Revisiting the Boundary Value Problem for Uniformly Transversely Loaded Hollow Annular Membrane Structures: Improvement of the Out-of-Plane Equilibrium Equation
Abstract
:1. Introduction
2. Membrane Equations and Solution
3. Results and Discussion
3.1. Convergence Analysis
3.2. Discussion on Effectiveness
3.3. Comparison of the Closed-Form Solutions before and after Improvement
4. Concluding Remarks
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
References
- Molla-Alipour, M.; Ganji, B.A. Analytical Analysis of Mems Capacitive Pressure Sensor with Circular Diaphragm under Dynamic Load Using Differential Transformation Method (DTM). Acta Mech. Solida Sin. 2015, 28, 400–408. [Google Scholar] [CrossRef]
- Lee, H.Y.; Choi, B. Theoretical and Experimental Investigation of the Trapped Air Effect on Air-Sealed Capacitive Pressure Sensor. Sens. Actuators A 2015, 221, 104–114. [Google Scholar] [CrossRef]
- Mishra, R.B.; Khan, S.M.; Shaikh, S.F. Low-Cost Foil/Paper Based Touch Mode Pressure Sensing Element as Artificial Skin Module for Prosthetic Hand. In Proceedings of the 2020 3rd IEEE International Conference on Soft Robotics (RoboSoft), New Haven, CT, USA, 15 May–15 July 2020; pp. 194–200. [Google Scholar]
- Meng, G.Q.; Ko, W.H. Modeling of Circular Diaphragm and Spreadsheet Solution Programming for Touch Mode Capacitive Sensors. Sens. Actuators A 1999, 75, 45–52. [Google Scholar] [CrossRef]
- Delfani, M.R. Nonlinear Elasticity of Monolayer Hexagonal Crystals: Theory and Application to Circular Bulge Test. Eur. J. Mech. A-Solid. 2018, 68, 117–132. [Google Scholar] [CrossRef]
- Dai, Z.; Lu, N. Poking and Bulging of Suspended Thin Sheets: Slippage, Instabilities, and Metrology. J. Mech. Phys. Solids 2021, 149, 104320. [Google Scholar] [CrossRef]
- Gutscher, G.; Wu, H.C.; Ngaile, G.; Altan, T. Determination of Flow Stress for Sheet Metal Forming Using the Viscous Pressure Bulge (VPB) Test. J. Mater. Process. Technol. 2004, 146, 1–7. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, G.R.; Chen, Y.L.; Long, D.; Guan, Y.C.; Liu, L.Q.; Zhang, Z. Extended Hencky Solution for the Blister Test of Nanomembrane. Extreme Mech. Lett. 2018, 22, 69–78. [Google Scholar] [CrossRef]
- Lian, Y.S.; Sun, J.Y.; Zhao, Z.H.; Li, S.Z.; Zheng, Z.L. A Refined Theory for Characterizing Adhesion of Elastic Coatings on Rigid Substrates Based on Pressurized Blister Test Methods: Closed-Form Solution and Energy Release Rate. Polymers 2020, 12, 1788. [Google Scholar] [CrossRef]
- Cao, Z.; Tao, L.; Akinwande, D.; Huang, R.; Liechti, K.M. Mixed-Mode Traction-Separation Relations between Graphene and Copper by Blister Tests. Int. J. Solids Struct. 2016, 84, 147–159. [Google Scholar] [CrossRef]
- Napolitanno, M.J.; Chudnovsky, A.; Moet, A. The Constrained Blister Test for the Energy of Interfacial Adhesion. J. Adhes. Sci. Technol. 1988, 2, 311–323. [Google Scholar] [CrossRef]
- Pervier, M.L.A.; Hammond, D.W. Measurement of the Fracture Energy in Mode I of Atmospheric Ice Accreted on Different Materials Using a Blister Test. Eng. Fract. Mech. 2019, 214, 223–232. [Google Scholar] [CrossRef]
- Zhu, T.T.; Li, G.X.; Müftü, S. Revisiting the Constrained Blister Test to Measure Thin Film Adhesion. J. Appl. Mech.-T ASME 2017, 84, 071005. [Google Scholar] [CrossRef]
- Zhu, T.T.; Müftü, S.; Wan, K.T. One-Dimensional Constrained Blister Test to Measure Thin Film Adhesion. J. Appl. Mech.-Trans. ASME 2018, 85, 054501. [Google Scholar] [CrossRef]
- Hencky, H. On the Stress State in Circular Plates with Vanishing Bending Stiffness. Z. Angew. Math. Phys. 1915, 63, 311–317. [Google Scholar]
- Chien, W.Z. Asymptotic Behavior of a Thin Clamped Circular Plate under Uniform Normal Pressure at Very Large Deflection. Sci. Rep. Natl. Tsinghua Univ. 1948, 5, 193–208. [Google Scholar]
- Alekseev, S.A. Elastic Circular Membranes under the Uniformly Distributed Loads. Eng. Corpus 1953, 14, 196–198. [Google Scholar]
- Li, X.; Sun, J.Y.; Zhao, Z.H.; He, X.T. Large Deflection Analysis of Axially Symmetric Deformation of Prestressed Circular Membranes under Uniform Lateral Loads. Symmetry 2020, 12, 1343. [Google Scholar] [CrossRef]
- Lian, Y.S.; Sun, J.Y.; Dong, J.; Zheng, Z.L.; Yang, Z.X. Closed-Form Solution of Axisymmetric Deformation of Prestressed Föppl-Hencky Membrane under Constrained Deflecting. Stuct. Eng. Mech. 2019, 69, 693–698. [Google Scholar]
- Huang, P.F.; Song, Y.P.; Li, Q.; Liu, X.Q.; Feng, Y.Q. A Theoretical Study of Circular Orthotropic Membrane under Concentrated Load: The Relation of Load and Deflection. IEEE Access 2020, 8, 126127–126137. [Google Scholar] [CrossRef]
- Sun, J.Y.; Qian, S.H.; Li, Y.M.; He, X.T.; Zheng, Z.L. Theoretical Study of Adhesion Energy Measurement for Film/Substrate Interface Using Pressurized Blister Test: Energy Release Rate. Measurement 2013, 46, 2278–2287. [Google Scholar] [CrossRef]
- Rao, Y.; Qiao, S.; Dai, Z.; Lu, N. Elastic Wetting: Substrate-Supported Droplets Confined by Soft Elastic Membranes. J. Mech. Phys. Solids 2021, 151, 104399. [Google Scholar] [CrossRef]
- Lian, Y.S.; Sun, J.Y.; Yang, Z.X. Closed-Form Solution of Well-Known Hencky Problem without Small-Rotation-Angle Assumption. Z. Angew. Math. Me. 2016, 96, 1434–1441. [Google Scholar] [CrossRef]
- Lian, Y.S.; Sun, J.Y.; Zhao, Z.H.; He, X.T. A Revisit of the Boundary Value Problem for Föppl–Hencky Membranes: Improvement of Geometric Equations. Mathematics 2020, 8, 631. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Sun, J.Y.; Zhao, Z.H.; Li, S.Z.; He, X.T. A New Solution to Well-Known Hencky Problem: Improvement of In-Plane Equilibrium Equation. Mathematics 2020, 8, 653. [Google Scholar] [CrossRef]
- Shi, B.B.; Sun, J.Y.; Huang, T.K.; He, X.T. Closed-Form Solution for Circular Membranes under In-Plane Radial Stretching or Compressing and Out-Of-Plane Gas Pressure Loading. Mathematics 2021, 9, 1238. [Google Scholar] [CrossRef]
- Chien, W.Z.; Wang, Z.Z.; Xu, Y.G.; Chen, S.L. The Symmetrical Deformation of Circular Membrane under the Action of Uniformly Distributed Loads in Its Central Portion. Appl. Math. Mech. 1981, 2, 599–612. [Google Scholar]
- Alekseev, S.A. Elastic Annular Membranes with a Stiff Centre under the Concentrated Force. Eng. Cor. 1951, 10, 71–80. [Google Scholar]
- Sun, J.Y.; Hu, J.L.; He, X.T.; Zheng, Z.L. A Theoretical Study of a Clamped Punch-Loaded Blister Configuration: The Quantitative Relation of Load and Deflection. Int. J. Mech. Sci. 2010, 52, 928–936. [Google Scholar] [CrossRef]
- Lian, Y.S.; Sun, J.Y.; Ge, X.M.; Yang, Z.X.; He, X.T.; Zheng, Z.L. A Theoretical Study of an Improved Capacitive Pressure Sensor: Closed-Form Solution of Uniformly Loaded Annular Membranes. Measurement 2017, 111, 84–92. [Google Scholar] [CrossRef]
- Sun, J.Y.; Zhang, Q.; Li, X.; He, X.T. Axisymmetric Large Deflection Elastic Analysis of Hollow Annular Membranes under Transverse Uniform Loading. Symmetry 2021, 13, 1770. [Google Scholar] [CrossRef]
n | c0 | c1 | d0 |
---|---|---|---|
2 | 0.00687190 | −0.00618657 | 0.04535532 |
3 | 0.01087183 | −0.00560236 | 0.02755998 |
4 | 0.00817238 | −0.00403989 | 0.03713644 |
5 | 0.00867159 | −0.00393926 | 0.03477238 |
6 | 0.00838239 | −0.00378540 | 0.03603262 |
7 | 0.00845774 | −0.00376889 | 0.03567177 |
8 | 0.00841269 | −0.00374544 | 0.03587366 |
9 | 0.00842546 | −0.00374254 | 0.03581161 |
10 | 0.00841767 | −0.00373849 | 0.03584674 |
11 | 0.00841983 | −0.00373799 | 0.03583622 |
12 | 0.00841856 | −0.00373732 | 0.03584193 |
13 | 0.00841890 | −0.00373724 | 0.03584028 |
14 | 0.00841871 | −0.00373715 | 0.03584114 |
15 | 0.00841875 | −0.00373713 | 0.03584094 |
i | ci(1 − β)i | ci(α − β)i |
---|---|---|
0 | 8.41875000 × 10−3 | 8.41875000 × 10−3 |
1 | −9.34282500 × 10−4 | 9.34282500 × 10−4 |
2 | 2.15812637 × 10−4 | 2.15812637 × 10−4 |
3 | −2.33279869 × 10−4 | 2.33279869 × 10−4 |
4 | 7.87430370 × 10−5 | 7.87430370 × 10−5 |
5 | −2.99724387 × 10−5 | 2.99724387 × 10−5 |
6 | 9.69980015 × 10−6 | 9.69980015 × 10−6 |
7 | −3.50169466 × 10−6 | 3.50169466 × 10−6 |
8 | 1.24130427 × 10−6 | 1.24130427 × 10−6 |
9 | −4.71195221 × 10−7 | 4.71195221 × 10−7 |
10 | 1.75160384 × 10−7 | 1.75160384 × 10−7 |
11 | −6.56948110 × 10−8 | 6.56948110 × 10−8 |
12 | 2.38967215 × 10−8 | 2.38967215 × 10−8 |
13 | −8.64261174 × 10−9 | 8.64261174 × 10−9 |
14 | 3.06912427 × 10−9 | 3.06912427 × 10−9 |
15 | −1.09104922 × 10−9 | 1.09104922 × 10−9 |
i | di(1 − β)i | di(α − β)i |
---|---|---|
0 | 3.58409383 × 10−2 | 3.58409383 × 10−2 |
1 | −2.37800206 × 10−2 | −2.37800206 × 10−2 |
2 | −1.17293597 × 10−2 | −1.17293597 × 10−2 |
3 | −5.55354991 × 10−5 | 5.55354991 × 10−5 |
4 | −2.15158941 × 10−4 | −2.15158941 × 10−4 |
5 | −5.96198377 × 10−5 | 5.96198377 × 10−5 |
6 | 4.93242171 × 10−6 | 4.93242171 × 10−6 |
7 | −6.08777758 × 10−6 | 6.08777758 × 10−6 |
8 | 1.74706916 × 10−7 | 1.74706916 × 10−7 |
9 | −1.88800195 × 10−8 | 1.88800195 × 10−8 |
10 | −6.71371190 × 10−8 | −6.71371190 × 10−8 |
11 | −1.49873705 × 10−9 | 1.49873705 × 10−9 |
12 | −3.72445706 × 10−9 | −3.72445706 × 10−9 |
13 | −1.90789264 × 10−9 | 1.90789264 × 10−9 |
14 | 3.56912949 × 10−10 | 3.56912949 × 10−10 |
15 | −3.24466986 × 10−10 | 3.24466986 × 10−10 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Li, X.; He, X.-T.; Sun, J.-Y. Revisiting the Boundary Value Problem for Uniformly Transversely Loaded Hollow Annular Membrane Structures: Improvement of the Out-of-Plane Equilibrium Equation. Mathematics 2022, 10, 1305. https://doi.org/10.3390/math10081305
Zhang Q, Li X, He X-T, Sun J-Y. Revisiting the Boundary Value Problem for Uniformly Transversely Loaded Hollow Annular Membrane Structures: Improvement of the Out-of-Plane Equilibrium Equation. Mathematics. 2022; 10(8):1305. https://doi.org/10.3390/math10081305
Chicago/Turabian StyleZhang, Qi, Xue Li, Xiao-Ting He, and Jun-Yi Sun. 2022. "Revisiting the Boundary Value Problem for Uniformly Transversely Loaded Hollow Annular Membrane Structures: Improvement of the Out-of-Plane Equilibrium Equation" Mathematics 10, no. 8: 1305. https://doi.org/10.3390/math10081305
APA StyleZhang, Q., Li, X., He, X. -T., & Sun, J. -Y. (2022). Revisiting the Boundary Value Problem for Uniformly Transversely Loaded Hollow Annular Membrane Structures: Improvement of the Out-of-Plane Equilibrium Equation. Mathematics, 10(8), 1305. https://doi.org/10.3390/math10081305