Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles
Abstract
:1. Introduction
2. Basic Setup for Estimating the Distribution Function
3. Proposed Estimators
- InfoTP: Only the population vector totals of the auxiliary variables, , are known.
- InfoES: Information is available at the level of a probability sample conducted on the same target population as the non-probability survey, with good coverage and high response rates. The vector of auxiliary variables is known for every unit in this reference sample.
- InfoEP: Information is available at the level of the population U: the vector of auxiliary variables is known for every .
3.1. InfoTP
3.2. InfoES
3.3. InfoEP
4. Properties of Proposed Estimators
- (i)
- should be continuous on the right;
- (ii)
- should be monotonically nondecreasing;
- (iii)
- ;
- (iv)
- {.
5. Simulation Study
5.1. Data
- : 1 if the individual has a computer at home, and 0 otherwise;
- : 1 if the individual is male, and 0 otherwise;
- : the individual’s age in years;
- : 1 if the individual lives in a medium-density population area, and 0 otherwise;
- : 1 if the individual lives in a low-density population area, and 0 otherwise.
- : Household expenses in EUR.
- SC1: Simple random sampling from the population with
- SC2: Unequal probability sampling from the full pseudopopulation, where the probability of selection for the i-th individual, , is given as follows:
- SC3: Unequal probability sampling from the full pseudopopulation, where the probability of selection for the i-th individual, , is given as follows:
5.2. Simulation
- The quantiles , and
- The distribution function at points , and .
- Naive estimator, using the sample distribution function of the sample to draw inferences.
- The proposed calibrated estimator where for corresponds to , , and .
- The proposed PSA estimator .
- The proposed SM estimator .
- The proposed DR estimator .
5.3. Results
6. Discussion
Author Contributions
Funding
Conflicts of Interest
References
- Acal, C.; Ruiz-Castro, J.E.; Aguilera, A.M.; Jiménez-Molinos, F.; Roldán, J.B. Phase-type distributions for studying variability in resistive memories. J. Comput. Appl. Math. 2019, 345, 23–32. [Google Scholar] [CrossRef]
- Alba-Fernández, M.V.; Batsidis, A.; Jiménez-Gamero, M.D.; Jodrá, P. A class of tests for the two-sample problem for count data. J. Comput. Appl. Math. 2017, 318, 220–229. [Google Scholar] [CrossRef]
- Decker, R.A.; Haltiwanger, J.; Jarmin, R.S.; Miranda, J. Declining business dynamism: What we know and the way forward. Am. Econ. Rev. 2016, 106, 203–207. [Google Scholar] [CrossRef] [Green Version]
- Gallagher, C.M.; Meliker, J.R. Blood and urine cadmium, blood pressure, and hypertension: A systematic review and metaanalysis. Environ. Health Perspect. 2010, 118, 1676–1684. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Medialdea, L.; Bogin, B.; Thiam, M.; Vargas, A.; Marrodán, M.D.; Dossou, N.I. Severe acute malnutrition morphological patterns in children under five. Sci. Rep. 2021, 11, 4237. [Google Scholar] [CrossRef] [PubMed]
- Vander Wal, J.S.; Mitchell, E.R. Psychological complications of pediatric obesity. Pediatr. Clin. 2011, 58, 1393–1401. [Google Scholar] [CrossRef]
- Wilson, R.C.; Fleming, Z.L.; Monks, P.S.; Clain, G.; Henne, S.; Konovalov, I.B.; Menut, L. Have primary emission reduction measures reduced ozone across Europe? An analysis of European rural background ozone trends 1996, Äì2005. Atmos. Chem. Phys. 2012, 12, 437–454. [Google Scholar] [CrossRef] [Green Version]
- Decker, R.; Haltiwanger, J.; Jarmin, R.; Miranda, J. The role of entrepreneurship in US job creation and economic dynamism. J. Econ. Perspect. 2014, 28, 3–24. [Google Scholar] [CrossRef] [Green Version]
- Dickens, R.; Manning, A. Has the national minimum wage reduced UK wage inequality? J. R. Stat. Soc. Ser. A Stat. Soc. 2004, 167, 613–626. [Google Scholar] [CrossRef] [Green Version]
- De Haan, J.; Pleninger, R.; Sturm, J.E. Does financial development reduce the poverty gap? Soc. Indic. Res. 2022, 161, 1–27. [Google Scholar] [CrossRef]
- Jolliffe, D.; Prydz, E.B. Estimating international poverty lines from comparable national thresholds. J. Econ. Inequal. 2016, 14, 185–198. [Google Scholar] [CrossRef] [Green Version]
- Martínez, S.; Illescas, M.; Martínez, H.; Arcos, A. Calibration estimator for Head Count Index. Int. J. Comput. Math. 2020, 97, 51–62. [Google Scholar] [CrossRef]
- Sedransk, N.; Sedransk, J. Distinguishing among distributions using data from complex sample designs. J. Am. Stat. Assoc. 1979, 74, 754–760. [Google Scholar] [CrossRef]
- Chambers, R.L.; Dunstan, R. Estimating distribution functions from survey data. Biometrika 1986, 73, 597–604. [Google Scholar] [CrossRef]
- Chen, J.; Wu, C. Estimation of distribution function and quantiles using the model-calibrated pseudo empirical likelihood method. Stat. Sin. 2002, 12, 1223–1239. [Google Scholar]
- Rao, J.N.K.; Kovar, J.G.; Mantel, H.J. On estimating distribution functions and quantiles from survey data using auxiliary information. Biometrika 1990, 77, 365–375. [Google Scholar] [CrossRef]
- Silva, P.L.D.; Skinner, C.J. Estimating distribution functions with auxiliary information using poststratification. J. Off. Stat. 1995, 11, 277–294. [Google Scholar]
- Deville, J.C.; Särndal, C.E. Calibration estimators in survey sampling. J. Am. Stat. Assoc. 1992, 87, 376–382. [Google Scholar] [CrossRef]
- Arcos, A.; Martínez, S.; Rueda, M.; Martínez, H. Distribution function estimates from dual frame context. J. Comput. Appl. Math. 2017, 318, 242–252. [Google Scholar] [CrossRef]
- Harms, T.; Duchesne, P. On calibration estimation for quantiles. Surv. Methodol. 2006, 32, 37–52. [Google Scholar]
- Martínez, S.; Rueda, M.; Arcos, A.; Martínez, H. Optimum calibration points estimating distribution functions. J. Comput. Appl. Math. 2010, 233, 2265–2277. [Google Scholar] [CrossRef] [Green Version]
- Martínez, S.; Rueda, M.; Martínez, H.; Arcos, A. Optimal dimension and optimal auxiliary vector to construct calibration estimators of the distribution function. J. Comput. Appl. Math. 2017, 318, 444–459. [Google Scholar] [CrossRef]
- Martínez, S.; Rueda, M.; Illescas, M. The optimization problem of quantile and poverty measures estimation based on calibration. J. Comput. Appl. Math. 2022, 45, 113054. [Google Scholar] [CrossRef]
- Mayor-Gallego, J.A.; Moreno-Rebollo, J.L.; Jiménez-Gamero, M.D. Estimation of the finite population distribution function using a global penalized calibration method. AStA Adv. Stat. Anal. 2019, 103, 1–35. [Google Scholar] [CrossRef]
- Rueda, M.; Martínez, S.; Martínez, H.; Arcos, A. Estimation of the distribution function with calibration methods. J. Stat. Plan. Inference 2007, 137, 435–448. [Google Scholar] [CrossRef]
- Singh, H.P.; Singh, S.; Kozak, M. A family of estimators of finite-population distribution function using auxiliary information. Acta Appl. Math. 2008, 104, 115–130. [Google Scholar] [CrossRef]
- Wu, C. Optimal calibration estimators in survey sampling. Biometrika 2003, 90, 937–951. [Google Scholar] [CrossRef]
- Rueda, M.; Martínez, S.; Illescas, M. Treating nonresponse in the estimation of the distribution function. Math. Comput. Simul. 2021, 186, 136–144. [Google Scholar] [CrossRef]
- Bradshaw, J.; Mayhew, E. Understanding extreme poverty in the European Union. Eur. J. Homelessness 2010, 4, 171–186. [Google Scholar]
- Bethlehem, J. Selection Bias in Web Surveys. Int. Stat. Rev. 2010, 78, 161–188. [Google Scholar] [CrossRef]
- Chen, Y.; Li, P.; Wu, C. Doubly Robust Inference with Nonprobability Survey Samples. J. Am. Stat. Assoc. 2019, 115, 2011–2021. [Google Scholar] [CrossRef] [Green Version]
- Beaumont, J.F. Are probability surveys bound to disappear for the production of official statistics? Surv. Methodol. 2020, 46, 1–29. [Google Scholar]
- Buelens, B.; Burger, J.; van den Brakel, J.A. Comparing Inference Methods for Non-probability Samples. Int. Stat. Rev. 2018, 86, 322–343. [Google Scholar] [CrossRef]
- Kim, J.K.; Wang, Z. Sampling techniques for big data analysis. Int. Stat. Rev. 2019, 87, S177–S191. [Google Scholar] [CrossRef] [Green Version]
- Rao, J.N.K. On Making Valid Inferences by Integrating Data from Surveys and Other Sources. Sankhya B 2020, 83, 242–272. [Google Scholar] [CrossRef]
- Valliant, R. Comparing alternatives for estimation from nonprobability samples. J. Surv. Stat. Methodol. 2020, 8, 231–263. [Google Scholar] [CrossRef]
- Yang, S.; Kim, J.K. Statistical data integration in survey sampling: A review. Jpn. J. Stat. Data Sci. 2020, 3, 625–650. [Google Scholar] [CrossRef]
- Lee, S. Propensity Score Adjustment as a Weighting Scheme for Volunteer Panel Web Surveys. J. Off. Stat. 2006, 22, 329–349. [Google Scholar]
- Lee, S.; Valliant, R. Estimation for Volunteer Panel Web Surveys Using Propensity Score Adjustment and Calibration Adjustment. Sociol. Method Res. 2009, 37, 319–343. [Google Scholar] [CrossRef]
- Rivers, D. Sampling for Web Surveys. In Proceedings of the Joint Statistical Meetings, Salt Lake City, UT, USA, 29 July–2 August 2007. [Google Scholar]
- Wang, L.; Graubard, B.I.; Katki, H.A.; Li, Y. Improving external validity of epidemiologic cohort analyses: A kernel weighting approach. J. R. Stat. Soc. Ser. A Stat. Soc. 2020, 183, 1293–1311. [Google Scholar] [CrossRef]
- Castro-Martín, L.; Rueda, M.D.M.; Ferri-García, R. Combining statistical matching and propensity score adjustment for inference from non-probability surveys. J. Comput. Appl. Math. 2021, 404, 113414. [Google Scholar] [CrossRef]
- Ferri-García, R.; Rueda, M.M. Efficiency of Propensity Score Adjustment and calibration on the estimation from non-probabilistic online surveys. SORT Stat. Oper. Res. Trans. 2018, 42, 1–10. [Google Scholar]
- Rueda, M.; Ferri-García, R.; Castro, L. The R package NonProbEst for estimation in non-probability survey. R J. 2020, 12, 406–418. [Google Scholar] [CrossRef]
- Elliott, M.R.; Valliant, R. Inference for Nonprobability Samples. Stat. Sci. 2017, 32, 249–264. [Google Scholar] [CrossRef]
- Ferri-García, R.; Rueda, M.D.M. Propensity score adjustment using machine learning classification algorithms to control selection bias in online surveys. PLoS ONE 2020, 15, e0231500. [Google Scholar] [CrossRef] [Green Version]
- Valliant, R.; Dever, J.A. Estimating Propensity Adjustments for Volunteer Web Surveys. Sociol. Method Res. 2011, 40, 105–137. [Google Scholar] [CrossRef]
- Rosenbaum, P.R.; Rubin, D.B. The Central Role of the Propensity Score in Observational Studies for Causal Effects. Biometrika 1983, 70, 41–55. [Google Scholar] [CrossRef]
- Schonlau, M.; Couper, M. Options for Conducting Web Surveys. Stat. Sci. 2017, 32, 279–292. [Google Scholar] [CrossRef]
- Castro-Martín, L.; Rueda, M.D.M.; Ferri-García, R. Estimating General Parameters from Non-Probability Surveys Using Propensity Score Adjustment. Mathematics 2020, 8, 2096. [Google Scholar] [CrossRef]
- Wu, C.; Thompson, M.E. Sampling Theory and Practice; Springer Nature: Cham, Switzerland, 2020. [Google Scholar]
- Akiba, T.; Sano, S.; Yanase, T.; Ohta, T.; Koyama, M. Optuna: A next-generation hyperparameter optimization framework. In Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, Anchorage, AK, USA, 4–8 August 2019; pp. 2623–2631. [Google Scholar]
- Handcoc, M.S. Relative Distribution Methods; Version 1.7-1. 2022. Available online: https://CRAN.R-project.org/package=reldist (accessed on 20 October 2022).
- Jackson, C.H. flexsurv: A platform for parametric survival modeling in R. J. Stat. Softw. 2016, 70, i08. [Google Scholar] [CrossRef] [Green Version]
- National Institute of Statistics. Life Conditions Survey—Microdata; National Institute of Statistics: Washington, DC, USA, 2012. [Google Scholar]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Castro-Martín, L.; Rueda, M.D.M.; Ferri-García, R. Inference from Non-Probability Surveys with Statistical Matching and Propensity Score Adjustment Using Modern Prediction Techniques. Mathematics 2020, 8, 879. [Google Scholar] [CrossRef]
- Castro-Martín, L.; Rueda, M.D.M.; Ferri-García, R.; Hernando-Tamayo, C. On the Use of Gradient Boosting Methods to Improve the Estimation with Data Obtained with Self-Selection Procedures. Mathematics 2021, 9, 2991. [Google Scholar] [CrossRef]
- Bergstra, J.; Bardenet, R.; Bengio, Y.; Kégl, B. Algorithms for hyper-parameter optimization. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Volume 24. [Google Scholar]
- Rueda, M.; Sánchez-Borrego, I.; Arcos, A.; Martínez, S. Model-calibration estimation of the distribution function using nonparametric regression. Metrika 2010, 71, 33–44. [Google Scholar] [CrossRef]
- Wolter, K.M. Introduction to Variance Estimation, 2nd ed.; Springer Inc.: New York, NY, USA, 2007. [Google Scholar]
Stratified | Proportional | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SC1 2000 | Naive | 23.3 | 17.9 | 13.4 | −32.6 | −20.9 | −10.0 | 23.3 | 17.9 | 13.4 | −32.6 | −20.9 | −10.0 | |
Cal | Reg | 6.7 | 12.9 | 17.7 | −0.6 | −17.2 | −20.7 | −10.3 | 2.0 | 12.0 | 40.7 | 1.4 | −5.9 | |
XGB | 0.2 | 3.6 | 9.8 | 7.1 | 4.2 | −0.3 | 1.1 | 6.3 | 9.8 | 5.5 | 1.0 | −0.4 | ||
PSA | Reg | 16.8 | 14.6 | 11.1 | −23.3 | −16.5 | −8.2 | 21.5 | 18.0 | 13.9 | −30.0 | −20.4 | −10.1 | |
XGB | 19.6 | 13.1 | 10.5 | −28.1 | −15.6 | −8.8 | 28.4 | 20.9 | 12.5 | −38.2 | −24.4 | −10.5 | ||
SM | Reg | −4 | 25.8 | 3 | −0.6 | −17.3 | −20.7 | −2 | −0.8 | 4 | 40.7 | 1.4 | −5.9 | |
XGB | −4.1 | −4.2 | 0.6 | 7.3 | 4.1 | −0.4 | −2.3 | −1.2 | 0.6 | 5.7 | 0.9 | −0.4 | ||
DR | Reg | −4 | 25.8 | 3 | −0.6 | −17.2 | −20.7 | −2 | −0.9 | 4 | 40.7 | 1.4 | −5.9 | |
XGB | −4.1 | −4.3 | 0.5 | 7.3 | 4.2 | −0.3 | −2.4 | −1.2 | 0.6 | 5.6 | 1.0 | −0.4 | ||
SC1 4000 | Naive | 23.3 | 18.1 | 13.6 | −32.7 | −21.0 | −10.1 | 23.3 | 18.1 | 13.6 | −32.7 | −21.0 | −10.1 | |
Cal | Reg | −6.3 | 2.9 | 13.7 | 30.6 | −1.6 | −10.2 | −11.2 | 1.4 | 11.7 | 42.9 | 2.6 | −5.2 | |
XGB | 0.2 | 3.7 | 9.9 | 6.9 | 4.2 | −0.4 | 1.2 | 6.3 | 9.9 | 5.2 | 1.0 | −0.5 | ||
PSA | Reg | 16.8 | 14.6 | 11.3 | −23.4 | −16.6 | −8.3 | 21.5 | 18.0 | 13.9 | −30.0 | −20.4 | −10.1 | |
XGB | 19.9 | 14.0 | 13.0 | −28.0 | −16.4 | −10.4 | 28.1 | 22.1 | 13.7 | −37.1 | −25.0 | −11.4 | ||
SM | Reg | −2 | 4.3 | 2 | 30.6 | −1.6 | −10.2 | −2 | −2.3 | 6 | 42.9 | 2.5 | −5.2 | |
XGB | −4.2 | −4.2 | 0.6 | 7.2 | 4.1 | −0.4 | −2.2 | −1.2 | 0.6 | 5.5 | 0.9 | −0.5 | ||
DR | Reg | −2 | 4.3 | 2 | 30.6 | −1.6 | −10.2 | −2 | −2.4 | 6 | 42.9 | 2.6 | −5.2 | |
XGB | −4.1 | −4.2 | 0.6 | 7.1 | 4.2 | −0.3 | −2.3 | −1.2 | 0.6 | 5.4 | 1.0 | −0.5 | ||
SC1 6000 | Naive | 23.3 | 18.0 | 13.5 | −32.7 | −20.9 | −10.0 | 23.3 | 18.0 | 13.5 | −32.7 | −20.9 | −10.0 | |
Cal | Reg | 0.7 | 8.1 | 15.8 | 13.9 | −9.9 | −15.8 | −10.9 | 1.6 | 11.7 | 42.0 | 2.1 | −5.5 | |
XGB | 0.2 | 3.6 | 9.7 | 6.8 | 4.1 | −0.4 | 1.2 | 6.2 | 9.7 | 5.1 | 1.0 | −0.5 | ||
PSA | Reg | 16.8 | 14.6 | 11.4 | −23.5 | −16.5 | −8.3 | 21.4 | 17.9 | 13.9 | −30.0 | −20.3 | −10.1 | |
XGB | 20.1 | 14.6 | 14.8 | −27.6 | −17.2 | −11.4 | 27.6 | 22.5 | 14.3 | −36.0 | −25.1 | −11.9 | ||
SM | Reg | −7 | 15.8 | 1 | 13.9 | −10.0 | −15.8 | −3 | −1.7 | 9 | 42.0 | 2.1 | −5.5 | |
XGB | −4.3 | −4.1 | 0.6 | 7.0 | 4.2 | −0.4 | −2.1 | −1.2 | 0.6 | 5.4 | 1.0 | −0.5 | ||
DR | Reg | −7 | 15.8 | 1 | 13.9 | −9.9 | −15.8 | −3 | −1.8 | 9 | 42.0 | 2.1 | −5.5 | |
XGB | −4.2 | −4.2 | 0.6 | 7.0 | 4.2 | −0.4 | −2.3 | −1.3 | 0.6 | 5.3 | 1.0 | −0.5 | ||
SC2 2000 | Naive | 12.1 | 10.2 | 7.8 | −18.2 | −11.6 | −5.6 | 12.1 | 10.2 | 7.8 | −18.2 | −11.6 | −5.6 | |
Cal | Reg | −1.4 | 0.1 | 5.9 | 6.7 | 4.0 | −0.4 | −0.7 | 3.1 | 5.9 | 5.0 | 1.1 | −0.6 | |
XGB | −1.5 | 0.0 | 5.8 | 7.1 | 4.2 | −0.3 | −0.8 | 3.2 | 5.9 | 5.5 | 1.0 | −0.4 | ||
PSA | Reg | −5.2 | −4.3 | −2.9 | 9.5 | 4.9 | 2.0 | −0.2 | 0.1 | −0.2 | 0.2 | 0.1 | 0.2 | |
XGB | 5.4 | 2.4 | 2.5 | −8.5 | −2.4 | −2.1 | 15.2 | 10.8 | 5.9 | −22.5 | −12.3 | −4.7 | ||
SM | Reg | −4.3 | −4.0 | 0.6 | 6.7 | 4.0 | −0.4 | −2.1 | −1.1 | 0.6 | 5.0 | 1.0 | −0.6 | |
XGB | −4.1 | −4.2 | 0.5 | 7.2 | 4.2 | −0.3 | −2.3 | −1.2 | 0.6 | 5.6 | 0.9 | −0.4 | ||
DR | Reg | −4.3 | −4.0 | 0.6 | 6.7 | 4.0 | −0.4 | −2.2 | −1.2 | 0.6 | 5.0 | 1.1 | −0.6 | |
XGB | −4.1 | −4.3 | 0.5 | 7.1 | 4.2 | −0.3 | −2.4 | −1.2 | 0.6 | 5.5 | 1.0 | −0.4 | ||
SC2 4000 | Naive | 11.8 | 10.1 | 7.7 | −17.8 | −11.5 | −5.6 | 11.8 | 10.1 | 7.7 | −17.8 | −11.5 | −5.6 | |
Cal | Reg | −1.4 | −0.1 | 5.8 | 6.6 | 4.1 | −0.4 | −0.7 | 3.0 | 5.8 | 5.0 | 1.1 | −0.5 | |
XGB | −1.6 | −0.2 | 5.7 | 7.0 | 4.2 | −0.4 | −0.9 | 3.1 | 5.8 | 5.4 | 1.0 | −0.4 | ||
PSA | Reg | −5.4 | −4.3 | −2.9 | 9.8 | 4.9 | 2.0 | −0.5 | −0.1 | −0.4 | 0.8 | 0.2 | 0.3 | |
XGB | 3.5 | 2.0 | 3.2 | −5.6 | −1.8 | −2.7 | 13.9 | 10.8 | 6.4 | −20.3 | −12.1 | −5.2 | ||
SM | Reg | −4.3 | −4.0 | 0.6 | 6.6 | 4.0 | −0.4 | −2.1 | −1.1 | 0.6 | 4.9 | 1.1 | −0.5 | |
XGB | −4.1 | −4.1 | 0.6 | 7.3 | 4.1 | −0.4 | −2.2 | −1.2 | 0.6 | 5.6 | 0.9 | −0.5 | ||
DR | Reg | −4.3 | −4.0 | 0.5 | 6.6 | 4.1 | −0.4 | −2.1 | −1.2 | 0.6 | 5.0 | 1.1 | −0.5 | |
XGB | −4.1 | −4.2 | 0.6 | 7.0 | 4.2 | −0.3 | −2.4 | −1.2 | 0.6 | 5.4 | 1.0 | −0.5 | ||
SC2 6000 | Naive | 11.4 | 9.9 | 7.4 | −17.3 | −11.1 | −5.4 | 11.4 | 9.9 | 7.4 | −17.3 | −11.1 | −5.4 | |
Cal | Reg | −1.5 | −0.2 | 5.6 | 6.6 | 4.1 | −0.4 | −0.7 | 2.9 | 5.7 | 4.9 | 1.1 | −0.5 | |
XGB | −1.6 | −0.3 | 5.6 | 7.0 | 4.2 | −0.4 | −0.9 | 3.0 | 5.6 | 5.3 | 1.0 | −0.5 | ||
PSA | Reg | −5.3 | −4.4 | −2.8 | 9.8 | 4.9 | 1.9 | −0.6 | −0.2 | −0.5 | 0.9 | 0.3 | 0.4 | |
XGB | 1.8 | 1.4 | 3.6 | −3.0 | −1.2 | −3.1 | 12.3 | 10.3 | 6.5 | −18.1 | −11.3 | −5.1 | ||
SM | Reg | −4.3 | −4.0 | 0.6 | 6.5 | 4.1 | −0.4 | −2.1 | −1.1 | 0.6 | 4.9 | 1.1 | −0.5 | |
XGB | −4.2 | −4.2 | 0.6 | 7.3 | 4.1 | −0.4 | −2.2 | −1.1 | 0.6 | 5.6 | 1.0 | −0.5 | ||
DR | Reg | −4.3 | −4.0 | 0.5 | 6.6 | 4.1 | −0.4 | −2.1 | −1.2 | 0.5 | 4.9 | 1.1 | −0.5 | |
XGB | −4.1 | −4.2 | 0.6 | 7.0 | 4.2 | −0.3 | −2.3 | −1.2 | 0.6 | 5.3 | 1.1 | −0.5 | ||
SC3 2000 | Naive | 9.8 | 8.9 | 6.9 | −14.2 | −10.2 | −4.9 | 9.8 | 8.9 | 6.9 | −14.2 | −10.2 | −4.9 | |
Cal | Reg | −2.1 | −0.5 | 5.3 | 7.4 | 4.3 | −0.3 | −1.3 | 2.6 | 5.4 | 5.5 | 1.1 | −0.6 | |
XGB | −1.9 | −0.5 | 5.3 | 7.0 | 4.2 | −0.3 | −1.2 | 2.8 | 5.3 | 5.5 | 1.0 | −0.4 | ||
PSA | Reg | 1.7 | 0.7 | −0.6 | −3.0 | −0.6 | 0.5 | 3.4 | 2.3 | 0.7 | −6.1 | −2.5 | −0.4 | |
XGB | 10.5 | 5.7 | 5.3 | −14.5 | −5.6 | −4.0 | 13.1 | 9.4 | 6.6 | −17.8 | −10.4 | −5.0 | ||
SM | Reg | −4.5 | −4.4 | 0.6 | 7.4 | 4.3 | −0.3 | −2.5 | −1.2 | 0.6 | 5.5 | 1.1 | −0.6 | |
XGB | −4.1 | −4.1 | 0.6 | 7.1 | 4.2 | −0.3 | −2.4 | −1.1 | 0.6 | 5.6 | 1.0 | −0.4 | ||
DR | Reg | −4.5 | −4.5 | 0.5 | 7.4 | 4.3 | −0.3 | −2.6 | −1.2 | 0.6 | 5.5 | 1.1 | −0.6 | |
XGB | −4.1 | −4.2 | 0.5 | 7.1 | 4.2 | −0.3 | −2.5 | −1.2 | 0.6 | 5.5 | 1.1 | −0.4 | ||
SC3 4000 | Naive | 10.0 | 9.0 | 6.8 | −14.3 | −10.2 | −4.9 | 10.0 | 9.0 | 6.8 | −14.3 | −10.2 | −4.9 | |
Cal | Reg | −1.9 | −0.6 | 5.2 | 6.8 | 4.2 | −0.4 | −1.1 | 2.6 | 5.3 | 5.0 | 1.1 | −0.5 | |
XGB | −1.8 | −0.6 | 5.2 | 6.7 | 4.2 | −0.3 | −1.2 | 2.7 | 5.2 | 5.3 | 1.1 | −0.5 | ||
PSA | Reg | 1.6 | 1.0 | −0.4 | −2.7 | −1.0 | 0.3 | 3.3 | 2.7 | 0.7 | −5.8 | −2.9 | −0.5 | |
XGB | 10.2 | 5.9 | 5.8 | −14.1 | −5.6 | −4.6 | 12.7 | 9.8 | 7.2 | −16.7 | −11.0 | −5.5 | ||
SM | Reg | −4.3 | −4.2 | 0.5 | 6.8 | 4.1 | −0.4 | −2.1 | −1.1 | 0.6 | 5.0 | 1.1 | −0.5 | |
XGB | −4.2 | −4.1 | 0.5 | 6.9 | 4.2 | −0.4 | −2.4 | −1.2 | 0.6 | 5.4 | 1.0 | −0.5 | ||
DR | Reg | −4.4 | −4.2 | 0.5 | 6.8 | 4.2 | −0.4 | −2.2 | −1.2 | 0.6 | 5.0 | 1.1 | −0.5 | |
XGB | −4.1 | −4.2 | 0.6 | 6.9 | 4.2 | −0.3 | −2.5 | −1.2 | 0.6 | 5.3 | 1.1 | −0.5 | ||
SC3 6000 | Naive | 10.0 | 9.0 | 6.7 | −14.4 | −10.2 | −4.9 | 10.0 | 9.0 | 6.7 | −14.4 | −10.2 | −4.9 | |
Cal | Reg | −1.8 | −0.6 | 5.2 | 6.6 | 4.1 | −0.4 | −1.1 | 2.6 | 5.2 | 4.9 | 1.1 | −0.5 | |
XGB | −1.8 | −0.6 | 5.2 | 6.7 | 4.2 | −0.4 | −1.2 | 2.6 | 5.2 | 5.2 | 1.1 | −0.5 | ||
PSA | Reg | 1.6 | 0.9 | −0.3 | −2.9 | -0.8 | 0.2 | 3.2 | 2.5 | 0.8 | −5.8 | −2.7 | −0.5 | |
XGB | 9.8 | 6.4 | 6.5 | −13.5 | −6.0 | −5.3 | 12.6 | 10.3 | 7.7 | −16.2 | −11.4 | −6.0 | ||
SM | Reg | −4.3 | −4.0 | 0.5 | 6.6 | 4.1 | −0.4 | −2.1 | −1.2 | 0.6 | 4.9 | 1.1 | −0.5 | |
XGB | −4.2 | −4.2 | 0.6 | 6.9 | 4.2 | −0.4 | −2.3 | −1.1 | 0.6 | 5.4 | 1.0 | −0.5 | ||
DR | Reg | −4.3 | −4.0 | 0.5 | 6.6 | 4.1 | −0.4 | −2.1 | −1.2 | 0.5 | 4.9 | 1.1 | −0.5 | |
XGB | −4.2 | −4.2 | 0.6 | 6.9 | 4.2 | −0.3 | −2.4 | −1.1 | 0.6 | 5.2 | 1.1 | −0.5 |
Stratified | Proportional | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SC1 2000 | Naive | 23.4 | 18.0 | 13.5 | 32.8 | 21.0 | 10.0 | 23.4 | 18.0 | 13.5 | 32.8 | 21.0 | 10.0 | |
Cal | Reg | 24.0 | 21.8 | 19.1 | 54.4 | 32.2 | 27.5 | 21.7 | 13.4 | 13.3 | 59.3 | 21.6 | 15.6 | |
XGB | 1.1 | 3.8 | 9.9 | 7.3 | 4.2 | 0.4 | 1.5 | 6.5 | 9.9 | 5.6 | 1.0 | 0.5 | ||
PSA | Reg | 16.9 | 14.7 | 11.2 | 23.5 | 16.6 | 8.3 | 21.6 | 18.0 | 13.9 | 30.1 | 20.5 | 10.1 | |
XGB | 20.3 | 13.7 | 11.4 | 29.0 | 16.2 | 9.3 | 28.7 | 21.2 | 12.8 | 38.7 | 24.7 | 10.8 | ||
SM | Reg | 9 | 45.5 | 7 | 54.4 | 32.2 | 27.5 | 3 | 28.4 | 2 | 59.3 | 21.6 | 15.6 | |
XGB | 4.2 | 4.3 | 0.7 | 7.5 | 4.2 | 0.5 | 2.4 | 1.3 | 0.8 | 5.8 | 1.0 | 0.6 | ||
DR | Reg | 9 | 45.4 | 7 | 54.4 | 32.2 | 27.5 | 3 | 28.5 | 2 | 59.3 | 21.6 | 15.6 | |
XGB | 4.2 | 4.3 | 0.7 | 7.4 | 4.2 | 0.4 | 2.5 | 1.3 | 0.7 | 5.7 | 1.0 | 0.6 | ||
SC1 4000 | Naive | 23.4 | 18.2 | 13.6 | 32.8 | 21.1 | 10.1 | 23.4 | 18.2 | 13.6 | 32.8 | 21.1 | 10.1 | |
Cal | Reg | 22.3 | 16.7 | 15.3 | 59.4 | 25.5 | 19.8 | 21.4 | 12.7 | 13.0 | 59.6 | 20.9 | 14.8 | |
XGB | 0.8 | 3.7 | 9.9 | 7.0 | 4.2 | 0.4 | 1.4 | 6.4 | 10.0 | 5.3 | 1.0 | 0.5 | ||
PSA | Reg | 16.9 | 14.7 | 11.4 | 23.5 | 16.6 | 8.3 | 21.5 | 18.0 | 13.9 | 30.1 | 20.4 | 10.1 | |
XGB | 20.2 | 14.3 | 13.5 | 28.5 | 16.8 | 10.6 | 28.3 | 22.2 | 13.8 | 37.4 | 25.1 | 11.5 | ||
SM | Reg | 3 | 35.3 | 5 | 59.4 | 25.5 | 19.8 | 3 | 27.4 | 3 | 59.6 | 20.9 | 14.8 | |
XGB | 4.3 | 4.2 | 0.7 | 7.3 | 4.2 | 0.5 | 2.3 | 1.2 | 0.7 | 5.7 | 1.0 | 0.6 | ||
DR | Reg | 3 | 35.2 | 5 | 59.4 | 25.5 | 19.8 | 3 | 27.4 | 3 | 59.6 | 20.9 | 14.8 | |
XGB | 4.2 | 4.2 | 0.7 | 7.2 | 4.2 | 0.4 | 2.4 | 1.3 | 0.6 | 5.4 | 1.0 | 0.5 | ||
SC1 6000 | Naive | 23.3 | 18.1 | 13.5 | 32.8 | 20.9 | 10.0 | 23.3 | 18.1 | 13.5 | 32.8 | 20.9 | 10.0 | |
Cal | Reg | 23.1 | 19.5 | 17.4 | 56.8 | 29.3 | 24.2 | 21.5 | 13.0 | 13.0 | 59.5 | 21.2 | 15.1 | |
XGB | 0.6 | 3.7 | 9.7 | 6.8 | 4.2 | 0.4 | 1.3 | 6.2 | 9.8 | 5.2 | 1.0 | 0.5 | ||
PSA | Reg | 16.9 | 14.6 | 11.5 | 23.5 | 16.5 | 8.3 | 21.4 | 18.0 | 13.9 | 30.1 | 20.4 | 10.1 | |
XGB | 20.4 | 14.8 | 15.1 | 27.9 | 17.4 | 11.6 | 27.8 | 22.6 | 14.4 | 36.2 | 25.2 | 11.9 | ||
SM | Reg | 1 | 41.0 | 3 | 56.8 | 29.3 | 24.2 | 4 | 27.8 | 3 | 59.5 | 21.2 | 15.1 | |
XGB | 4.4 | 4.2 | 0.7 | 7.2 | 4.2 | 0.5 | 2.2 | 1.2 | 0.7 | 5.5 | 1.0 | 0.6 | ||
DR | Reg | 1 | 41.0 | 3 | 56.8 | 29.3 | 24.2 | 4 | 27.9 | 3 | 59.5 | 21.2 | 15.1 | |
XGB | 4.2 | 4.2 | 0.6 | 7.1 | 4.2 | 0.4 | 2.4 | 1.3 | 0.6 | 5.3 | 1.1 | 0.5 | ||
SC2 2000 | Naive | 12.4 | 10.4 | 8.0 | 18.5 | 11.8 | 5.8 | 12.4 | 10.4 | 8.0 | 18.5 | 11.8 | 5.8 | |
Cal | Reg | 1.5 | 1.0 | 6.0 | 6.7 | 4.0 | 0.4 | 0.9 | 3.2 | 6.1 | 5.0 | 1.1 | 0.6 | |
XGB | 1.7 | 1.1 | 6.0 | 7.2 | 4.2 | 0.4 | 1.1 | 3.4 | 6.0 | 5.6 | 1.0 | 0.5 | ||
PSA | Reg | 5.6 | 4.6 | 3.2 | 10.2 | 5.2 | 2.2 | 1.8 | 1.6 | 1.3 | 3.2 | 1.7 | 0.8 | |
XGB | 7.3 | 4.8 | 4.2 | 11.5 | 5.2 | 3.5 | 15.8 | 11.3 | 6.6 | 23.6 | 12.9 | 5.3 | ||
SM | Reg | 4.3 | 4.0 | 0.7 | 6.7 | 4.0 | 0.4 | 2.1 | 1.1 | 0.6 | 5.0 | 1.1 | 0.6 | |
XGB | 4.2 | 4.2 | 0.7 | 7.4 | 4.2 | 0.5 | 2.4 | 1.3 | 0.7 | 5.8 | 1.0 | 0.5 | ||
DR | Reg | 4.3 | 4.0 | 0.6 | 6.7 | 4.0 | 0.4 | 2.2 | 1.2 | 0.6 | 5.0 | 1.1 | 0.6 | |
XGB | 4.1 | 4.3 | 0.7 | 7.2 | 4.2 | 0.4 | 2.5 | 1.3 | 0.7 | 5.6 | 1.0 | 0.5 | ||
SC2 4000 | Naive | 11.9 | 10.2 | 7.8 | 18.0 | 11.6 | 5.6 | 11.9 | 10.2 | 7.8 | 18.0 | 11.6 | 5.6 | |
Cal | Reg | 1.5 | 0.7 | 5.8 | 6.6 | 4.1 | 0.4 | 0.8 | 3.1 | 5.9 | 5.0 | 1.1 | 0.5 | |
XGB | 1.6 | 0.8 | 5.8 | 7.1 | 4.2 | 0.4 | 1.0 | 3.2 | 5.8 | 5.4 | 1.1 | 0.5 | ||
PSA | Reg | 5.5 | 4.5 | 3.0 | 10.1 | 5.0 | 2.0 | 1.2 | 1.1 | 0.9 | 2.3 | 1.2 | 0.6 | |
XGB | 5.0 | 3.9 | 4.1 | 8.0 | 3.9 | 3.4 | 14.3 | 11.0 | 6.8 | 21.0 | 12.4 | 5.4 | ||
SM | Reg | 4.3 | 4.0 | 0.6 | 6.6 | 4.0 | 0.4 | 2.1 | 1.1 | 0.6 | 4.9 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.7 | 7.4 | 4.1 | 0.5 | 2.3 | 1.3 | 0.7 | 5.7 | 1.0 | 0.5 | ||
DR | Reg | 4.3 | 4.0 | 0.5 | 6.6 | 4.1 | 0.4 | 2.1 | 1.2 | 0.6 | 5.0 | 1.1 | 0.5 | |
XGB | 4.1 | 4.2 | 0.6 | 7.1 | 4.2 | 0.4 | 2.4 | 1.3 | 0.6 | 5.5 | 1.1 | 0.5 | ||
SC2 6000 | Naive | 11.5 | 9.9 | 7.5 | 17.4 | 11.2 | 5.4 | 11.5 | 9.9 | 7.5 | 17.4 | 11.2 | 5.4 | |
Cal | Reg | 1.5 | 0.6 | 5.7 | 6.6 | 4.1 | 0.4 | 0.8 | 2.9 | 5.7 | 4.9 | 1.1 | 0.5 | |
XGB | 1.7 | 0.6 | 5.6 | 7.1 | 4.2 | 0.4 | 1.0 | 3.0 | 5.7 | 5.3 | 1.1 | 0.5 | ||
PSA | Reg | 5.4 | 4.4 | 2.9 | 10.0 | 5.0 | 2.0 | 1.1 | 0.9 | 0.8 | 2.1 | 1.0 | 0.6 | |
XGB | 3.3 | 3.1 | 4.1 | 5.4 | 2.9 | 3.5 | 12.7 | 10.5 | 6.7 | 18.6 | 11.6 | 5.3 | ||
SM | Reg | 4.3 | 4.0 | 0.6 | 6.6 | 4.1 | 0.4 | 2.1 | 1.1 | 0.6 | 4.9 | 1.1 | 0.5 | |
XGB | 4.3 | 4.2 | 0.6 | 7.4 | 4.1 | 0.4 | 2.2 | 1.1 | 0.6 | 5.7 | 1.0 | 0.5 | ||
DR | Reg | 4.3 | 4.0 | 0.5 | 6.6 | 4.1 | 0.4 | 2.1 | 1.2 | 0.5 | 4.9 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.6 | 7.0 | 4.2 | 0.4 | 2.3 | 1.2 | 0.6 | 5.3 | 1.1 | 0.5 | ||
SC3 2000 | Naive | 10.1 | 9.1 | 7.1 | 14.5 | 10.4 | 5.1 | 10.1 | 9.1 | 7.1 | 14.5 | 10.4 | 5.1 | |
Cal | Reg | 2.2 | 1.1 | 5.4 | 7.4 | 4.3 | 0.4 | 1.5 | 2.8 | 5.5 | 5.6 | 1.1 | 0.6 | |
XGB | 2.1 | 1.1 | 5.4 | 7.1 | 4.3 | 0.4 | 1.4 | 2.9 | 5.5 | 5.6 | 1.1 | 0.5 | ||
PSA | Reg | 6.1 | 4.3 | 3.3 | 10.3 | 5.0 | 2.3 | 6.1 | 4.4 | 3.2 | 10.5 | 5.0 | 2.2 | |
XGB | 11.7 | 7.1 | 6.5 | 16.3 | 7.2 | 4.9 | 14.2 | 10.1 | 7.4 | 19.6 | 11.3 | 5.6 | ||
SM | Reg | 4.5 | 4.5 | 0.6 | 7.4 | 4.3 | 0.4 | 2.5 | 1.2 | 0.7 | 5.6 | 1.1 | 0.6 | |
XGB | 4.2 | 4.2 | 0.8 | 7.3 | 4.2 | 0.5 | 2.4 | 1.2 | 0.8 | 5.7 | 1.0 | 0.6 | ||
DR | Reg | 4.5 | 4.5 | 0.6 | 7.4 | 4.3 | 0.4 | 2.6 | 1.2 | 0.6 | 5.6 | 1.1 | 0.6 | |
XGB | 4.2 | 4.2 | 0.7 | 7.2 | 4.2 | 0.4 | 2.5 | 1.2 | 0.7 | 5.6 | 1.1 | 0.5 | ||
SC3 4000 | Naive | 10.1 | 9.0 | 6.9 | 14.4 | 10.3 | 4.9 | 10.1 | 9.0 | 6.9 | 14.4 | 10.3 | 4.9 | |
Cal | Reg | 1.9 | 0.8 | 5.3 | 6.8 | 4.2 | 0.4 | 1.2 | 2.7 | 5.3 | 5.0 | 1.1 | 0.5 | |
XGB | 1.9 | 0.9 | 5.3 | 6.8 | 4.2 | 0.4 | 1.3 | 2.7 | 5.3 | 5.3 | 1.1 | 0.5 | ||
PSA | Reg | 3.9 | 3.0 | 2.2 | 6.8 | 3.3 | 1.5 | 4.6 | 3.6 | 2.1 | 7.9 | 4.0 | 1.5 | |
XGB | 10.7 | 6.7 | 6.4 | 15.0 | 6.5 | 5.1 | 13.3 | 10.2 | 7.5 | 17.6 | 11.4 | 5.8 | ||
SM | Reg | 4.3 | 4.2 | 0.6 | 6.8 | 4.1 | 0.4 | 2.2 | 1.1 | 0.6 | 5.0 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.7 | 7.1 | 4.2 | 0.4 | 2.4 | 1.2 | 0.7 | 5.5 | 1.0 | 0.6 | ||
DR | Reg | 4.4 | 4.2 | 0.5 | 6.8 | 4.2 | 0.4 | 2.3 | 1.2 | 0.6 | 5.0 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.6 | 7.0 | 4.2 | 0.4 | 2.5 | 1.2 | 0.6 | 5.4 | 1.1 | 0.5 | ||
SC3 6000 | Naive | 10.0 | 9.0 | 6.8 | 14.5 | 10.2 | 4.9 | 10.0 | 9.0 | 6.8 | 14.5 | 10.2 | 4.9 | |
Cal | Reg | 1.8 | 0.7 | 5.2 | 6.6 | 4.1 | 0.4 | 1.1 | 2.6 | 5.3 | 4.9 | 1.1 | 0.5 | |
XGB | 1.9 | 0.8 | 5.2 | 6.8 | 4.2 | 0.4 | 1.3 | 2.7 | 5.2 | 5.2 | 1.1 | 0.5 | ||
PSA | Reg | 3.1 | 2.4 | 1.7 | 5.5 | 2.6 | 1.2 | 4.0 | 3.1 | 1.7 | 7.0 | 3.5 | 1.2 | |
XGB | 10.2 | 6.9 | 6.9 | 14.2 | 6.6 | 5.5 | 12.9 | 10.5 | 7.9 | 16.7 | 11.6 | 6.2 | ||
SM | Reg | 4.3 | 4.1 | 0.5 | 6.6 | 4.1 | 0.4 | 2.1 | 1.2 | 0.6 | 4.9 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.7 | 7.0 | 4.2 | 0.4 | 2.4 | 1.1 | 0.7 | 5.4 | 1.1 | 0.5 | ||
DR | Reg | 4.3 | 4.1 | 0.5 | 6.6 | 4.1 | 0.4 | 2.1 | 1.2 | 0.5 | 4.9 | 1.1 | 0.5 | |
XGB | 4.2 | 4.2 | 0.6 | 7.0 | 4.2 | 0.4 | 2.5 | 1.2 | 0.6 | 5.3 | 1.1 | 0.5 |
Proportional | ||||||||
---|---|---|---|---|---|---|---|---|
SC2 2000 | Naive | 12.1 | 10.2 | 7.8 | −18.2 | −11.6 | −5.6 | |
Cal | Reg | −0.7 | 3.1 | 5.9 | 5.0 | 1.1 | −0.6 | |
XGB | −0.8 | 3.2 | 5.9 | 5.5 | 1.0 | −0.4 | ||
PSA | Reg | −0.2 | 0.1 | −0.2 | 0.2 | 0.1 | 0.2 | |
XGB | 15.2 | 10.8 | 5.9 | −22.5 | −12.3 | −4.7 | ||
XGB (opt) | 2.4 | 2.7 | 2.1 | −4.1 | −2.8 | −1.4 | ||
SM | Reg | −2.1 | −1.1 | 0.6 | 5.0 | 1.0 | −0.6 | |
XGB | −2.3 | −1.2 | 0.6 | 5.6 | 0.9 | −0.4 | ||
DR | Reg | −2.2 | −1.2 | 0.6 | 5.0 | 1.1 | −0.6 | |
XGB | −2.4 | −1.2 | 0.6 | 5.5 | 1.0 | −0.4 |
Proportional | ||||||||
---|---|---|---|---|---|---|---|---|
SC2 2000 | Naive | 12.4 | 10.4 | 8.0 | 18.5 | 11.8 | 5.8 | |
Cal | Reg | 0.9 | 3.2 | 6.1 | 5.0 | 1.1 | 0.6 | |
XGB | 1.1 | 3.4 | 6.0 | 5.6 | 1.0 | 0.5 | ||
PSA | Reg | 1.8 | 1.6 | 1.3 | 3.2 | 1.7 | 0.8 | |
XGB | 15.8 | 11.3 | 6.6 | 23.6 | 12.9 | 5.3 | ||
XGB (opt) | 3.0 | 3.2 | 2.6 | 5.2 | 3.4 | 1.8 | ||
SM | Reg | 2.1 | 1.1 | 0.6 | 5.0 | 1.1 | 0.6 | |
XGB | 2.4 | 1.3 | 0.7 | 5.8 | 1.0 | 0.5 | ||
DR | Reg | 2.2 | 1.2 | 0.6 | 5.0 | 1.1 | 0.6 | |
XGB | 2.5 | 1.3 | 0.7 | 5.6 | 1.0 | 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Rueda, M.d.M.; Martínez-Puertas, S.; Castro-Martín, L. Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles. Mathematics 2022, 10, 4726. https://doi.org/10.3390/math10244726
Rueda MdM, Martínez-Puertas S, Castro-Martín L. Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles. Mathematics. 2022; 10(24):4726. https://doi.org/10.3390/math10244726
Chicago/Turabian StyleRueda, María del Mar, Sergio Martínez-Puertas, and Luis Castro-Martín. 2022. "Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles" Mathematics 10, no. 24: 4726. https://doi.org/10.3390/math10244726
APA StyleRueda, M. d. M., Martínez-Puertas, S., & Castro-Martín, L. (2022). Methods to Counter Self-Selection Bias in Estimations of the Distribution Function and Quantiles. Mathematics, 10(24), 4726. https://doi.org/10.3390/math10244726