Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy
Abstract
:1. Introduction
- (1)
- (2)
- , if and only if () are independent
- (3)
- is symmetric in ()
- (4)
- is invariant under bijective transformations of and
- (5)
- When for continuous models, there is usually a deterministic relationship in the distribution of (), that is, often = φ().
- (6)
- When T is a discrete random variable, . So they propose to use as a modified ITMA.
2. Extension of ITMA Surrogacy from Shannon Entropy to Havrda-Charvat Entropy
- When and are independent, . Thus, .
- When and are deterministic, the value of will depend on or as seem in the following propositions.
- 2.1
- The mutual information for H-C entropy depends not only the correlation between T and S, but also their standard deviations for
- 2.2
- When , , . , ,is an increasing function of
- 2.3
- When , , . , ,is an increasing function of .
- 3.1
- When,andare independent, .
- 3.2
- Let be the correlation between and . If , is an increasing function offor . For , is an increasing function of if .
- 3.3
- For .
- 3.4
- For , .
- 3.5
- For a given marginal distribution of and , there is a maximum value of mutual information as
- 4.1
- The mutual information for H-C entropy is
- 4.2
- When .
- 4.3
- When
- 4.4
- For
3. Surrogacy of a Longitudinal Biomarker for a Binary Clinical Endpoint
3.1. Model for Longitudinal Continuous Surrogate Biomarkers in Phase II Trials
3.2. A Data Example
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. R-Program
Appendix A.1. R-Program for Table 1
Appendix A.2. R-Program for Table 2
Appendix A.3. R-Program for Table 3
References
- Clinical Trial Endpoints for the Approval of Cancer Drugs and Biologics Guidance for Industry. U.S. Department of Health and Human Services. Available online: https://www.fda.gov/media/71195/download (accessed on 17 December 2021).
- Kim, C.; Prasad, V. Cancer drugs approved on the basis of a surrogate end point and subsequent overall survival: An analysis of 5 years of, U.S.; food and drug administration approvals. JAMA Intern. Med. 2015, 175, 1992–1994. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwartz, L.H.; Litière, S.; de Vries, E.; Ford, R.; Gwyther, S.; Mandrekar, S.; Shankar, L.; Bogaerts, J.; Chen, A.; Dancey, J.; et al. RECIST 1.1-update and clarification: From the RECIST committee. Eur. J. Cancer 2016, 62, 132–137. [Google Scholar] [CrossRef] [Green Version]
- Karrison, T.G.; Maitland, M.L.; Stadler, W.M.; Ratain, M.J. Design of phase II cancer trials using a continuous endpoint of change in tumor size: Application to a study of sorafenib and erlotinib in non-small-cell lung cancer. J. Natl. Cancer Inst. 2007, 99, 1455–1461, Erratum in J. Natl. Cancer Inst. 2007, 99, 1819. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burzykowski, T.; Coart, E.; Saad, E.D.; Shi, Q.; Sommeijer, D.W.; Bokemeyer, C.; Díaz-Rubio, E.; Douillard, J.Y.; Falcone, A.; Fuchs, C.S.; et al. Evaluation of continuous tumor-size–based end points as surrogates for overall survival in randomized clinical trials in metastatic colorectal cancer. JAMA Netw. Open 2019, 2, e1911750. [Google Scholar] [CrossRef]
- Lu, Y. Statistical considerations for quantitative imaging measures in clinical trials. In Biopharmaceutical Applied Statistics Symposium: Volume 3 Pharmaceutical Applications; Peace, K.E., Chen, D.-G., Menon, S., Eds.; ICSA Book Series in Statistics; Springer: Singapore, 2018; pp. 219–240. [Google Scholar]
- Chen, E.Y.; Joshi, S.K.; Tran, A.; Prasad, V. Estimation of study time reduction using surrogate end points rather than overall survival in oncology clinical trials. JAMA Intern. Med. 2019, 179, 642–647. [Google Scholar] [CrossRef] [PubMed]
- Kok, P.S.; Yoon, W.H.; Lord, S.; Marschner, I.; Friedlander, M.; Lee, C.K. Tumor response end points as surrogates for overall survival in immune checkpoint inhibitor trials: A systematic review and meta-analysis. JCO Precis. Oncol. 2021, 5, 1151–1159. [Google Scholar] [CrossRef]
- Shameer, K.; Zhang, Y.; Jackson, D.; Rhodes, K.; Neelufer, I.K.A.; Nampally, S.; Prokop, A.; Hutchison, E.; Ye, J.; Malkov, V.A.; et al. Correlation between early endpoints and overall survival in non-small-cell lung cancer: A trial-level meta-analysis. Front. Oncol. 2021, 11, 672916. [Google Scholar] [CrossRef]
- Haslam, A.; Hey, S.P.; Gill, J.; Prasad, V. A systematic review of trial-level meta-analyses measuring the strength of association between surrogate end-points and overall survival in oncology. Eur. J. Cancer 2019, 106, 196–211. [Google Scholar] [CrossRef]
- Prentice, R.L. Surrogate endpoints in clinical trials: Definitions and operational criteria. Stat. Med. 1989, 8, 431–440. [Google Scholar] [CrossRef]
- Freedman, L.S.; Graubard, B.I.; Schatzkin, A. Statistical validation of intermediate endpoints for chronic diseases. Stat. Med. 1992, 11, 167–178. [Google Scholar] [CrossRef]
- Wang, Y.; Taylor, J.M. A measure of the proportion of treatment expect explained by a surrogate marker. Biometrics 2002, 58, 803–812. [Google Scholar] [CrossRef] [PubMed]
- Taylor, J.M.; Wang, Y.; Thiffebaut, R. Counterfactual links to the proportion of treatment effect explained by a surrogate marker. Biometrics 2005, 61, 1102–1111. [Google Scholar] [CrossRef] [Green Version]
- Parast, L.; Tian, L.; Cai, T. Landmark estimation of survival and treatment effect in a randomized clinical trial. J. Am. Stat. Assoc. 2014, 109, 384–394. [Google Scholar] [CrossRef] [PubMed]
- Parast, L.; McDermott, M.M.; Tian, L. Robust estimation of the proportion of treatment effect explained by surrogate marker information. Stat. Med. 2016, 35, 1637–1653. [Google Scholar] [CrossRef] [Green Version]
- Frangakis, C.E.; Rubin, D.B. Principal stratification in causal inference. Biometrics 2002, 58, 21–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Conlon, A.S.; Taylor, J.M.; Elliott, M.R. Surrogacy assessment using principal stratification when surrogate and outcome measures are multivariate normal. Biostatistics 2014, 15, 266–283. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Gilbert, P.B. Comparing biomarkers as principal surrogate endpoints. Biometrics 2011, 67, 1442–1451. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gabriel, E.E.; Gilbert, P.B. Evaluating principal surrogate endpoints with time-to-event data accounting for time-varying treatment efficacy. Biostatistics 2014, 15, 251–265. [Google Scholar] [CrossRef] [Green Version]
- Gabriel, E.E.; Sachs, M.C.; Gilbert, P.B. Comparing and combining biomarkers as principle surrogates for time-to-event clinical endpoints. Stat. Med. 2015, 34, 381–395. [Google Scholar] [CrossRef]
- Gilbert, P.B.; Hudgens, M.G. Evaluating candidate principal surrogate endpoints. Biometrics 2008, 64, 1146–1154. [Google Scholar] [CrossRef] [Green Version]
- Buyse, M.; Molenberghs, G. Criteria for the validation of surrogate endpoints in randomized experiments. Biometrics 1998, 54, 1014–1029. [Google Scholar] [CrossRef] [PubMed]
- Alonso, A.; Molenberghs, G. Surrogate marker evaluation from an information theoretic perspective. Biometrics 2007, 63, 180–186. [Google Scholar] [CrossRef] [PubMed]
- Pryseley, A.; Tilahun, A.; Alonso, A.; Molenberghs, G. Information-theory based surrogate marker evaluation from several randomized clinical trials with continuous true and binary surrogate endpoints. Clin. Trials 2007, 4, 587–597. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Alonso, A.; Molenberghs, G. Evaluating time to cancer recurrence as a surrogate marker for survival from an information theory perspective. Stat. Methods Med. Res. 2008, 17, 497–504. [Google Scholar] [CrossRef]
- Alonso, A.; Bigirumurame, T.; Burzykowski, T.; Buyse, M.; Molenberghs, G.; Muchene, L.; Perualila, N.J.; Shkedy, Z.; Van der Elst, W. Applied surrogate endpoint evaluation methods with SAS and R; Chapman and Hall/CRC: London, UK, 2017. [Google Scholar] [CrossRef]
- Ensor, H.; Weir, C.J. Evaluation of surrogacy in the multi-trial setting based on information theory: An extension to ordinal outcomes. J. Biopharm. Stat. 2020, 30, 364–376. [Google Scholar] [CrossRef] [Green Version]
- Havrda, J.; Charvát, F. Quantification method of classification processes. Concept of structural α-entropy. Kybernetika 1967, 3, 30–35. [Google Scholar]
- Tsallis, C. Possible generalization of BoltzmannGibbs statistics. J. Stat. Phys. 1988, 52, 479–487. [Google Scholar] [CrossRef]
- Amigó, J.M.; Balogh, S.G.; Hernández, S. A brief review of generalized entropies. Entropy 2018, 20, 813. [Google Scholar] [CrossRef] [Green Version]
- Wachowiak, M.P.; Smolíková, R.; Tourassi, G.D.; Elmaghraby, A.S. Similarity metrics based on nonadditive entropies for 2D-3D multimodal biomedical image registration. In Medical Imaging 2003: Image Processing; International Society for Optics and Photonics: Bellingham, WA, USA, 2003; Volume 5032, pp. 1090–1100. [Google Scholar]
- Owen, D. A table of normal integrals. Commun. Stat. Simul. Comput. 1980, 9, 389–419. [Google Scholar] [CrossRef]
- Chib, S.; Greenger, E. Analysis of multivariate probit models. Biometrika 1998, 85, 347–361. [Google Scholar] [CrossRef] [Green Version]
- Fox, R.J.; Coffey, C.S.; Conwit, R.; Cudkowicz, M.E.; Gleason, T.; Goodman, A.; Klawiter, E.C.; Matsuda, K.; McGovern, M.; Naismith, R.T.; et al. NN102/SPRINT-MS trial investigators. Phase 2 trial of ibudilast in progressive multiple sclerosis. N. Engl. J. Med. 2018, 379, 846–855. [Google Scholar] [CrossRef] [PubMed]
- Biswas, A.; Pardo, M.C.; Guha, A. Auto-association measures for stationary time series of categorical data. TEST 2004, 23, 487–514. [Google Scholar] [CrossRef]
- Andonie, R.; Petrescu, F. Interacting systems and informational energy. Found. Control Eng. 1986, 11, 53–59. [Google Scholar]
- Pardo, J.A.; Pardo, M.C.; Vicente, M.L.; Esteban, M.D. A statistical information theory approach to compare the homogeneity of several variances. Comput. Stat. Data Anal. 1997, 24, 411–416. [Google Scholar] [CrossRef]
- Menéndez, M.L.; Pardo, J.A.; Pardo, M.C. Estimators based on sample quantiles using (h,φ)-entropy measures. Appl. Math. Lett. 1998, 11, 99–104. [Google Scholar] [CrossRef] [Green Version]
Variable | Control (N = 104) | Treatment (N = 99) | p-Value * |
---|---|---|---|
CTH > 3 mm: N (%) | 50 (48%) | 70 (71%) | 0.0016 |
BPF: Mean (SD) | |||
Week 0 | 0.8023 (0.0301) | 0.8040 (0.0281) | 0.6823 |
Week 24 | 0.8012 (0.0301) | 0.8039 (0.0277) | 0.5001 |
Week 48 | 0.8009 (0.0311) | 0.8036 (0.0282) | 0.5115 |
Week 72 | 0.8001 (0.0303) | 0.8032 (0.0283) | 0.4433 |
Week 96 | 0.7989 (0.0306) | 0.8026 (0.0293) | 0.3813 |
Change/24 weeks ** | −0.0008 (0.0001) | −0.0004 (0.0001) | 0.0056 |
BPF Data Used | p-Value * | ||||||
---|---|---|---|---|---|---|---|
ITMA | ITMA | ITMA | |||||
0, 24 | 4.6042 | 0.9999 | 2.6300 | 0.9948 | 0.6063 | 0.7026 | 0.0797 |
0, 24, 48 | 4.6117 | 0.9999 | 2.6307 | 0.9948 | 0.6066 | 0.7028 | 0.1025 |
0, 24, 48, 72 | 4.6209 | 0.9999 | 2.6352 | 0.9949 | 0.6071 | 0.7031 | 0.0390 |
0, 24, 48, 72, 96 | 4.6103 | 0.9999 | 2.6361 | 0.9949 | 0.6069 | 0.7029 | 0.0056 |
0, 48 | 4.4683 | 0.9999 | 2.6012 | 0.9945 | 0.5980 | 0.6976 | 0.1586 |
0, 72 | 4.4522 | 0.9999 | 2.5912 | 0.9944 | 0.5962 | 0.6965 | 0.0675 |
0, 24, 72 | 4.6223 | 0.9999 | 2.6348 | 0.9949 | 0.6072 | 0.7031 | 0.0485 |
0, 48, 72 | 4.4696 | 0.9999 | 2.6022 | 0.9945 | 0.5980 | 0.6976 | 0.0382 |
BPF Data Used | ||||||
---|---|---|---|---|---|---|
ITMA | ITMA | ITMA | ||||
0, 24 | 0.0390 | 0.0751 | 0.0271 | 0.0528 | 0.0108 | 0.0213 |
0, 24, 48 | 0.0388 | 0.0747 | 0.0270 | 0.0526 | 0.0108 | 0.0213 |
0, 24, 48, 72 | 0.0407 | 0.0782 | 0.0280 | 0.0545 | 0.0110 | 0.0218 |
0, 24, 48, 72, 96 | 0.0395 | 0.0760 | 0.0274 | 0.0533 | 0.0110 | 0.0218 |
0, 48 | 0.0428 | 0.0820 | 0.0297 | 0.0578 | 0.0117 | 0.0231 |
0, 72 | 0.0416 | 0.0798 | 0.0287 | 0.0558 | 0.0111 | 0.0219 |
0, 24, 72 | 0.0403 | 0.0775 | 0.0278 | 0.0541 | 0.0110 | 0.0217 |
0, 48, 72 | 0.0434 | 0.0832 | 0.0299 | 0.0580 | 0.0116 | 0.0229 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pardo, M.d.C.; Zhao, Q.; Jin, H.; Lu, Y. Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy. Mathematics 2022, 10, 465. https://doi.org/10.3390/math10030465
Pardo MdC, Zhao Q, Jin H, Lu Y. Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy. Mathematics. 2022; 10(3):465. https://doi.org/10.3390/math10030465
Chicago/Turabian StylePardo, María del Carmen, Qian Zhao, Hua Jin, and Ying Lu. 2022. "Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy" Mathematics 10, no. 3: 465. https://doi.org/10.3390/math10030465
APA StylePardo, M. d. C., Zhao, Q., Jin, H., & Lu, Y. (2022). Evaluation of Surrogate Endpoints Using Information-Theoretic Measure of Association Based on Havrda and Charvat Entropy. Mathematics, 10(3), 465. https://doi.org/10.3390/math10030465