Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems
Abstract
:1. Introduction
2. Notation and Auxiliary Facts
- (a)
- Let and suppose that . Then the Riemann–Liouville operator
- 1.
- Has a semigroup property ,
- 2.
- Is the inverse operator for the Caputo differential operator , whenever ,
- 3.
- ,
- 4.
- , if moreover .
- (b)
- (cf. [29], Theorem 5.7) The fractional operator when acting on (, ) has the following properties:
- (1)
- The operator maps into and is continuous,
- (2)
- for ,
- (3)
- for .
- (i)
- ,
- (ii)
- ,
- (iii)
- ,
- (iv)
- ,
- (v)
- ,
- (vi)
- ,
- (vii)
- If be a sequence of bounded and closed subsets, such that with , then .
3. Main Results
- (i)
- , where for ,
- (ii)
- Suppose that satisfy Carathéodory conditions,
- (iii)
- There exist () and positive functions such that
- (iv)
- Let be measurable such that maps into continuously with
- (v)
- Suppose that for the functions described in (i)–(iv) there additionally exists a constant satisfying the following inequality:
- (a)
- The operator maps the space into and is continuous satisfying
- (b)
- Assume that and let , we have
- (vi)
- There exist () such that ,andwhere and Q is defined as in the proof of Theorem 3,
- (vii)
- If for some constant , the following inequality is satisfied:then , where r is defined in assumption (v).
4. Applications
4.1. Fractional Gripenberg Equations
4.2. Initial Value Problems
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gripenberg, G. On some epidemic models. Q. Appl. Math. 1981, 39, 317–327. [Google Scholar] [CrossRef] [Green Version]
- Gripenberg, G. Periodic solutions of an epidemic model. J. Math. Biol. 1980, 10, 271–280. [Google Scholar] [CrossRef] [PubMed]
- Abdeldaim, A. On some new Gronwall-Bellman-Ou-Iang type integral inequalities to study certain epidemic models. J. Integral Equ. Appl. 2012, 24, 149–166. [Google Scholar] [CrossRef]
- Bohner, M.; Tunç, O.; Tunç, C. Qualitative analysis of Caputo fractional integro–differential equations with constant delays. J. Comput. Appl. Math. 2021, 40, 214. [Google Scholar] [CrossRef]
- Olaru, I.M. Generalization of an integral equation related to some epidemic models. Carpathian J. Math. 2010, 26, 92–96. [Google Scholar]
- Brestovanská, E.; Medved’, M. Fixed point theorems of the Banach and Krasnosel’skii type for mappings on m-tuple Cartesian product of Banach algebras and systems of generalized Gripenberg’s equations. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 2012, 51, 27–39. [Google Scholar]
- Deep, A.; Deepmala; Tunç, C. On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab J. Basic Appl. Sci. 2020, 27, 279–286. [Google Scholar] [CrossRef]
- Sen, M.; Saha, D.; Agarwal, R.P. A Darbo fixed point theory approach towards the existence of a functional integral equation in a Banach algebra. Appl. Math. Comput. 2019, 358, 111–118. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Metwali, M.; O’Regan, D. On existence and uniqueness of L1-solutions for quadratic integral equations via a Krasnoselskii-type fixed point theorem. Rocky Mountain J. Math. 2018, 48, 1743–1762. [Google Scholar] [CrossRef]
- Bellour, A.; Bousselsal, M.; Taoudi, M.A. Integrable solutions of a nonlinear integral equation related to some epidemic models. Glas. Mat. 2014, 49, 395–406. [Google Scholar] [CrossRef]
- Metwali, M. On some qualitative properties of integrable solutions for Cauchy-type problem of fractional order. J. Math. Appl. 2017, 40, 121–134. [Google Scholar] [CrossRef] [Green Version]
- Cichoń, M.; Metwali, M. Existence of monotonic Lφ-solutions for quadratic Volterra functional-integral equations. Electron. J. Qual. Theory Differ. Equ. 2015, 13, 1–16. [Google Scholar] [CrossRef]
- Karoui, A.; Jawahdou, A.; Ben Aouicha, H. Weighted Lp-solutions on unbounded intervals of nonlinear integral equations of the Hammerstein and Urysohn types. Adv. Pure Appl. Math. 2010, 2, 1–22. [Google Scholar] [CrossRef]
- Kwapisz, J. Weighted norms and Volterra integral equations in Lp spaces. J. Appl. Math. Stoch. Anal. 1991, 4, 161–164. [Google Scholar] [CrossRef] [Green Version]
- Boulful, B.; Bellour, A.; Djebali, S. Solvability of nonlinear integral equations of product type. Electron. J. Diff. Equat. 2018, 19, 1–20. [Google Scholar]
- Metwali, M. Solvability of Gripenberg’s equations of fractional order with perturbation term in weighted Lp-spaces on R+. Turk. J. Math. 2022, 46, 481–498. [Google Scholar]
- Brestovanská, E. Qualitative behaviour of an integral equation related to some epidemic model. Demonstr. Math. 2003, 36, 603–610. [Google Scholar] [CrossRef] [Green Version]
- Breda, D.; Diekmann, O.; Graaf, W.F.; Pugliese, A.; Vermiglio, R. On the formulation of epidemic models (an appraisal of Kermack and McKendrick). J. Biol. Dyn. 2012, 6, 103–117. [Google Scholar] [CrossRef]
- Kuniya, T.; Wang, J.; Inaba, H. A multi-group SIR epidemic model with age structure. Discret. Contin. Dyn.-Syst.-B 2016, 21, 3515–3550. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Hristova, S.; O’Regan, D. Integral presentations of the solution of a boundary value problem for impulsive fractional integro-differential equations with Riemann-Liouville derivatives. AIMS Math. 2022, 7, 2973–2988. [Google Scholar] [CrossRef]
- Banaś, J.; Knap, Z. Measures of weak noncompactness and nonlinear integral equations of convolution type. J. Math. Anal. Appl. 1990, 146, 353–362. [Google Scholar] [CrossRef] [Green Version]
- Darwish, M.; Metwali, M.; O’Regan, D. Unique solvability of fractional quadratic nonlinear integral equations. Differ. Equ. Appl. 2021, 13, 1–13. [Google Scholar] [CrossRef]
- Metwali, M. On perturbed quadratic integral equations and initial value problem with nonlocal conditions in Orlicz spaces. Demonstr. Math. 2020, 53, 86–94. [Google Scholar] [CrossRef]
- Nashine, H.; Ibrahim, R.; Agarwal, R.; Can, N. Existence of local fractional integral equation via a measure of non-compactness with monotone property on Banach spaces. Adv. Differ. Equ. 2020, 697, 1–13. [Google Scholar] [CrossRef]
- Ragusa, M.A. On weak solutions of ultraparabolic equations. Nonlinear Anal. 2001, 47, 503–511. [Google Scholar] [CrossRef]
- Li, D.; Liao, H.L.; Sun, W.; Wang, J.; Zhang, J. Analysis of L1-Galerkin FEMs for time-fractional nonlinear parabolic problems. Commun. Comput. Phys. 2018, 24, 86–103. [Google Scholar] [CrossRef] [Green Version]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications of Fractional Differential Equations; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Podlubny, I.; El-Sayed, A.M.A. On Two Definitions of Fractional Derivative; Preprint UEF-03-96; Slovak Academy of Sciences, Institute of Experimental Physics: Moscow, Russia, 1996. [Google Scholar]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivative. Theory and Applications; Gordon and Breach Science Publishers: London, UK, 1993. [Google Scholar]
- Appell, J.; Zabrejko, P.P. Nonlinear Superposition Operators; Cambridge Tracts in Mathematics 95; Cambridge University Press: Cambridge, UK, 1990. [Google Scholar]
- Banaś, J.; Goebel, K. Measures of Noncompactness in Banach Spaces; Lecture Notes in Mathematics 60; M. Dekker Publisher: New York, NY, USA; Basel, Switzerland, 1980. [Google Scholar]
- Dunford, N.; Schwartz, J. Linear Operators I; Wiley-Interscience: Leyden, The Netherlands, 1963. [Google Scholar]
- Deimling, K. Nonlinear Functional Analysis; Springer: Berlin/Heidelberg, Germany, 1985. [Google Scholar]
- Banaś, J.; Chlebowicz, A. On existence of integrable solutions of a functional integral equation under Carathéodory conditions. Nonlin. Anal. 2009, 70, 3172–3179. [Google Scholar] [CrossRef]
- Kokilashvili, V.M.; Krbec, M. Weighted Inequalities in Lorentz and Orlicz Spaces; World Scientific: Singapore, 1991; Volume 1. [Google Scholar]
- Cichoń, M.; Metwali, M. On a fixed point theorem for the product of operators. J. Fixed Point Theory Appl. 2016, 18, 753–770. [Google Scholar] [CrossRef] [Green Version]
- Hudzik, H.; Krbec, M. On non-effective weights in Orlicz spaces. Indag. Math. 2007, 18, 215–231. [Google Scholar] [CrossRef] [Green Version]
- Aghajani, A.; O’Regan, D.; Shole Haghighi, A. Measure of noncompactness on Lp(RN) and applications. Cubo. Math. J. 2015, 17, 85–97. [Google Scholar] [CrossRef] [Green Version]
- Cichoń, M. On measures of weak noncompactness. Publ. Math. Debrecen 1993, 45, 93–102. [Google Scholar]
- Li, D.; She, M.; Sun, H.-W.; Yan, X. A novel discrete fractional Gronwall-type inequality and its application in pointwise-in-time error estimates. J. Sci. Comput. 2022, 91, 27. [Google Scholar] [CrossRef]
- Erdogan, F.; Gupta, G.D.; Cook, T.S. Numerical solution of singular integral equations. In Methods of Analysis and Solutions of Crack Problems. Mechanics of Fracture; Sih, G.C., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 1. [Google Scholar] [CrossRef]
- Kelley, C.T. Approximation of solutions of some quadratic integral equations in transport theory. J. Integral Equ. 1982, 4, 221–237. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alsaadi, A.; Cichoń, M.; Metwali, M.M.A. Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems. Mathematics 2022, 10, 1172. https://doi.org/10.3390/math10071172
Alsaadi A, Cichoń M, Metwali MMA. Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems. Mathematics. 2022; 10(7):1172. https://doi.org/10.3390/math10071172
Chicago/Turabian StyleAlsaadi, Ateq, Mieczysław Cichoń, and Mohamed M. A. Metwali. 2022. "Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems" Mathematics 10, no. 7: 1172. https://doi.org/10.3390/math10071172
APA StyleAlsaadi, A., Cichoń, M., & Metwali, M. M. A. (2022). Integrable Solutions for Gripenberg-Type Equations with m-Product of Fractional Operators and Applications to Initial Value Problems. Mathematics, 10(7), 1172. https://doi.org/10.3390/math10071172