Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories
Abstract
:1. Introduction
2. Material Methods
2.1. Theoretical Development
2.2. Governing Equations
2.3. Solution Method
3. Results
3.1. Comparative Study
3.2. Analysis and Interpretations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Iijima, S.; Ichihashi, T. Single-shell carbon nanotubes of 1-nm diameter. Nature 1993, 363, 603–605. [Google Scholar] [CrossRef]
- Qian, D. Mechanics of carbon nanotubes. Appl. Mech. Rev. 2002, 55, 495–533. [Google Scholar] [CrossRef]
- Hirlekar, R.; Yamagar, M.; Garse, H.; Vij, M.; Kadam, V. Carbon nanotubes and its applications: A review. Asian J. Pharm. Clin. Res. 2009, 2, 17–27. [Google Scholar]
- Garg, A.; Chalak, H.D.; Belarbi, M.O.; Zenkour, A.M.; Sahoo, R. Estimation of carbon nanotubes and their applications as reinforcing composite materials-an engineering review. Compos. Struct. 2021, 272, 114234. [Google Scholar] [CrossRef]
- Acierno, S.; Barretta, R.; Luciano, R.; Marotti de Sciarra, F.; Russo, P. Experimental evaluations and modeling of the tensile behavior of polypropylene/single-walled carbon nanotubes fibers. Compos. Struct. 2017, 174, 12–18. [Google Scholar] [CrossRef]
- Tjong, S.C. Structural and mechanical properties of polymer nanocomposites. Mater. Sci. Eng. R Rep. 2006, 53, 73–197. [Google Scholar] [CrossRef]
- Park, C.; Wilkinson, J.; Banda, S.; Ounaies, Z.; Wise, K.E.; Sauti, G.; Lillejei, T.; Harrison, J.S. Aligned single-wall carbon nanotube polymer composites using an electric field. J. Polym. Sci. B Polym. Phys. 2006, 44, 1751–1762. [Google Scholar] [CrossRef]
- Chatterjee, A.; Deopura, B.L. Thermal stability of polypropylene/carbon nanofiber composite. J. Appl. Polym. Sci. 2006, 100, 3574–3578. [Google Scholar] [CrossRef]
- Bonnet, P.; Sireude, D.; Garnier, B.; Chauvet, O. Thermal properties and percolation in carbon nanotube-polymer composites. Appl. Phys. Lett. 2007, 91, 201910. [Google Scholar] [CrossRef]
- Sahoo, N.G.; Rana, S.; Cho, J.W.; Li, L.; Chan, S.H. Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 2010, 35, 837–867. [Google Scholar] [CrossRef]
- Fantuzzi, N.; Bacciocchi, M.; Agnelli, J.; Benedetti, D. Three-phase homogenization procedure for woven fabric composites reinforced by carbon nanotubes in thermal environment. Compos. Struct. 2020, 254, 112840. [Google Scholar] [CrossRef]
- Zhang, X.H. Carbon nanotube/polyetheretherketone nanocomposites: Mechanical, thermal, and electrical properties. J. Compos. Mater. 2021, 55, 2115–2132. [Google Scholar] [CrossRef]
- Duan, K.; He, Y.; Liao, X.; Zhang, J.; Li, L.; Li, X.; Liu, S.; Hu, Y.; Wang, X.; Lu, Y. A critical role of CNT real volume fraction on nanocomposite modulus. Carbon 2022, 189, 395–403. [Google Scholar] [CrossRef]
- Shen, H.S. Thermal buckling and postbuckling behavior of functionally graded carbon nanotube-reinforced composite cylindrical shells. Compos. Part B-Eng. 2012, 43, 1030–1038. [Google Scholar] [CrossRef]
- Mehar, K.; Panda, S.K. Geometrical nonlinear free vibration analysis of FG-CNT reinforced composite flat panel under uniform thermal field. Compos. Struct. 2016, 143, 336–346. [Google Scholar] [CrossRef]
- Mirzaei, M.; Kiani, Y. Thermal buckling of temperature dependent FG-CNT reinforced composite conical shells. Aerosp. Sci. Technol. 2015, 47, 42–53. [Google Scholar] [CrossRef]
- Shen, H.S.; Xiang, Y. Thermal buckling and postbuckling behavior of FG-GRC laminated cylindrical shells with temperature-dependent material properties. Meccanica 2019, 54, 283–297. [Google Scholar] [CrossRef]
- Sobhy, M.; Zenkour, A.M. Thermal buckling of double-layered graphene system in humid environment. Mater. Res. Express 2018, 5, 015028. [Google Scholar] [CrossRef]
- Mehar, K.; Panda, S.K.; Devarejan, Y.; Choubey, G. Numerical buckling analysis of graded CNT-reinforced composite sandwich shell structure under thermal loading. Compos. Struct. 2019, 216, 406–414. [Google Scholar] [CrossRef]
- Hieu, P.T.; Tung, H.V. Thermal and thermomechanical buckling of shear deformable FG-CNTRC cylindrical shells and toroidal shell segments with tangentially restrained edges. Arch. Appl. Mech. 2020, 90, 1529–1546. [Google Scholar] [CrossRef]
- Nam, V.H.; Trung, N.T.; Phuong, N.T.; Hung, V.T. Nonlinear torsional buckling of functionally graded carbon nanotube orthogonally reinforced composite cylindrical shells in thermal environment. Int. J. Appl. Mech. 2020, 12, 2050072. [Google Scholar] [CrossRef]
- Hieu, P.T.; Tung, H.V. Thermal buckling and postbuckling of CNT reinforced composite cylindrical shell surrounded by an elastic medium with tangentially restrained edges. J. Thermoplast. Compos. Mater. 2021, 34, 861–883. [Google Scholar] [CrossRef]
- Sofiyev, A.; Bayramov, R.P.; Heydarov, S.H. The forced vibration of infinitely long cylinders reinforced by carbon nanotubes subjected to combined internal and ring-shaped compressive pressures. Math. Meth. Appl. Sci. 2020, 1–12. [Google Scholar] [CrossRef]
- Mota, A.F.; Loja, M.A.R.; Barbosa, J.I.; Rodrigues, J.A. Porous functionally graded plates: An assessment of the influence of shear correction factor on static behavior. Math. Comput. Appl. 2020, 25, 25. [Google Scholar] [CrossRef]
- Turuelo, C.G.; Breitkopf, C. Simple algebraic expressions for the prediction and control of high-temperature annealed structures by linear perturbation analysis. Math. Comput. Appl. 2021, 26, 43. [Google Scholar]
- Monaco, G.T.; Fantuzzi, N.; Fabbrocino, F.; Luciano, R. Trigonometric solution for the bending analysis of magneto-electro-elastic strain gradient nonlocal nanoplates in hygro-thermal environment. Mathematics 2021, 9, 567. [Google Scholar] [CrossRef]
- Monaco, G.T.; Fantuzzi, N.; Fabbrocino, F.; Luciano, R. Critical temperatures for vibrations and buckling of magneto-electro-elastic nonlocal strain gradient plates. Nanomaterials 2021, 11, 87. [Google Scholar] [CrossRef] [PubMed]
- Trang, L.T.N.; Tung, H.V. Thermoelastic stability of thin CNT-reinforced composite cylindrical panels with elastically restrained edges under nonuniform in-plane temperature distribution. J. Thermoplast. Compos. Mater. 2021. [Google Scholar] [CrossRef]
- Chakraborty, S.; Dey, T.; Kumar, R. Instability characteristics of damped CNT reinforced laminated shell panels subjected to in-plane excitations and thermal loading. Structures 2021, 34, 2936–2949. [Google Scholar] [CrossRef]
- Babaei, H. Thermoelastic buckling and post-buckling behavior of temperature-dependent nanocomposite pipes reinforced with CNTs. Eur. Phys. J. Plus 2021, 136, 1093. [Google Scholar] [CrossRef]
- Babaei, H. On frequency response of FG-CNT reinforced composite pipes in thermally pre/post buckled configurations. Compos. Struct. 2021, 276, 114467. [Google Scholar] [CrossRef]
- Bacciocchi, M.; Fantuzzi, N.; Ferreira, A.J.M. Static finite element analysis of thin laminated strain gradient nanoplates in hygro-thermal environment. Contin. Mech. Thermodyn. 2021, 33, 969–992. [Google Scholar] [CrossRef]
- Moita, J.S.; Araújo, A.L.; Correia, V.F.; Soares, C.M.M. Mechanical and thermal buckling of functionally graded axisymmetric shells. Compos. Struct. 2021, 261, 113318. [Google Scholar] [CrossRef]
- Avey, M.; Fantuzi, N.; Sofiyev, A.H. Thermoelastic stability of CNT patterned conical shells under thermal loading in the framework of shear deformation theory. Mech. Adv. Mater. Struct. 2022; in press. [Google Scholar] [CrossRef]
- Avey, M.; Sofiyev, A.H.; Kuruoglu, N. Influence of elastic foundations and thermal environments on the thermoelastic buckling of nanocomposite truncated conical shells. Acta Mech. 2022, 233, 685–700. [Google Scholar] [CrossRef]
- Allam, M.N.M.; Radwan, A.F.; Sobhy, M. Hygrothermal deformation of spinning FG graphene sandwich cylindrical shells having an auxetic core. Eng. Struct. 2022, 251, 113433. [Google Scholar] [CrossRef]
- Ambartsumyan, S.A. General Theory of Anisotropic Shells; Nauka: Moscow, Russia, 1974. [Google Scholar]
- Reddy, J.N. Mechanics of Laminated Composite Plates and Shells; CRC Press: Boca Raton, FL, USA, 2004. [Google Scholar]
- Eslami, M.R. Buckling and Postbuckling of Beams, Plates, and Shells: Buckling of Conical Shells; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Sofiyev, A.H. Thermo elastic stability of functionally graded truncated conical shells. Compos. Struct. 2007, 77, 56–65. [Google Scholar] [CrossRef]
- Shen, H.S. Postbuckling of nanotube-reinforced composite cylindrical shells in thermal environments, Part I: Axially-loaded shells. Compos. Struct. 2011, 93, 2096–2108. [Google Scholar] [CrossRef]
U | X | U | X |
---|---|---|---|
Ref. [41] | Current study | ||
122.25 | 148.06 | 122.440 (2,4) | 148.966 (1,3) |
U | V | O | X | |||||
---|---|---|---|---|---|---|---|---|
CT | ST | CT | ST | CT | ST | CT | ST | |
0.12 | 0.533 (1,4) | 0.472 (1,4) | 0.455 (1,4) | 0.420 (1,4) | 0.415 (1,4) | 0.385 (1,4) | 0.695 (1,4) | 0.574 (1,4) |
0.17 | 0.568 (1,4) | 0.512 (1,4) | 0.492 (1,4) | 0.460 (1,4) | 0.449 (1,4) | 0.422 (1,4) | 0.738 (1,4) | 0.625 (1,4) |
0.28 | 0.527 (1,4) | 0.451 (1,4) | 0.438 (1,4) | 0.398 (1,4) | 0.414 (1,4) | 0.377 (1,4) | 0.724 (1,4) | 0.561 (1,4) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Avey, M.; Fantuzzi, N.; Sofiyev, A. Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories. Mathematics 2022, 10, 1081. https://doi.org/10.3390/math10071081
Avey M, Fantuzzi N, Sofiyev A. Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories. Mathematics. 2022; 10(7):1081. https://doi.org/10.3390/math10071081
Chicago/Turabian StyleAvey, Mahmure, Nicholas Fantuzzi, and Abdullah Sofiyev. 2022. "Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories" Mathematics 10, no. 7: 1081. https://doi.org/10.3390/math10071081
APA StyleAvey, M., Fantuzzi, N., & Sofiyev, A. (2022). Mathematical Modeling and Analytical Solution of Thermoelastic Stability Problem of Functionally Graded Nanocomposite Cylinders within Different Theories. Mathematics, 10(7), 1081. https://doi.org/10.3390/math10071081