Ganesh, R.; Ren, Y.; Anthoni, S.M. Approximate controllability of nonlinear fractional dynamical systems. Commun. Nonlinear Sci. Numer. Simul. 2013, 18, 3498–3508. [Google Scholar] [CrossRef]
- Yaghoobi, S.; Moghaddam, B.P.; Ivaz, K. An efficient cubic spline approximation for variable-order fractional differential equations with time delay. Nonlinear Dyn. 2017, 87, 815–826. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Abbas, S.; Tyagi, S.; Lassoued, D. Global exponential stability of fractional-order impulsive neural network with time-varying and distributed delay. Math. Methods Appl. Sci. 2018, 41, 2095–2104. [Google Scholar] [CrossRef]
- Yan, Z. Controllability of fractional-order partial neutral functional integrodifferential inclusions with infinite delay. J. Frankl. Inst. 2011, 348, 2156–2173. [Google Scholar] [CrossRef]
- Muthukumar, P.; Rajivganthi, C. Approximate controllability of fractional order neutral stochastic integro-differentianl system with non local conditions and infinite delay. Taiwan. J. Math. 2013, 17, 1693–1713. [Google Scholar] [CrossRef]
- Valliammal, N.; Ravichandran, C.; Park, J.H. On the controllability of fractional neutral integrodifferential delay equations with nonlocal conditions. Math. Methods Appl. Sci. 2017, 40, 5044–5055. [Google Scholar] [CrossRef]
- Grubben, N.L.; Keesman, K.J. Controllability and observability of 2D thermal flow in bulk storage facilities using sensitivity fields. Int. J. Control 2018, 91, 1554–1566. [Google Scholar] [CrossRef] [Green Version]
- Grubben, N.L.; Keesman, K.J. Modelling ventilated bulk storage of agromaterials: A review. Comput. Electron. Agric. 2015, 114, 285–295. [Google Scholar] [CrossRef]
- Lopes, R.J.; Quinta-Ferreira, R.M. Numerical assessment of diffusion–convection–reaction model for the catalytic abatement of phenolic wastewaters in packed-bed reactors under trickling flow conditions. Comput. Chem. Eng. 2011, 35, 2706–2715. [Google Scholar] [CrossRef]
- Joseph, G.; Murthy, C. Controllability of linear dynamical systems under input sparsity constraints. IEEE Trans. Autom. Control 2020, 66, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Nawaz, M.; Jiang, W.; Sheng, J. The controllability of nonlinear fractional differential system with pure delay. Adv. Differ. Equ. 2020, 2020, 30. [Google Scholar] [CrossRef]
- Yi, Y.; Chen, D.; Xie, Q. Controllability of nonlinear fractional order integrodifferential system with input delay. Math. Methods Appl. Sci. 2019, 42, 3799–3817. [Google Scholar] [CrossRef]
- Balachandran, K.; Govindaraj, V.; Rivero, M.; Tenreiro Machado, J.; Trujillo, J.J. Observability of nonlinear fractional dynamical systems. Abstr. Appl. Anal. 2013, 2013, 346041. [Google Scholar] [CrossRef] [Green Version]
- Xu, D.; Li, Y.; Zhou, W. Controllability and observability of fractional linear systems with two different orders. Sci. World J. 2014, 2014, 618162. [Google Scholar] [CrossRef]
- Shi, J.; He, K.; Fang, H. Chaos, Hopf bifurcation and control of a fractional-order delay financial system. Math. Comput. Simul. 2022, 194, 348–364. [Google Scholar] [CrossRef]
- Buedo-Fernández, S.; Nieto, J.J. Basic control theory for linear fractional differential equations with constant coefficients. Front. Phys. 2020, 8, 377. [Google Scholar] [CrossRef]
- Kumlin, P. A note on fixed point theory. Functional Analysis Lecture, Mathematics Chalmers & GU. 2004. Available online: http://www.math.chalmers.se/Math/Grundutb/CTH/tma401/1516/2015fixedpointtheory.pdf (accessed on 9 November 2022).
- Monje, C.A.; Chen, Y.; Vinagre, B.M.; Xue, D.; Feliu-Batlle, V. Fractional-Order Systems and Controls: Fundamentals and Applications; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- He, B.B.; Zhou, H.C.; Kou, C.H. The controllability of fractional damped dynamical systems with control delay. Commun. Nonlinear Sci. Numer. Simul. 2016, 32, 190–198. [Google Scholar] [CrossRef]
- Tavakoli, M.; Tabatabaei, M. Controllability and observability analysis of continuous-time multi-order fractional systems. Multidimens. Syst. Signal Process. 2017, 28, 427–450. [Google Scholar] [CrossRef]
- Rugh, W.J. Linear System Theory; Prentice-Hall, Inc.: Hoboken, NJ, USA, 1996. [Google Scholar]
- Smith, I.N. Controllability, Observability and Realizability. Master’s Thesis, Georgia Southern University, Statesboro, GA, USA, 2005. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, I.; Ahmad, S.; ur Rahman, G.; Ahmad, S.; De la Sen, M. Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System. Mathematics 2022, 10, 4466. https://doi.org/10.3390/math10234466
Ahmad I, Ahmad S, ur Rahman G, Ahmad S, De la Sen M. Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System. Mathematics. 2022; 10(23):4466. https://doi.org/10.3390/math10234466
Chicago/Turabian StyleAhmad, Irshad, Saeed Ahmad, Ghaus ur Rahman, Shabir Ahmad, and Manuel De la Sen. 2022. "Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System" Mathematics 10, no. 23: 4466. https://doi.org/10.3390/math10234466
APA StyleAhmad, I., Ahmad, S., ur Rahman, G., Ahmad, S., & De la Sen, M. (2022). Controllability and Observability Results of an Implicit Type Fractional Order Delay Dynamical System. Mathematics, 10(23), 4466. https://doi.org/10.3390/math10234466