Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients
Abstract
:1. Introduction
2. Fundamental Theorem
3. Generating Functions of the General -Polynomials
4. Rogers Type and Extended Rogers Type Formulas for the General -Polynomials
5. Mixed Generating Functions for the General -Polynomials
6. A Transformation Identity Involving Hecke-Type Series for the General -Polynomials
7. Further Remarks and Observations
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gasper, G.; Rahman, M. Basic Hypergeometric Series (with a Foreword by Richard Askey), 2nd ed.; Encyclopedia of Mathematics and Its Applications; Cambridge University Press: Cambridge, MA, USA; London, UK; New York, NY, USA, 2004; Volume 96. [Google Scholar]
- Koekock, R.; Swarttouw, R.F. The Askey-Scheme of Hypergeometric Orthogonal Polynomials and Its q-Analogue; Report No. 98-17; Delft University of Technology: Delft, The Netherlands, 1998. [Google Scholar]
- Slater, L.J. Generalized Hypergeometric Functions; Cambridge University Press: Cambridge, MA, USA; London, UK; New York, NY, USA, 1966. [Google Scholar]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited, Chichester); John Wiley and Sons: New York, NY, USA; Chichester, UK; Brisbane, Australia; Toronto, ON, Canada, 1985. [Google Scholar]
- Andrews, G.E. Applications of basic hypergeometric series. SIAM Rev. 1974, 16, 441–484. [Google Scholar] [CrossRef]
- Srivastava, H.M. Operators of basic (or q-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis. Iran. J. Sci. Technol. Trans. A Sci. 2020, 44, 327–344. [Google Scholar] [CrossRef]
- Srivastava, H.M. Some parametric and argument variations of the operators of fractional calculus and related special functions and integral transformations. J. Nonlinear Convex Anal. 2021, 22, 1501–1520. [Google Scholar]
- Chen, W.Y.C.; Fu, A.M.; Zhang, B. The homogeneous q-difference operator. Adv. Appl. Math. 2003, 31, 659–668. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.-F.; Cao, J. q-Difference equations for the generalized Cigler’s polynomials. J. Differ. Equ. Appl. 2018, 24, 479–502. [Google Scholar] [CrossRef]
- Jia, Z.; Khan, B.; Hu, Q.; Niu, D.-W. Applications of generalized q-difference equations for general q-polynomials. Symmetry 2021, 13, 1222. [Google Scholar] [CrossRef]
- Cao, J.; Arjika, S.; Hounkonnou, M.N. Generalized q-difference equations for general q-polynomials with double q-binomial coefficients. J. Differ. Equ. Appl. 2021. Preprint. [Google Scholar]
- Zhou, Y.; Luo, Q.-M. Some new generating functions for q-Hahn polynomials. J. Appl. Math. 2014, 2014, 419365. [Google Scholar] [CrossRef]
- Saad, H.L.; Abdlhusein, M.A. New application of the Cauchy operator on the homogeneous Rogers-Szegö polynomials. Ramanujan J. 2021, 56, 347–367. [Google Scholar] [CrossRef]
- Liu, Z.-G. Two q-difference equations and q-operator identities. J. Differ. Equ. Appl. 2010, 16, 1293–1307. [Google Scholar] [CrossRef]
- Liu, Z.-G.; Zeng, J. Two expansion formulas involving the Rogers-Szegö polynomials with applications. Internat. J. Number Theory 2015, 11, 507–525. [Google Scholar] [CrossRef]
- Abdlhusein, M.A. Two operator representations for the trivariate q-polynomials and Hahn polynomials. Ramanujan J. 2016, 40, 491–509. [Google Scholar] [CrossRef]
- Saad, H.L.; Sukhi, A.A. The q-exponential operator. Appl. Math. Sci. 2013, 7, 6369–6380. [Google Scholar] [CrossRef]
- Malgrange, B. Lectures on the Theory of Functions of Several Complex Variables; Springer: Berlin/Heidelberg, Germany; New York, NY, USA, 1984. [Google Scholar]
- Taylor, J.L. Several Complex Variables with Connections to Algebraic Geometry and Lie Groups; Graduate Studies in Mathematics; American Mathematical Society: Providence, RI, USA, 2002; Volume 46. [Google Scholar]
- Gunning, R.C. Introduction to Holomorphic Functions of Several Variables. I: Function Theory; Chapman and Hall/CRC: Boca Raton, FL, USA, 1990. [Google Scholar]
- Range, R.M. Complex analysis: A brief tour into higher dimensions. Amer. Math. Monthly 2003, 110, 89–108. [Google Scholar] [CrossRef]
- Chen, W.Y.C.; Liu, Z.-G. Parameter augmenting for basic hypergeometric series. II. J. Combin. Theory Ser. A 1997, 80, 175–195. [Google Scholar] [CrossRef] [Green Version]
- Roman, S. More on the umbral calculus, with emphasis on the q-umbral calculus. J. Math. Anal. Appl. 1985, 107, 222–254. [Google Scholar] [CrossRef] [Green Version]
- Cigler, J. Elementare q-Identitäten; Publication de L’institute de Recherche Mathématique Avancée: Strasbourg, France, 1982; pp. 23–57. [Google Scholar]
- Saad, H.L.; Abdlhusein, M.A. The q-exponential operator and generalized Rogers-Szegö polynomials. J. Adv. Math. 2014, 8, 1440–1455. [Google Scholar]
- Hahn, W. Über Orthogonalpolynome, die q-Differenzengleichungen genügen. Math. Nachr. 1949, 2, 4–34. [Google Scholar] [CrossRef]
- Hahn, W. Beiträge zur Theorie der Heineschen Reihen. Die 24 Integrale der hypergeometrischen q-Differenzengleichung. Das q-Analogon der Laplace-Transformation. Math. Nachr. 1949, 2, 340–379. [Google Scholar] [CrossRef]
- Al-Salam, W.A.; Carlitz, L. Some orthogonal q-polynomials. Math. Nachr. 1965, 30, 47–61. [Google Scholar] [CrossRef]
- Cao, J. Generalizations of certain Carlitz’s trilinear and Srivastava-Agarwal type generating functions. J. Math. Anal. Appl. 2012, 396, 351–362. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Agarwal, A.K. Generating functions for a class of q-polynomials. Ann. Mat. Pura Appl. (Ser. 4) 1989, 154, 99–109. [Google Scholar] [CrossRef]
- Jia, Z. Homogeneous q-difference equations and generating functions for the generalized 2D-Hermite polynomials. Taiwan. J. Math. 2021, 25, 45–63. [Google Scholar] [CrossRef]
- Jia, Z.; Zeng, J. Expansions in Askey-Wilson polynomials via Bailey transform. J. Math. Anal. Appl. 2017, 452, 1082–1100. [Google Scholar] [CrossRef] [Green Version]
- Atakishiyev, M.K.; Atakishiyev, N.M.; Klimyk, A.U. Big q-Laguerre and q-Meixner polynomials and representations of the quantum algebra Uq(su(1,1)). J. Phys. A Math. Gen. 2003, 36, 10335–10347. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, H.M.; Khan, B.; Khan, N.; Hussain, A.; Khan, N.; Tahir, M. Applications of certain basic (or q-) derivatives to subclasses of multivalent Janowski type q-starlike functions involving conic domains. J. Nonlinear Var. Anal. 2021, 5, 531–547. [Google Scholar]
- Atakishiyeva, M.K.; Atakishiyev, N.M. q-Laguerre and Wall polynomials are related by the Fourier-Gauss transform. J. Phys. A Math. Gen. 1997, 30, L429–L432. [Google Scholar] [CrossRef]
- Cao, J. q-Difference equations for generalized homogeneous q-operators and certain generating functions. J. Differ. Equ. Appl. 2014, 20, 837–851. [Google Scholar] [CrossRef]
- Cao, J.; Niu, D.-W. A note on q-difference equations for the Cigler’s polynomials. J. Differ. Equ. Appl. 2016, 22, 1880–1892. [Google Scholar] [CrossRef]
- Cigler, J. Operator methods for q identities. II: q-Laguerre polynomials. Monatsh. Math. 1981, 91, 105–117. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Tahir, M.; Khan, B.; Darus, M.; Khan, N.; Ahmad, Q.Z. Certain subclasses of meromorphically q-starlike functions associated with the q-derivative operators. Ukrain. Math. J. 2021, 73, 1260–1273. [Google Scholar] [CrossRef]
- Chung, W.-S. q-Laguerre polynomial realization of gIq(N)-covariant oscillator algebra. Internat. J. Theoret. Phys. 1998, 37, 2975–2978. [Google Scholar] [CrossRef]
- Coulembier, K.; Sommen, F. q-Deformed harmonic and Clifford analysis and the q-Hermite and Laguerre polynomials. J. Phys. A Math. Theoret. 2010, 43, 115202. [Google Scholar] [CrossRef] [Green Version]
- Liu, Z.-G. On the q-partial differential equations and q-series. In The Legacy of Srinivasa Ramanujan; Ramanujan Mathematical Society Lecture Note Series; Ramanujan Mathematical Society: Mysore, India, 2013; Volume 20, pp. 213–250. [Google Scholar]
- Micu, C.; Papp, E. Applying q-Laguerre polynomials to the derivation of q-deformed energies of oscillator and coulomb systems. Romanian Rep. Phys. 2005, 57, 25–34. [Google Scholar]
- Srivastava, H.M.; Cao, J.; Arjika, S. A note on generalized q-difference equations and their applications involving q-hypergeometric functions. Symmetry 2020, 12, 1816. [Google Scholar] [CrossRef]
- Saad, H.L.; Sukhi, A.A. Another homogeneous q-difference operator. Appl. Math. Comput. 2010, 215, 4332–4339. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cao, J.; Srivastava, H.M.; Zhou, H.-L.; Arjika, S. Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients. Mathematics 2022, 10, 556. https://doi.org/10.3390/math10040556
Cao J, Srivastava HM, Zhou H-L, Arjika S. Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients. Mathematics. 2022; 10(4):556. https://doi.org/10.3390/math10040556
Chicago/Turabian StyleCao, Jian, Hari M. Srivastava, Hong-Li Zhou, and Sama Arjika. 2022. "Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients" Mathematics 10, no. 4: 556. https://doi.org/10.3390/math10040556
APA StyleCao, J., Srivastava, H. M., Zhou, H.-L., & Arjika, S. (2022). Generalized q-Difference Equations for q-Hypergeometric Polynomials with Double q-Binomial Coefficients. Mathematics, 10(4), 556. https://doi.org/10.3390/math10040556