Next Article in Journal
Solving the Eigenfrequencies Problem of Waveguides by Localized Method of Fundamental Solutions with External Source
Previous Article in Journal
Analysis of the Influences of Parameters in the Fractional Second-Grade Fluid Dynamics
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces

School of Sciences, Nantong University, Nantong 226007, China
*
Author to whom correspondence should be addressed.
Mathematics 2022, 10(7), 1126; https://doi.org/10.3390/math10071126
Submission received: 2 March 2022 / Revised: 26 March 2022 / Accepted: 28 March 2022 / Published: 1 April 2022

Abstract

:
In this paper, we establish the local well-posedness for a two-component Novikov system in the sense of Hadamard in critical Besov spaces B p , 1 1 + 1 p ( R ) × B p , 1 1 + 1 p ( R ) , 1 p < . We first provide a uniform bound for the approximate solutions constructed by iterative scheme, then we show the convergence and regularity; afterwards, based on the Lagrangian coordinate transformation techniques, we prove the uniqueness result; finally, we show that the the solution map is continuous.

1. Introduction

In what follows, we are concerned with the local well-posedness of the Cauchy problem for the Novikov system:
q t = ( u 2 + v 2 ) q x 3 ( u u x + v v x ) q + r ( u v x u x v ) , t > 0 , x R , r t = ( u 2 + v 2 ) r x 3 ( u u x + v v x ) r + q ( u v x u x v ) , t > 0 , x R , q = u u x x , r = v v x x , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) , x R .
Equation (1) was first proposed in [1,2], it can be derived as the reduction of the following multi-component Novikov system
M t = 2 U x T V M U T V x M U T V M x M T V U x + M T V x U , N t = 2 U T V x N U x T V N U T V N x N T U V x + N T U x V , M = U U x x , N = V V x x
by setting M = N = ( q , r ) T , U = V = ( u , v ) T .
Equation (2) was derived from the zero-curvature equation for the vector prolongation of Lax pair representation for the Geng–Xue equation [3]. It can be reformulated as a bi-Hamiltonian system with the following Hamiltonian functionals:
H 0 = 1 2 M , V U x , V N , U V x , U + ( N , U x M , V x ) U , V d x , H 1 = 1 2 M , V + N , U d x .
While M = q , U = u , N = V = 1 , Equation (2) is reduced to the Degasperis-Procesi (DP) equation [4]
m t + u m x + 3 u x m = 0 , m = u u x x .
It is a model for nonlinear shallow water dynamics [5]. The DP equation was proved to be formally integrable by constructing a Lax pair and the direct and inverse scattering approach [6]. Moreover, it was also shown that it has a bi-Hamiltonian structure and an infinite number of conservation laws [7] and admits exact peakon solutions, which are analogous to Camassa–Holm peakons. It is noted that the peakons replicate a feature that is characteristic for the waves of great heights or waves with largest amplitudes, which are exact solutions for the governing equations of irrotational water waves. The local well-posedness of DP equation in Sobolev and Besov spaces has been investigated in many papers, see [8,9,10].
While M = N = q , V = U = u , Equation (2) is reduced to the Novikov equation
m t + 3 u u x m + u 2 m x = 0 , m = u u x x .
The Novikov equation shares similar properties with the Camassa–Holm equation, such as a Lax pair in the matrix form, a bi-Hamiltonian structure, infinitely many conserved quantities, and peakon solutions given by the formula u ( x , t ) = c e | x c t | [11].
While M = q , N = r , U = u , V = v , Equation (2) is reduced to the Geng–Xue equation [3]
m t + 3 u v x m + u v m x = 0 , n t + 3 u x v n + u v n x = 0 , m = u u x x , n = v v x x .
The integrability [3,12], dynamics and structure of the peaked solitons of the Geng–Xue system [13,14] were considered recently. In [15], the well-posedness and wave breaking phenomena of the Cauchy problem were discussed.
The well-posedness and ill-posedness of Camassa–Holm type equations in Besov spaces have recently been intensively explored [16,17,18,19]. The main difference between the Novikov equation and the Camassa–Holm equation is that the Novikov equation contains terms of cubic nonlinearity, while the Camassa–Holm equation only contains quadratic terms. In [20], the local well-posedness of the Novikov equation was researched in Besov spaces B p , r s for s > max { 3 2 , 1 + 1 p } with p [ 1 , ) and r [ 1 , ) ; meanwhile, the ill-posedness of the Novikov equation was also considered in B 2 , 3 2 by using peakon solutions. The ill-posedness result was lately studied by Li et al. [21] in supercritical Besov spaces B p , s with s > max { 1 + 1 p , 3 2 } and 1 p , in the sense that the solution map starting from u 0 is discontinuous at t = 0 in the metric of B p , s . For the local well-posedness of Novikov equation in critical Beosov spaces, it is worth mentioning that Ni and Zhou [22] obtained local well-posedness in B 2 , 1 3 2 , later, the local well-posedness result was extended to the broader range of Besov spaces B p , 1 1 + 1 p with 1 p < based on the Lagrangian coordinate transformation by Ye et al. [23]. The continuous dependence of the solution to Novikov equation on the initial data in the space C ( [ 0 , T ] ; B p , r s ) with r < was also researched in [18], and the solution map was proved to be weakly continuous with r = .
For the two-component Novikov system (1), the local well-posedness result in super critical Besov spaces B p , r s × B p , r s for s > max { 1 + 1 p , 3 2 } with p [ 1 , ) and r [ 1 , ) has already been established [24]. However, whether (1) is well-posed or not in the critical Besov spaces B p , 1 1 + 1 p × B p , 1 1 + 1 p with p [ 1 , ) is still open to debate, therefore, it would be reasonable to study the local well-posedness of Equation (1) in such spaces, we aim to construct the local well-posedness result in the present paper, the methods adopted in this paper are also applicable to two-component Camassa–Holm equations and Geng–Xue system etc.
The motivation to use the methods adopted in each step can be stated as follows: We construct a sequence of approximate solutions using an iterative scheme for the purpose of showing the existence of the solution. In the first step, we demonstrate the uniform boundedness of the solution sequence via induction; then, in step 2, we extract two subsequences of the above mentioned approximate solution sequence, the norm of the difference between which in the space B p , 1 1 p × B p , 1 1 p is then shown to converge to zero, thus we obtain the compactness of the approximate sequence and get a solution ( u , v ) which solves Equation (3) in the sense of distributions. The Moser-type inequality is always needed in the proof of uniqueness; however, the critical index restriction s = 1 + 1 p makes it impossible to apply the Moser-type inequality any longer. Fortunately, inspired by [23], we devise the Lagrangian scale of (1) to overcome this difficulty and succeed in proving the uniqueness in step 3. In order to prove the continuous dependence of the solution on the initial data in step 4, we decompose the solution components, and afterwards, by making use of transport theories and the energy method, we manage to show that if the initial data sequence converges to a fixed initial data, then the corresponding approximate solution sequence converges to the solution corresponding to the fixed initial data.
For T > 0 and 1 p < , we define
E p , 1 1 + 1 p ( T ) = C ( [ 0 , T ] ; B p , 1 1 + 1 p ) C 1 ( [ 0 , T ] ; B p , 1 1 p ) .
Before proceeding any further, we need to reformulate (1) into a workable form of transport equation-type. By applying the inverse of Helmholtz operator ( 1 x 2 ) 1 to both sides of the equations in (1), we obtain
u t + ( u 2 + v 2 ) u x = x ( 1 x 2 ) 1 u 3 + u v 2 + 3 2 u u x 2 + u x v v x + 1 2 u v x 2 1 2 ( 1 x 2 ) 1 u x 3 + u x v x 2 F ( u , v ) , v t + ( u 2 + v 2 ) v x = x ( 1 x 2 ) 1 v 3 + u 2 v + 3 2 v v x 2 + u u x v x + 1 2 u x 2 v 1 2 ( 1 x 2 ) 1 u x 2 v x + v x 3 G ( u , v ) , u ( 0 , x ) = u 0 ( x ) , v ( 0 , x ) = v 0 ( x ) .
We introduce our main result regarding local well-posedness of (3) in critical Besov spaces as follows.
Theorem 1.
Let ( u 0 , v 0 ) B p , 1 1 + 1 p × B p , 1 1 + 1 p with 1 p < , then there exists a time T > 0 such that the Cauchy problem (3) has a unique solution ( u , v ) E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) , and the solution map ( u 0 , v 0 ) ( u , v ) is continuous from a neighborhood of B p , 1 1 + 1 p × B p , 1 1 + 1 p into E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) .
The rest of this paper is organized as follows. The properties of Besov spaces, as well as the transport theories, which provide a basis of the study of the associated local well-posedness problem is given in Section 2. In Section 3, we split the proof of Theorem 1 into four steps, which cover uniform boundedness, convergence and regularity, uniqueness, and continuous dependence, respectively.
Notation 1.
For given Banach space X, we denote its norm by · X . Since all function spaces are over R , we drop R in our notations of function spaces for simplicity if there is no ambiguity.

2. Preliminaries

In this section, we shall recall some properties of the Besov spaces and the transport theories.
Definition 1
([25]). Assume that s R , p , r [ 1 , ] , u D ( T ) . The Besov space is defined as follows:
B p , r s = { u D ( T ) :   u B p , r s < } ,
where
u B p , r s ( q 1 ( 2 s q Δ q u L p ) r ) 1 r , when 1 r < , sup q 1 2 s q Δ q u L p , when r = .
The following lemma summarizes some useful properties of the Besov space B p , r s .
Lemma 1
([25]). Let s R , 1 p , r , p j , r j , j = 1 , 2 , then
(1)
Algebraic properties: s > 0 , B p , r s is a Banach algebra if and only if s > 1 p or s 1 p and r = 1 .
(2)
1-D Moser-type estimates:
(i) 
For s > 0 ,
f g B p , r s C ( f B p , r s g L + f L g B p , r s ) .
(ii) 
s 1 1 p < s 2 ( s 2 1 p if r = 1 ) and s 1 + s 2 > 0 , we have
f g B p , r s 1 C f B p , r s 1 g B p , r s 2 .
(3)
Fatou lemma: If { v n } n N is bounded in B p , r s and v n v in D ( T ) , then v B p , r s and
v B p , r s   lim inf n v n B p , r s .
We also prepare some useful lemmas on the following transport equation:
t g + v x g = h , g | t = 0 = g 0 ( x ) .
Lemma 2
([26]). Assume that 1 p , r , θ > min ( 1 p , 1 p ) . If g 0 B p , r θ , h L 1 ( 0 , T ; B p , r θ ) , v L ρ ( 0 , T ; B , M ) , where ρ > 1 , M > 0 , and
x v L 1 ( 0 , T ; B p , r θ 1 ) , i f θ = 1 + 1 p , r = 1 .
Then there exists a unique solution g C ( [ 0 , T ] ; B p , r θ ) to Equation (4) if r < .
Lemma 3
([26]). Assume that 1 p , 1 r , θ > min ( 1 p , 1 p ) . Then there exists a constant C such that for all solutions g L ( 0 , T ; B p , r θ ) of (4) with initial data g 0 in B p , r θ and h L 1 ( 0 , T ; B p , r θ ) , we have for a.e. t [ 0 , T ] ,
g ( t ) B p , r θ   g 0 B p , r θ + 0 t h ( t ) B p , r θ d t + 0 t V ( t ) g ( t ) B p , r θ d t
or
g ( t ) B p , r θ e C V ( t ) ( g 0 B p , r θ + 0 t e C V ( t ) h ( t ) B p , r θ d t )
with
V ( t ) = x v ( t ) B p , r θ 1 , i f θ = 1 + 1 p , r = 1 .
Lemma 4
([27]). (Existence and uniqueness) Suppose 1 p p 1 , 1 r , σ min ( 1 p , 1 1 p ) with strict inequality if r < . Suppose in addition that g 0 B p , r σ , h L 1 ( 0 , T ; B p , r σ ) , v L k ( 0 , T ; B , M ) , where k > 1 , M > 0 , and
x v L 1 ( 0 , T ; B p , r σ 1 ) , i f σ = 1 + 1 p , r = 1
Then (4) has a unique solution f C ( [ 0 , T ] ; B p , r σ ) .
Lemma 5
([26]). Suppose that 1 p , 1 r , s > 1 + 1 p or s = 1 + 1 p , 1 p < r = 1 . For n N ¯ , denote b n be the solution of
t b n + B n x b n = G , b n | t = 0 = b 0 ( x ) ,
with G ( t , x ) L ( 0 , T ; B p , r s 1 ) , b 0 ( x ) B p , r s 1 . Assume that
sup n N ¯ B n ( t ) B p , r s β ( t ) f o r s o m e β L 1 ( 0 , T )
and B n B in L 1 ( 0 , T ; B p , r s 1 ) . Then the sequence { b n } n N ¯ converges to b in C ( [ 0 , T ] ; B p , r s 1 ) .
Proposition 1
([27]). Assume that 1 p , r , s is a real number.
(i)
For any given u B p , r s , ϕ B p , r s ,
( u , ϕ ) | j i | 1 Δ j u , Δ i ϕ
defines a continuous bilinear functional on B p , r s × B p , r s .
(ii)
Let Q p , r s be the set of functions ϕ S satisfying ϕ p , r s 1 . If u is in S , then
u B p , r s C sup ϕ Q p , r s u , ϕ .

3. Proof of Theorem 1

We split the proof of the main theorem into four steps. First we prove the uniform boundedness of the approximate solutions, then we show its convergence; afterward we prove the uniqueness of solution; finally, we establish the continuous dependence of the solution on the initial data.
Step 1. Uniform boundedness of approximate solutions constructed with an iterative scheme.
Suppose that u ( 0 ) = v ( 0 ) = 0 , we define by induction a solution sequence ( u ( n ) , v ( n ) ) n N of the following transport equation:
t u ( n + 1 ) + [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] x u ( n + 1 ) = F ( u ( n ) , v ( n ) ) , t v ( n + 1 ) + [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] x v ( n + 1 ) = G ( u ( n ) , v ( n ) ) , u ( n + 1 ) | t = 0 = u 0 , v ( n + 1 ) | t = 0 = v 0 .
Assume that ( u ( n ) , v ( n ) ) n N belongs to E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) for all T > 0 , we know from Lemma 1 that B p , 1 1 + 1 p , B p , 1 1 p are algebras and the embedding B p , 1 1 + 1 p B p , 1 1 p L holds. Thus, we have
F ( u ( n ) , v ( n ) ) C ( u ( n ) B p , 1 1 + 1 p + v ( n ) B p , 1 1 + 1 p ) 3 .
It can be deduced from Lemma 2 that there exists a unique solution ( u ( n + 1 ) ( t ) , v ( n + 1 ) ( t ) ) E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) of (5). Moreover, by applying Lemma 3, one obtains
u ( n + 1 ) ( t ) B p , 1 1 + 1 p e C V ( t ) u 0 B p , 1 1 + 1 p + C 0 t e C V ( τ ) ( u ( n ) ( τ ) B p , 1 1 + 1 p + v ( n ) ( τ ) B p , 1 1 + 1 p ) 3 d τ .
where V ( t ) = 0 t ( u ( n ) ( t ) B p , 1 1 + 1 p + v n ( t ) B p , 1 1 + 1 p ) 2 d t .
Similarly, we can infer that
v ( n + 1 ) ( t ) B p , 1 1 + 1 p e C V ( t ) v 0 B p , 1 1 + 1 p + C 0 t e C V ( τ ) ( u ( n ) ( τ ) B p , 1 1 + 1 p + v ( n ) ( τ ) B p , 1 1 + 1 p ) 3 d τ .
Let X ( n + 1 ) ( t ) = u ( n + 1 ) ( t ) B p , 1 1 + 1 p + v ( n + 1 ) ( t ) B p , 1 1 + 1 p , X 0 = u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p , it follows by adding (6) and (7) that
X ( n + 1 ) ( t ) e C V ( t ) X 0 + C 0 t e C V ( τ ) ( X ( n + 1 ) ( τ ) ) 3 d τ .
Fix a T > 0 such that T < 1 4 C ( u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p ) 2 , and suppose by induction that
X ( n ) ( t ) ( 1 4 C X 0 2 t ) 1 2 .
Since
C ( v ( t ) v ( τ ) ) = C τ t ( X ( n ) ( t ) ) 2 d t 1 4 τ t 4 C X 0 2 1 4 C X 0 2 t d t = 1 4 ln ( 1 4 C X 0 2 τ ) 1 4 ln ( 1 4 C X 0 2 t ) ,
substituting the above inequality into (8) yields
X ( n + 1 ) ( t ) ( 1 4 C X 0 2 t ) 1 4 X 0 + C ( 1 4 C X 0 2 t ) 1 4 0 t ( 1 4 C X 0 2 τ ) 5 4 d τ = ( 1 4 C X 0 2 t ) 1 4 X 0 + ( 1 4 C X 0 2 t ) 1 4 X 0 0 t C X 0 2 ( 1 4 C X 0 2 τ ) 5 4 d τ = ( 1 4 C X 0 2 t ) 1 4 X 0 + ( 1 4 C X 0 2 t ) 1 4 X 0 [ ( 1 4 C X 0 2 t ) 1 4 1 ] = ( 1 4 C X 0 2 t ) 1 2 X 0 .
Which is equivalent to
u ( n + 1 ) ( t ) B p , 1 1 + 1 p + v ( n + 1 ) ( t ) B p , 1 1 + 1 p u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p [ 1 4 C t ( u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p ) 2 ] 1 2
Therefore, ( u ( n ) , v ( n ) ) n N is uniformly bounded in L T ( B p , 1 1 + 1 p ) × L T ( B p , 1 1 + 1 p ) .
Step 2. Convergence and regularity of solutions.
Next, we will prove that ( u ( n ) , v ( n ) ) n N is a Cauchy sequence in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) . It follows from (5) that
t ( u ( n + m + 1 ) u ( n + 1 ) ) + [ ( u ( n + m ) ) 2 + ( v ( n + m ) ) 2 ] x ( u ( n + m + 1 ) u ( n + 1 ) ) = F 1 ( u ( n + m ) , v ( n + m ) , u ( n + 1 ) , u ( n ) , v ( n ) ) , t ( v ( n + m + 1 ) v ( n + 1 ) ) + [ ( u ( n + m ) ) 2 + ( v ( n + m ) ) 2 ] x ( v ( n + m + 1 ) v ( n + 1 ) ) = G 1 ( u ( n + m ) , v ( n + m ) , u ( n + 1 ) , u ( n ) , v ( n ) ) , ( u ( n + m + 1 ) u ( n + 1 ) ) | t = 0 = ( v ( n + m + 1 ) v ( n + 1 ) ) | t = 0 = 0 .
Among which
F 1 ( u ( n + m ) , v ( n + m ) , u ( n + 1 ) , u ( n ) , v ( n ) ) = [ ( u ( n ) u ( n + m ) ) ( u ( n ) + u ( n + m ) ) + ( v ( n ) v ( n + m ) ) ( v ( n ) + v ( n + m ) ) ] u x ( n + 1 ) x ( 1 x 2 ) 1 { 3 2 ( u x ( n + m ) ) 2 ( u ( n + m ) u ( n ) ) + 3 2 u ( n ) ( u x ( n + m ) u x ( n ) ) ( u x ( n + m ) + u x ( n ) ) + ( u x ( n + m ) u x ( n ) ) v x ( n + m ) v ( n + m ) + u x ( n ) v x ( n + m ) ( v ( n + m ) v ( n ) ) + u x ( n ) v ( n ) ( v x ( n + m ) v x ( n ) ) + ( u ( n + m ) u ( n ) ) [ ( u ( n + m ) ) 2 + u ( n + m ) u ( n ) + ( u ( n ) ) 2 ] + ( u ( n + m ) u ( n ) ) ( v ( n ) ) 2 + u ( n ) ( v ( n + m ) v ( n ) ) ( v ( n + m ) + v ( n ) ) + 1 2 ( u ( n + m ) u ( n ) ) ( v x ( n + m ) ) 2 + 1 2 u ( n ) ( v x ( n + m ) v x ( n ) ) ( v x ( n + m ) + v x ( n ) ) } 1 2 ( 1 x 2 ) 1 { ( u x ( n + m ) u x ( n ) ) [ ( u x ( n + m ) ) 2 + u x ( n + m ) u x ( n ) + ( u x ( n ) ) 2 ] + ( u x ( n + m ) u x ( n ) ) ( v x ( n ) ) 2 + u x ( n ) ( v x ( n + m ) v x ( n ) ) ( v x ( n + m ) + v x ( n ) ) }
G 1 ( u ( n + m ) , v ( n + m ) , v ( n + 1 ) , u ( n ) , v ( n ) ) = [ ( u ( n ) u ( n + m ) ) ( u ( n ) + u ( n + m ) ) + ( v ( n ) v ( n + m ) ) ( v ( n ) + v ( n + m ) ) ] v x ( n + 1 ) x ( 1 x 2 ) 1 { 3 2 ( v x ( n + m ) ) 2 ( v ( n + m ) v ( n ) ) + 3 2 v ( n ) ( v x ( n + m ) v x ( n ) ) ( v x ( n + m ) + v x ( n ) ) + ( u ( n + m ) u ( n ) ) v x ( n + m ) u x ( n + m ) + u ( n ) v x ( n + m ) ( u x ( n + m ) u x ( n ) ) + u x ( n ) u ( n ) ( v x ( n + m ) v x ( n ) ) + ( v ( n + m ) v ( n ) ) [ ( v ( n + m ) ) 2 + v ( n + m ) v ( n ) + ( v ( n ) ) 2 ] + ( v ( n + m ) v ( n ) ) ( u ( n + m ) ) 2 + v ( n ) ( u ( n + m ) u ( n ) ) ( u ( n + m ) + u ( n ) ) + 1 2 ( v ( n + m ) v ( n ) ) ( u x ( n ) ) 2 + 1 2 v ( n ) ( u x ( n + m ) u x ( n ) ) ( u x ( n + m ) + u x ( n ) ) } 1 2 ( 1 x 2 ) 1 { ( v x ( n + m ) v x ( n ) ) [ ( v x ( n + m ) ) 2 + v x ( n + m ) v x ( n ) + ( v x ( n ) ) 2 ] + ( v x ( n + m ) v x ( n ) ) ( u x ( n + m ) ) 2 + v x ( n ) ( u x ( n + m ) u x ( n ) ) ( u x ( n + m ) + u x ( n ) ) } .
By applying the algebraic property of Besov spaces B p , 1 1 + 1 p and B p , 1 1 p , we obtain
F 1 ( u ( n + m ) , v ( n + m ) , u ( n + 1 ) , u ( n ) , v ( n ) ) B p , 1 1 p C ( u ( n + m ) u ( n ) B p , 1 1 p + v ( n + m ) v ( n ) B p , 1 1 p ) × [ u ( n + 1 ) B p , 1 1 + 1 p ( u ( n + m ) B p , 1 1 + 1 p + v ( n + m ) B p , 1 1 + 1 p + u ( n ) B p , 1 1 + 1 p + v ( n ) B p , 1 1 + 1 p ) + u ( n + m ) B p , 1 1 + 1 p 2 + v ( n + m ) B p , 1 1 + 1 p 2 + u ( n ) B p , 1 1 + 1 p 2 + v ( n ) B p , 1 1 + 1 p 2 ] .
Similarly,
G 1 ( u ( n + m ) , v ( n + m ) , v ( n + 1 ) , u ( n ) , v ( n ) ) B p , 1 1 p C ( u ( n + m ) u ( n ) B p , 1 1 p + v ( n + m ) v ( n ) B p , 1 1 p ) × [ v ( n + 1 ) B p , 1 1 + 1 p ( u ( n + m ) B p , 1 1 + 1 p + v ( n + m ) B p , 1 1 + 1 p + u ( n ) B p , 1 1 + 1 p + v ( n ) B p , 1 1 + 1 p ) + u ( n + m ) B p , 1 1 + 1 p 2 + v ( n + m ) B p , 1 1 + 1 p 2 + u ( n ) B p , 1 1 + 1 p 2 + v ( n ) B p , 1 1 + 1 p 2 ] .
Thanks to Lemmas 2 and 3, we see that for any t [ 0 , T ] ,
( u ( n + m + 1 ) u ( n + 1 ) ) ( t ) B p , 1 1 p + ( v ( n + m + 1 ) v ( n + 1 ) ) ( t ) B p , 1 1 p C e C 0 t [ ( u ( n + m ) ) 2 + ( v ( n + m ) ) 2 ] ( t ) B p , 1 1 + 1 p d t × 0 t e C 0 τ [ ( u ( n + m ) ) 2 + ( v ( n + m ) ) 2 ] ( τ ) B p , 1 1 p d τ × ( ( u ( n + m ) u ( n ) ) ( t ) B p , 1 1 p + ( v ( n + m ) v ( n ) ) ( t ) B p , 1 1 p ) × ( u ( n + 1 ) B p , 1 1 + 1 p 2 + v ( n + 1 ) B p , 1 1 + 1 p 2 + u ( n + m ) B p , 1 1 + 1 p 2 + v ( n + m ) B p , 1 1 + 1 p 2 + u ( n ) B p , 1 1 + 1 p 2 + v ( n ) B p , 1 1 + 1 p 2 ) d τ .
Therefore, by making use of the induction, one can see a positive constant C T exists, which is independent of n and m, such that
u ( n + m + 1 ) u ( n + 1 ) L T ( B p , 1 1 p ) + v ( n + m + 1 ) v ( n + 1 ) L T ( B p , 1 1 p ) ( T C T ) n + 1 ( n + 1 ) ! ( u ( m ) L T ( B p , 1 1 + 1 p ) + v ( m ) L T ( B p , 1 1 + 1 p ) ) C T 2 n ,
which indicates that the sequence ( u ( n ) , v ( n ) ) n N ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) is a Cauchy sequence and converges to ( u , v ) C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) . Therefore, via Fatou’s Lemma, we obtain
u L T ( B p , 1 1 p ) + v L T ( B p , 1 1 p ) u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p [ 1 4 C T ( u 0 B p , 1 1 + 1 p + v 0 B p , 1 1 + 1 p ) 2 ] 1 2
Next, we need to show that ( u , v ) solves the Equation (3) using the following steps.
In view of (5), we consider the following system
0 t ( u ( n + 1 ) , t ϕ ( τ ) + u ( n + 1 ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] ( τ ) , x ϕ ( τ ) + u ( n + 1 ) [ ( u ( n ) ) 2 + v ( n ) ) 2 ] x ( τ ) F ( u ( n ) , v ( n ) ) , ϕ ( τ ) ) d τ = u ( n + 1 ) ( t ) , ϕ ( t ) u ( n + 1 ) ( 0 ) , ϕ ( 0 ) , 0 t ( v ( n + 1 ) , t ϕ ( τ ) + v ( n + 1 ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] ( τ ) , x ϕ ( τ ) + v ( n + 1 ) [ ( u ( n ) ) 2 + v ( n ) ) 2 ] x ( τ ) G ( u ( n ) , v ( n ) ) , ϕ ( τ ) ) d τ = v ( n + 1 ) ( t ) , ϕ ( t ) v ( n + 1 ) ( 0 ) , ϕ ( 0 ) ,
where ϕ C 1 ( [ 0 , T ] ; S ) is a test function. By virtue of Proposition 1, we can take the limit as n in the first equation of (10) to check its convergence
0 t u ( n + 1 ) ( τ ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] ( τ ) , x ϕ ( τ ) d τ 0 t u ( τ ) ( u 2 + v 2 ) ( τ ) , x ϕ d τ = 0 t u ( n + 1 ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] u ( u 2 + v 2 ) , x ϕ d τ 0 t ( u ( n + 1 ) u ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] , x ϕ d τ + 0 t u [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ( u 2 + v 2 ) ] , x ϕ d τ T ( ( u ( n + 1 ) u ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] L T ( B p , 1 1 + 1 p ) x ϕ L T ( B p , 1 1 p ) + u [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ( u 2 + v 2 ) ] L T ( B p , 1 1 + 1 p ) x ϕ L T ( B p , 1 1 p ) ) T ( u ( n + 1 ) u L T ( B p , 1 1 + 1 p ) ( u ( n ) ) 2 + ( v ( n ) ) 2 L T ( B p , 1 1 + 1 p ) + u L T ( B p , 1 1 + 1 p ) ( u ( n ) ) 2 + ( v ( n ) ) 2 ( u 2 + v 2 ) L T ( B p , 1 1 + 1 p ) ) ϕ L T ( B p , 1 p ) ,
which converges to 0 as n , where p = p p 1 , deduced from which we find that
lim n 0 t u ( n + 1 ) [ ( u ( n ) ) 2 + ( v ( n ) ) 2 ] , x ϕ d τ = 0 t u ( u 2 + v 2 ) , x ϕ d τ .
The convergence of other terms can be computed in a similar way. Thus we can derive for any t [ 0 , T ] ,
0 t ( u , t ϕ + u ( u 2 + v 2 ) , x ϕ + u x ( u 2 + v 2 ) , ϕ F ( u , v ) , ϕ ) d τ = u , ϕ u ( 0 ) , ϕ ( 0 ) .
Similarly, for the second equation of (10), we can derive that
0 t ( v , t ϕ + v ( u 2 + v 2 ) , x ϕ + v x ( u 2 + v 2 ) , ϕ G ( u , v ) , ϕ ) d τ = v , ϕ v ( 0 ) , ϕ ( 0 ) .
Consequently, ( u , v ) solves the Equation (3), Lemma 4 then shows that ( u , v ) C ( [ 0 , T ] ; B p , 1 1 + 1 p ) × C ( [ 0 , T ] ; B p , 1 1 + 1 p ) . Notice that u t = F ( u , v ) ( u 2 + v 2 ) x u C ( [ 0 , T ] ; B p , 1 1 p ) and v t = G ( u , v ) ( u 2 + v 2 ) x v C ( [ 0 , T ] ; B p , 1 1 p ) , we conclude that ( u , v ) E p , 1 1 + 1 p ( T ) × E p , 1 1 + 1 p ( T ) .
Step 3. Uniqueness with respect to the initial data.
To prove the uniqueness result, we follow the structure of [23] and introduce the associated Lagrangian scale of (3) as follows:
d q d t = H ( u , v ) ( t , q ( t , σ ) ) ( u 2 + v 2 ) ( t , q ( t , σ ) ) , t > 0 , σ R , q ( 0 , σ ) = σ , σ R .
By introducing the new variable U ( t , σ ) = u ( t , q ( t , σ ) ) , V ( t , σ ) = u ( t , q ( t , σ ) ) , then (3) becomes
U t = ( F ( u , v ) ) ( t , q ( t , σ ) ) F ˜ ( U , V , q ) , V t = ( G ( u , v ) ) ( t , q ( t , σ ) ) G ˜ ( U , V , q ) , U ( t , σ ) | t = 0 = U 0 ( σ ) , V ( t , σ ) | t = 0 = U 0 ( σ ) , σ R .
By Denoting U i : = u i ( t , q ( t , σ ) ) , V i : = v i ( t , q ( t , σ ) ) , i = 1 , 2 , we may derive from (11) that
d d t U i = F ˜ ( U i , V i , q i ) = 1 2 + sign ( q i ( t , σ ) x ) e | q i ( t , σ ) x | ( u i 3 + u i v i 2 + 3 2 u i u i x 2 + u i x v i v i x + 1 2 u i x 2 v i ) 1 4 + e | q i ( t , σ ) x | ( u i x 3 + u i x v i x 2 ) d x ,
d d t V i = G ˜ ( U i , V i , q i ) = 1 2 + sign ( q i ( t , σ ) x ) e | q i ( t , σ ) x | ( v i 3 + u i 2 v i + 3 2 v i v i x 2 + u i u i x v i x + 1 2 u i x 2 v i ) 1 4 + e | q i ( t , σ ) x | ( v i x 3 + u i x 2 v i x ) d x ,
and
d d t U i σ = ( F ˜ ( U i , V i , q i ) ) σ = U i 3 q i σ + U i V i 2 q i σ + 3 2 U i U i σ 2 q i σ + U i σ V i σ V i q i σ + 1 2 U i V i σ 2 q i σ q i σ 2 + e | q i ( t , σ ) x | ( u i 3 + u i v i 2 + 3 2 u i u i x 2 + u i x v i v i x + 1 2 u i v i x 2 ) d x 1 2 q i σ 2 U i σ ( U i σ 2 + V i σ 2 ) + q i σ 4 + e | q i ( t , σ ) x | ( u i x 3 + u i x v i x 2 ) d x ,
d d t V i σ = ( G ˜ ( U i , V i , y i ) ) σ = V i 3 q i σ + U i 2 V i q i σ + 3 2 V i V i σ 2 q i σ + U i U i σ V i σ q i σ + 1 2 U i σ 2 V i q i σ q i σ 2 + e | q i ( t , σ ) x | ( v i 3 + u i 2 v i + 3 2 v i v i x 2 + u i u i x v i x + 1 2 u i x 2 v i ) d x 1 2 q i σ 2 V i σ ( U i σ 2 + V i σ 2 ) + q i σ 4 + e | q i ( t , σ ) x | ( v i x 3 + u i x 2 v i x ) d x .
Similar to the proof of Theorem 1.1 in [23], we can find that ( U i ( t , σ ) , V i ( t , σ ) ) L T ( W 1 , p W 1 , ) × L T ( W 1 , p W 1 , ) , q i ( t , σ ) σ L T ( W 1 , p W 1 , ) and 1 2 q i σ C ( u 0 , v 0 ) for sufficient small T.
We estimate F ˜ ( U 1 , V 1 , q 1 ) F ˜ ( U 2 , V 2 , q 2 ) L p L next. The main difficulty lies in estimates of coupling terms containing derivatives. For the terms containing the sign function, we choose to estimate the following term as an example
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 x v 1 v 1 x d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 x v 2 v 2 x d x .
Notice that q i ( i = 1 , 2 ) is monotonically increasing, therefore sign ( q i ( σ ) q i ( τ ) ) = sign ( σ τ ) , and thus,
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 x v 1 v 1 x d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 x v 2 v 2 x d x = + sign ( q 1 ( σ ) q 1 ( τ ) ) e | q 1 ( σ ) q 1 ( τ ) | U 1 τ V 1 τ q 1 τ V 1 d τ + sign ( q 2 ( σ ) q 2 ( τ ) ) e | q 2 ( σ ) x | U 1 τ V 1 τ q 1 τ V 2 d τ = + sign ( σ τ ) ( e | q 1 ( σ ) q 1 ( τ ) | e | q 2 ( σ ) q 2 ( τ ) | ) U 1 τ V 1 τ q 1 τ V 1 d τ + + sign ( σ τ ) e | q 2 ( σ ) q 2 ( τ ) | ( U 1 τ V 1 τ q 1 τ V 1 U 2 τ V 2 τ q 2 τ V 2 ) d τ I 1 + I 2 .
If σ > τ (or σ < τ ), then q i ( σ ) > q i ( τ ) (or q i ( σ ) < q i ( τ ) ) , therefore we can derive
I 1 = σ ( e ( q 1 ( σ ) q 1 ( τ ) ) e ( q 2 ( σ ) q 2 ( τ ) ) ) U 1 τ V 1 τ q 1 τ V 1 d τ σ + ( e ( q 1 ( σ ) q 1 ( τ ) ) e ( q 2 ( σ ) q 2 ( τ ) ) ) U 1 τ V 1 τ q 1 τ V 1 d τ = σ e σ τ ( e 0 t H ( U 1 , V 1 ) ( σ ) H ( U 1 , V 1 ) ( τ ) d t e 0 t H ( U 2 , V 2 ) ( σ ) H ( U 2 , V 2 ) ( τ ) d t ) U 1 τ V 1 τ q 1 τ V 1 d τ σ + e σ τ ( e 0 t H ( U 1 , V 1 ) ( σ ) H ( U 1 , V 1 ) ( τ ) d t e 0 t H ( U 2 , V 2 ) ( σ ) H ( U 2 , V 2 ) ( τ ) d t ) U 1 τ V 1 τ q 1 τ V 1 d τ C ( U 1 U 2 L + V 1 V 2 L ) ( σ e ( σ τ ) U 1 τ V 1 τ q 1 τ V 1 d τ + σ + e σ τ U 1 τ V 1 τ q 1 τ V 1 d τ ) C ( U 1 U 2 L + V 1 V 2 L ) × [ 1 0 ( x ) e | x | U 1 τ V 1 τ q 1 τ V 1 d τ + 1 0 ( x ) e | x | U 1 V 1 τ q 1 τ V 1 d τ ] .
By using a similar technique and applying the inverse trigonometric inequality, we have
I 2 C [ 1 0 ( x ) e | x | ( | U 1 U 2 | + | U 1 τ U 2 τ | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 U 2 | + | U 1 τ U 2 τ | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) ] .
Substituting estimates (17) and (18) back into (16) yields
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 x v 1 v 1 x d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 x v 2 v 2 x d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | U 1 τ V 1 τ q 1 τ V 1 + 1 0 ( x ) e | x | U 1 τ V 1 τ q 1 τ V 1 ] + C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) ] .
Similar to (19), we can derive the estimates of other terms containing the sign functions as follows:
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 3 d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 3 d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 3 q 1 τ ) + 1 0 ( x ) e | x | ( U 1 3 q 1 τ ) ] + C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 U 2 | + | q 1 τ q 2 τ | ) ] .
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 v 1 2 d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 v 2 2 d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 V 1 2 q 1 τ ) + 1 0 ( x ) e | x | ( U 1 V 1 2 q 1 τ ) ] + C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 V 2 | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 U 2 | + | V 1 V 2 | + | q 1 τ q 2 τ | ) ] .
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 u 1 x 2 d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 u 2 x 2 d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 U 1 τ 2 q 1 τ ) + 1 0 ( x ) e | x | ( U 1 U 1 τ 2 q 1 τ ) ] + C [ 1 0 ( x ) e | x | ( | U 1 U 2 | + | U 1 τ U 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 U 2 | + | U 1 τ U 2 τ | + | q 1 τ q 2 τ | ) ] .
+ sign ( q 1 ( σ ) x ) e | q 1 ( σ ) x | u 1 v 1 x 2 d x + sign ( q 2 ( σ ) x ) e | q 2 ( σ ) x | u 2 v 2 x 2 d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 V 1 τ 2 q 1 τ ) + 1 0 ( x ) e | x | ( U 1 V 1 τ 2 q 1 τ ) ] + C [ 1 0 ( x ) e | x | ( | U 1 U 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 U 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) ] .
For the other two terms which do not contain the sign function, we estimate them as follows:
+ e | q 1 ( σ ) x | ( u 1 x 3 ) d x + e | q 1 ( σ ) x | ( u 2 x 3 ) d x = + e | q 1 ( σ ) q 1 ( τ ) | U 1 τ 3 q 1 τ 2 d τ + e | q 1 ( σ ) x | u 2 τ 3 q 2 τ 2 d η = + ( e | q 1 ( σ ) q 1 ( τ ) | e | q 2 ( σ ) q 2 ( τ ) | ) U 1 τ 3 q 1 τ 2 d τ + + e | q 2 ( σ ) q 2 ( τ ) | ( U 1 τ 3 q 1 τ 2 U 2 τ 3 q 2 τ 2 ) d τ C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 τ 3 q 1 τ 2 ) + 1 0 ( x ) e | x | ( U 1 τ 3 q 1 τ 2 ) ] + C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | q 1 τ q 2 τ | ) ] .
Similarly
+ e | q 1 ( σ ) x | ( u 1 x v 1 x 2 ) d x + e | q 1 ( σ ) x | ( u 2 x v 2 x 2 ) d x C ( U 1 U 2 L + V 1 V 2 L ) [ 1 0 ( x ) e | x | ( U 1 τ V 1 τ 2 q 1 τ 2 ) + 1 0 ( x ) e | x | ( U 1 τ V 1 τ 2 q 1 τ 2 ) ] + C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) ] .
Combining (19)–(25), we find that
| F ˜ ( U 1 , V 1 , q 1 ) F ˜ ( U 2 , V 2 , q 2 ) | C [ 1 0 ( x ) e | x | ( | U 1 τ U 2 η | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) + 1 0 ( x ) e | x | ( | U 1 τ U 2 τ | + | V 1 V 2 | + | V 1 τ V 2 τ | + | q 1 τ q 2 τ | ) ] + C ( U 1 U 2 L + V 1 V 2 L ) × [ 1 0 ( x ) e | x | ( U 1 3 q 1 τ + U 1 V 1 2 q 1 τ + U 1 U 1 τ 2 q 1 τ + U 1 V 1 τ 2 q 1 τ + U 1 τ 3 q 1 τ 2 + U 1 τ V 1 τ V 1 q 1 τ + U 1 τ V 1 2 q 1 τ 2 ) + 1 0 ( x ) e | x | ( U 1 3 q 1 τ + U 1 V 1 2 q 1 τ + U 1 U 1 τ 2 q 1 τ + U 1 V 1 τ 2 q 1 τ + U 1 τ 3 q 1 τ 2 + U 1 τ V 1 τ V 1 q 1 τ + U 1 τ V 1 τ 2 q 1 τ 2 ) ] .
Which implies that
F ˜ ( U 1 , V 1 , q 1 ) F ˜ ( U 2 , V 2 , q 2 ) L L p C ( U 1 U 2 L L p + U 1 σ U 2 σ L L p + V 1 V 2 L L p + V 1 σ V 2 σ L L p + q 1 σ q 2 σ L L p ) .
Similarly, we can also obtain
( F ˜ ( U 1 , V 1 , q 1 ) ) σ ( F ˜ ( U 2 , V 2 , q 2 ) ) σ L L p C ( U 1 U 2 L L p + U 1 σ U 2 σ L L p + V 1 V 2 L L p + V 1 σ V 2 σ L L p + q 1 σ q 2 σ L L p ) .
Combining (26) and (27), we have
F ˜ ( U 1 , V 1 , q 1 ) F ˜ ( U 2 , V 2 , q 2 ) W 1 , W 1 , p C ( U 1 U 2 W 1 , W 1 , p + V 1 V 2 W 1 , W 1 , p + q 1 q 2 W 1 , W 1 , p ) .
Next, we are ready to prove uniqueness. Suppose that u 1 , v 1 and ( u 2 , v 2 ) are two solutions to (3), then ( U i ( t , σ ) = u i ( t , q ( t , σ ) ) , V i ( t , σ ) = v i ( t , q ( t , σ ) ) ) satisfies (3) and the following equations for i = 1 , 2
U i t σ = ( F ˜ ( U i , V i , q i ) ) σ , V i t σ = ( G ˜ ( U i , V i , q i ) ) σ .
With the help of (28), we see
U 1 U 2 W 1 , W 1 , p + V 1 V 2 W 1 , W 1 , p + q 1 q 2 W 1 , W 1 , p C ( U 1 ( 0 ) U 2 ( 0 ) W 1 , W 1 , p + V 1 ( 0 ) V 2 ( 0 ) W 1 , W 1 , p + q 1 ( 0 ) q 2 ( 0 ) W 1 , W 1 , p ) + C 0 T F ˜ ( U 1 , V 1 , q 1 ) F ˜ ( U 2 , V 2 , q 2 ) W 1 , W 1 , p d t C ( U 1 ( 0 ) U 2 ( 0 ) W 1 , W 1 , p + V 1 ( 0 ) V 2 ( 0 ) W 1 , W 1 , p ) + C 0 T ( U 1 U 2 W 1 , W 1 , p + V 1 V 2 W 1 , W 1 , p + q 1 q 2 W 1 , W 1 , p ) d t ,
where we use the fact that q 1 ( 0 ) = q 2 ( 0 ) = σ .
Applying the Gronwall Lemma to (29) yields
U 1 U 2 W 1 , W 1 , p + V 1 V 2 W 1 , W 1 , p + q 1 q 2 W 1 , W 1 , p C ( U 1 ( 0 ) U 2 ( 0 ) W 1 , W 1 , p + V 1 ( 0 ) V 2 ( 0 ) W 1 , W 1 , p ) = C ( u 1 ( 0 ) u 2 ( 0 ) W 1 , W 1 , p + v 1 ( 0 ) v 2 ( 0 ) W 1 , W 1 , p ) .
Therefore, it follows from (30) that
u 1 u 2 L p + v 1 v 2 L p C ( u 1 q 1 u 2 q 1 L p + v 1 q 1 v 2 q 1 L p ) C ( u 1 q 1 u 2 q 2 + u 2 q 2 u 2 q 1 L p + v 1 q 1 v 2 q 2 + v 2 q 2 v 2 q 1 L p ) C ( u 1 q 1 u 2 q 2 L p + u 2 q 2 u 2 q 1 L p + v 1 q 1 v 2 q 2 L p + v 2 q 2 v 2 q 1 L p ) C ( U 1 U 2 L p + u 2 x L q 2 q 1 L p + V 1 V 2 L p + v 2 x L q 2 q 1 L p ) C ( U 1 U 2 L p + V 1 V 2 L p + q 2 q 1 L p ) .
Similarly, we can obtain
x ( u 1 u 2 ) L p + x ( v 1 v 2 ) L p C ( U 1 U 2 W 1 , p + V 1 V 2 W 1 , p + q 2 q 1 W 1 , p ) .
(31) together with (32) implies that
u 1 u 2 W 1 , p + v 1 v 2 W 1 , p C ( U 1 U 2 W 1 , p + V 1 V 2 W 1 , p + q 2 q 1 W 1 , p ) .
Then, from the embedding theorem, it follows that
u 1 u 2 B p , 1 + v 1 v 2 B p , 1 C ( u 1 u 2 W 1 , p + v 1 v 2 W 1 , p ) C ( u 1 ( 0 ) u 2 ( 0 ) W 1 , W 1 , p + v 1 ( 0 ) v 2 ( 0 ) W 1 , W 1 , p ) C ( u 1 ( 0 ) u 2 ( 0 ) B p , 1 1 + 1 p + v 1 ( 0 ) v 2 ( 0 ) B p , 1 1 + 1 p ) .
Thus, if u 1 ( 0 ) = u 2 ( 0 ) , v 1 ( 0 ) = v 2 ( 0 ) , we can prove the uniqueness result immediately.
Step 4. Continuous dependence on the initial data
Let ( u 0 ( n ) , v 0 ( n ) ) ( u 0 , v 0 ) in B p , 1 1 + 1 p × B p , 1 1 + 1 p as n , and ( u ( n ) , v ( n ) ) , ( u , v ) are the solutions with initial data ( u 0 ( n ) , v 0 ( n ) ) , ( u 0 , v 0 ) , respectively. By the above discussion, we find that ( u ( n ) , v ( n ) ) , ( u , v ) are uniformly bounded in L T ( B p , 1 1 + 1 p ) × L T ( B p , 1 1 + 1 p ) and
u ( n ) u B p , 0 + v ( n ) v B p , 0 C ( u 0 ( n ) u 0 B p , 1 1 + 1 p + v 0 ( n ) v 0 B p , 1 1 + 1 p ) ,
which indicates that ( u ( n ) , v ( n ) ) ( u , v ) in C ( [ 0 , T ] ; B p , 0 ) × C ( [ 0 , T ] ; B p , 0 ) . By applying the interpolation inequality we can find
( u ( n ) , v ( n ) ) ( u , v ) i n B p , 1 1 p × B p , 1 1 p .
Next, in order to prove the continuous dependence result, we just need to prove
( x u ( n ) , x v ( n ) ) ( x u , x v )
in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) .
For this purpose, we decompose the solution components as follows:
x u ( n ) = w 1 ( n ) + z 1 ( n ) , x v ( n ) = w 2 ( n ) + z 2 ( n ) ,
where ( w 1 ( n ) , w 2 ( n ) ) solves the following problem:
t w 1 ( n ) + H ( u ( n ) , v ( n ) ) x w 1 ( n ) = F ˜ ( u , v ) , t w 2 ( n ) + H ( u ( n ) , v ( n ) ) x w 2 ( n ) = G ˜ ( u , v ) , w 1 ( n ) ( 0 , x ) = x u 0 , w 2 ( n ) ( 0 , x ) = x v 0 .
and ( z 1 ( n ) , z 2 ( n ) ) solves the following problem
t z 1 ( n ) + H ( u ( n ) , v ( n ) ) x z 1 ( n ) = F ˜ ( u ( n ) , v ( n ) ) F ˜ ( u , v ) , t z 2 ( n ) + H ( u ( n ) , v ( n ) ) x z 2 ( n ) = G ˜ ( u ( n ) , v ( n ) ) G ˜ ( u , v ) , z 1 ( n ) ( 0 , x ) = x u 0 ( n ) x u 0 , z 2 ( n ) ( 0 , x ) = x v 0 ( n ) x v 0 .
F ˜ ( u , v ) and G ˜ ( u , v ) are defined as follows:
F ˜ ( u , v ) = ( u 2 + v 2 ) x u x x 2 ( 1 x 2 ) 1 f 1 x ( 1 x 2 ) 1 f 2 ,
G ˜ ( u , v ) = ( u 2 + v 2 ) x v x x 2 ( 1 x 2 ) 1 g 1 x ( 1 x 2 ) 1 g 2 ,
among which,
f 1 ( u , v ) = u 3 + u v 2 + 3 2 u u x 2 + u x v v x + 1 2 u v x 2 , f 2 = 1 2 ( u x 3 + u x v x 2 ) , g 1 ( u , v ) = v 3 + u 2 v + 3 2 v v x 2 + u u x v x + 1 2 u x 2 v , g 2 = 1 2 ( v x 3 + u x 2 v x ) .
Note that ( u ( n ) , v ( n ) ) n N ¯ is bounded in L T ( B p , 1 1 + 1 p ) × L T ( B p , 1 1 + 1 p ) , we can deduce that ( x u ( n ) , x v ( n ) ) n N ¯ and ( F ( u ( n ) , v ( n ) ) , G ( u ( n ) , v ( n ) ) ) n N ¯ are also bounded in L T ( B p , 1 1 p ) × L T ( B p , 1 1 p ) . As ( u ( n ) , v ( n ) ) ( u , v ) in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) , Lemma 5 guarantees that ( w 1 ( n ) , w 2 ( n ) ) ( w 1 , w 2 ) in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) .
It can also be derived from Lemmas 2 and 3 that, for any t [ 0 , T ] , z 1 = z 2 = 0 . In view of (34):
F ˜ ( u ( n ) , v ( n ) ) F ˜ ( u , v ) = 2 { ( u ( n ) u ) ( u x ( n ) ) 2 + u ( u ( n ) u ) x ( u ( n ) + u ) x + u x ( n ) v x ( n ) ( v ( n ) v ) + v v x ( n ) ( u ( n ) u ) x + u x v ( v ( n ) v ) x } x 2 ( 1 x 2 ) 1 { ( u ( n ) u ) ( ( u ( n ) ) 2 + u ( n ) u + ( u ) 2 ) + ( u ( n ) u ) ( v ( n ) ) 2 + u ( v ( n ) + v ) ( v ( n ) v ) + 3 2 ( u ( n ) u ) ( u x ( n ) ) 2 + 3 2 u ( u ( n ) u ) x ( u ( n ) + u ) x + u x ( n ) v x ( n ) ( v ( n ) v ) + v v x ( n ) ( u ( n ) u ) x + u x v ( v ( n ) v ) x + 1 2 ( u ( n ) u ) ( v x ( n ) ) 2 + 1 2 u ( v ( n ) + v ) x ( v ( n ) v ) x } 1 2 x ( 1 x 2 ) 1 { ( u ( n ) u ) x ( ( u x ( n ) ) 2 + u x ( n ) u x + ( u x ) 2 ) + ( u ( n ) u ) x ( ( v x ( n ) ) 2 + u x ( v ( n ) + v ) x ( v ( n ) v ) x } .
G ˜ ( u ( n ) , v ( n ) ) G ˜ ( u , v ) = 2 { ( v ( n ) v ) ( v x ( n ) ) 2 + v ( v ( n ) v ) x ( v ( n ) + v ) x + v x ( n ) u x ( n ) ( u ( n ) u ) + u u x ( n ) ( v ( n ) v ) x + v x u ( u ( n ) u ) x } x 2 ( 1 x 2 ) 1 { ( v ( n ) v ) ( ( v ( n ) ) 2 + v ( n ) v + ( v ) 2 ) + ( v ( n ) v ) ( u ( n ) ) 2 + v ( u ( n ) + u ) ( u ( n ) u ) + 3 2 ( v ( n ) v ) ( v x ( n ) ) 2 + 3 2 v ( v ( n ) v ) x ( v ( n ) + v ) x + v x ( n ) u x ( n ) ( u ( n ) u ) + u u x ( n ) ( v ( n ) v ) x + v x u ( u ( n ) u ) x + 1 2 ( v ( n ) v ) ( u x ( n ) ) 2 + 1 2 v ( u ( n ) + u ) x ( u ( n ) u ) x } 1 2 x ( 1 x 2 ) 1 { ( v ( n ) v ) x ( ( v x ( n ) ) 2 + v x ( n ) v x + ( v x ) 2 ) + ( v ( n ) v ) x ( ( u x ( n ) ) 2 + v x ( u ( n ) + u ) x ( u ( n ) u ) x } .
Notice that ( u ( n ) , v ( n ) ) n N ¯ is bounded in L T ( B p , 1 1 + 1 p ) × L T ( B p , 1 1 + 1 p ) , by applying the algebraic property of Besov space B p , 1 1 p × B p , 1 1 p , we have
F ˜ ( u ( n ) , v ( n ) ) F ˜ ( u , v ) B p , 1 1 p C { u ( n ) B p , 1 1 + 1 p 2 u ( n ) u B p , 1 1 p + u B p , 1 1 p u ( n ) + u B p , 1 1 + 1 p u ( n ) u B p , 1 1 + 1 p + u ( n ) B p , 1 1 + 1 p v ( n ) B p , 1 1 + 1 p v ( n ) v B p , 1 1 p + v B p , 1 1 p v ( n ) B p , 1 1 + 1 p u ( n ) u B p , 1 1 + 1 p + v B p , 1 1 p u B p , 1 1 + 1 p v ( n ) v B p , 1 1 + 1 p + ( u ( n ) B p , 1 1 p 2 + u ( n ) B p , 1 1 p u B p , 1 1 p + u B p , 1 1 p 2 ) u ( n ) u B p , 1 1 p + v ( n ) B p , 1 1 + 1 p 2 u ( n ) u B p , 1 1 + 1 p + u B p , 1 1 + 1 p v ( n ) + v B p , 1 1 + 1 p v ( n ) v B p , 1 1 + 1 p } C ( u ( n ) B p , 1 1 + 1 p 2 + u B p , 1 1 + 1 p 2 + v ( n ) B p , 1 1 + 1 p 2 + v B p , 1 1 + 1 p 2 ) ( u ( n ) u B p , 1 1 + 1 p + v ( n ) v B p , 1 1 + 1 p ) C ( u ( n ) u B p , 1 1 p + w 1 ( n ) w 1 B p , 1 1 p + z 1 ( n ) z 1 B p , 1 1 p + v ( n ) v B p , 1 1 p + w 2 ( n ) w 2 B p , 1 1 p + z 2 ( n ) z 2 B p , 1 1 p ) .
Similarly we obtain
G ˜ ( u ( n ) , v ( n ) ) G ˜ ( u , v ) B p , 1 1 p C ( u ( n ) u B p , 1 1 p + w 1 ( n ) w 1 B p , 1 1 p + z 1 ( n ) z 1 B p , 1 1 p + v ( n ) v B p , 1 1 p + w 2 ( n ) w 2 B p , 1 1 p + z 2 ( n ) z 2 B p , 1 1 p ) .
It follows that for all n N ,
z 1 ( n ) B p , 1 1 p + z 2 ( n ) B p , 1 1 p e C 0 t [ ( u ( n ) ) 2 + ( u ( n ) ) 2 ] ( t ) B p , 1 1 p d t × ( x u 0 ( n ) x u 0 B p , 1 1 p + x v 0 ( n ) x v 0 B p , 1 1 p + 0 t F ˜ ( u ( n ) , v ( n ) ) F ˜ ( u , v ) B p , 1 1 p + G ˜ ( u ( n ) , v ( n ) ) G ˜ ( u , v ) B p , 1 1 p d τ ) C { x u 0 ( n ) x u 0 B p , 1 1 p + x v 0 ( n ) x v 0 B p , 1 1 p + 0 t ( u ( n ) u B p , 1 1 + 1 p + v ( n ) v B p , 1 1 + 1 p + w 1 ( n ) w 1 B p , 1 1 p + w 2 ( n ) w 2 B p , 1 1 p + z 1 ( n ) B p , 1 1 p + z 2 ( n ) B p , 1 1 p ) d τ } .
In view of the fact that ( x u 0 ( n ) , x v 0 ( n ) ) ( x u 0 , x v 0 ) in B p , 1 1 p × B p , 1 1 p , ( u ( n ) , v ( n ) ) ( u , v ) in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) , ( w 1 ( n ) , w 2 ( n ) ) ( w 1 , w 2 ) in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) , by applying the Gronwall Lemma, one can deduce that ( z 1 ( n ) , z 2 ( n ) ) ( 0 , 0 ) in C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) . Therefore,
x u ( n ) x u L T ( B p , 1 1 p ) + x v ( n ) x v L T ( B p , 1 1 p ) w 1 ( n ) w 1 L T ( B p , 1 1 p ) + z 1 ( n ) z 1 L T ( B p , 1 1 p ) + w 2 ( n ) w 2 L T ( B p , 1 1 p ) + z 2 ( n ) z 2 L T ( B p , 1 1 p ) ,
tends to 0 as n , which implies
( x u ( n ) , x v ( n ) ) ( x u , x v ) i n C ( [ 0 , T ] ; B p , 1 1 p ) × C ( [ 0 , T ] ; B p , 1 1 p ) .
Combining (33) with (36), we find
( u ( n ) , v ( n ) ) ( u , v ) i n C ( [ 0 , T ] ; B p , 1 1 + 1 p ) × C ( [ 0 , T ] ; B p , 1 1 + 1 p ) .
Theorem 1 is a direct consequence of step 1–step 4.

Author Contributions

Conceptualization, S.Y.; methodology, M.G., F.W. and S.Y.; investigation, M.G., F.W. and S.Y.; writing—original draft preparation, M.G., F.W. and S.Y.; writing—review and editing, M.G. and F.W. All authors have read and agreed to the published version of the manuscript.

Funding

This work is partially supported by the National College Students’ Innovation and Entrepreneur-ship Training Program (No. 202010304006Z) and Natural Science Foundation of China (No. 12171258).

Institutional Review Board Statement

Not applicable.

Informed Consent Statement

Not applicable.

Data Availability Statement

Not applicable.

Acknowledgments

The authors are grateful to the editor and referees for their valuable comments and suggestions.

Conflicts of Interest

The authors declare no conflict of interest.

References

  1. Li, H. Two-component generalizations of the Novikov equation. J. Nonlinear Math. Phys. 2019, 26, 390–403. [Google Scholar] [CrossRef]
  2. Li, H.; Li, Y.; Chen, Y. Bi-Hamiltonian structure of multi-component Novikov equation. J. Nonlinear Math. Phys. 2014, 21, 509–520. [Google Scholar] [CrossRef]
  3. Geng, X.; Xue, B. An extension of integrable peakon equations with cubic nonlinearity. Nonlinearity 2009, 22, 1847. [Google Scholar] [CrossRef]
  4. Degasperis, A.; Procesi, M. Asymptotic Integrability, Symmetry and Perturbation Theory; World Scientific Publishing: Singapore, 1999. [Google Scholar]
  5. Dullin, H.R.; Gottwald, G.A.; Holm, D.D. On asymptotically equivalent shallow water wave equations. Phys. D Nonlinear Phenom. 2004, 190, 1–14. [Google Scholar] [CrossRef] [Green Version]
  6. Lundmark, H.; Szmigielski, J. Multi-peakon solutions of the Degasperis–Procesi equation. Inverse Probl. 2003, 19, 1241–1245. [Google Scholar] [CrossRef]
  7. Degasperis, A.; Holm, D.D.; Hone, A.N.W. A new integral equation with peakon solutions. Theoret. Math. Phys. 2002, 133, 1463–1474. [Google Scholar] [CrossRef] [Green Version]
  8. Gui, G.; Liu, Y. On the Cauchy problem for the Degasperis–Procesi equation. Quart. Appl. Math. 2011, 69, 445–464. [Google Scholar] [CrossRef] [Green Version]
  9. Gui, G.; Liu, Y. On the Cauchy problem for the two-component Camassa–Holm system. Math. Z. 2011, 268, 45–66. [Google Scholar] [CrossRef]
  10. Yin, Z. On the Cauchy problem for an integrable equation with peakon solutions. Ill. J. Math. 2003, 47, 649–666. [Google Scholar] [CrossRef]
  11. Hone, A.; Wang, J. Integrable peakon equations with cubic nonlinearity. J. Phys. A 2008, 41, 372002. [Google Scholar] [CrossRef]
  12. Li, N.; Liu, Q. On bi-Hamiltonian structure of two-component Novikov equation. Phys. Lett. A 2013, 377, 257–261. [Google Scholar] [CrossRef]
  13. Lundmark, H.; Szmigielski, J. An inverse spectral problem related to the Geng–Xue two-component peakon equation. Mem. Am. Math. Soc. 2016, 244, 1155. [Google Scholar] [CrossRef] [Green Version]
  14. Lundmark, H.; Szmigielski, J. Dynamics of interlacing peakons (and shockpeakons) in the Geng–Xue equation. J. Integr. Syst. 2017, 2, xyw014. [Google Scholar] [CrossRef] [Green Version]
  15. Himonas, A.; Mantzavinos, D. The initial value problem for a Novikov system. J. Math. Phys. 2016, 57, 071503. [Google Scholar] [CrossRef]
  16. Danchin, R. A few remarks on the Camassa–Holm equation. Diff. Int. Equ. 2001, 14, 953–988. [Google Scholar]
  17. Danchin, R. A note on well-posedness for Camassa–Holm equation. J. Differ. Equ. 2003, 192, 429–444. [Google Scholar] [CrossRef] [Green Version]
  18. Li, J.; Yin, Z. Remarks on the well-posedness of Camassa–Holm type equations in Besov spaces. J. Differ. Equ. 2016, 261, 6125–6143. [Google Scholar] [CrossRef]
  19. Yu, S.; Yin, X. The Cauchy problem for a generalized two-component short pulse system with high-order nonlinearities. J. Math. Anal. Appl. 2019, 475, 1427–1447. [Google Scholar] [CrossRef]
  20. Wu, X.; Yin, Z. A note on the Cauchy problem of the Novikov equation. Appl. Anal. 2013, 92, 1116–1137. [Google Scholar] [CrossRef]
  21. Li, J.; Yu, Y.; Zhu, W. Sharp ill-posedness for the generalized Camassa–Holm equation in Besov spaces. arXiv 2021, arXiv:2111.03540. [Google Scholar]
  22. Ni, L.; Zhou, Y. Well-posedness and persistence properties for the Novikov equation. J. Differ. Equ. 2011, 250, 3002–3021. [Google Scholar] [CrossRef] [Green Version]
  23. Ye, W.; Yin, Z.; Guo, Y. A new result for the local well-posedness of the Camassa–Holm type equations in critial Besov spaces B p , 1 1 + 1 p , 1 ≤ p < +. arXiv 2021, arXiv:2101.00803. [Google Scholar]
  24. Qu, C.; Fu, Y. On the Cauchy problem and peakons of a two-component Novikov system. Sci. China Math. 2020, 63, 1965–1996. [Google Scholar] [CrossRef]
  25. Holmes, J.; Thompson, R.C. Well-posedness and continuity properties of the Fornberg-Whitham equation in Besov spaces. J. Diff. Equ. 2017, 263, 4355–4381. [Google Scholar] [CrossRef] [Green Version]
  26. Bahouri, H.; Chemin, J.; Danchin, R. Fourier Analysis and Nonlinear Partial Differential Equations; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
  27. Anco, S.; He, H.; Qiao, Z. Local well-posedness and blow-up for a family of U(1)-invariant peakon equations. J. Differ. Equ. 2021, 275, 757–789. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Share and Cite

MDPI and ACS Style

Guo, M.; Wang, F.; Yu, S. Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces. Mathematics 2022, 10, 1126. https://doi.org/10.3390/math10071126

AMA Style

Guo M, Wang F, Yu S. Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces. Mathematics. 2022; 10(7):1126. https://doi.org/10.3390/math10071126

Chicago/Turabian Style

Guo, Min, Fang Wang, and Shengqi Yu. 2022. "Local Well-Posedness of a Two-Component Novikov System in Critical Besov Spaces" Mathematics 10, no. 7: 1126. https://doi.org/10.3390/math10071126

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop