Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials
Abstract
:1. Introduction
2. Several -Differential Equations of Higher Order and Properties of -Euler Polynomials
3. Some -Differential Equations of Higher Order Related to -Genocchi Polynomials
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bijay, K.S. Fluid Mechanics and Turbomachinery; CRC Press: London, UK; New York, NY, USA, 2021. [Google Scholar]
- Bayad, A.; Hamahata, Y. Identities involving two kinds of q-Euler polynomials and numbers. J. Integer Seq. 2012, 15, 14. [Google Scholar]
- Mahmudov, N.I. On a class of generalized q-Bernoulli and q-Euler polynomials. Adv. Differ. Equ. 2013, 2013, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Jackson, H.F. q-Difference equations. Am. J. Math. 1910, 32, 305–314. [Google Scholar] [CrossRef]
- Jackson, H.F. On q-functions and a certain difference operator. Earth Environ. Sci. Trans. R. Soc. Edinb. 2013, 46, 253–281. [Google Scholar] [CrossRef]
- Bangerezako, G. An Introduction to q-Difference Equations; Preprint; Bujumbura, Burundi. 2007. Available online: https://perso.uclouvain.be/alphonse.magnus/gbang/qbook712.pdf (accessed on 22 February 2022).
- Carmichael, R.D. The general theory of linear q-qifference equations. Am. J. Math. 1912, 34, 147–168. [Google Scholar] [CrossRef]
- Charalambides, C.A. On the q-differences of the generalized q-factorials. J. Statist. Plann. Inference 1996, 54, 31–43. [Google Scholar] [CrossRef]
- Floreanini, R.; Vinet, L. q-orthogonal polynomials and the oscillator quantum group. Lett. Math. Phys. 1991, 22, 45–54. [Google Scholar] [CrossRef]
- Hajli, M. On a formula for the regularized determinant of zeta functions with application to some Dirichlet series. Q. J. Math. 2020, 71, 843–865. [Google Scholar] [CrossRef]
- Mason, T.E. On properties of the solution of linear q-difference equations with entire function coefficients. Am. J. Math. 1915, 37, 439–444. [Google Scholar] [CrossRef]
- Rawlings, D. Limit formulas for q-exponetial functions. Discrete Math. 1994, 126, 379–383. [Google Scholar] [CrossRef] [Green Version]
- Kemp, A. Certain q-analogues of the binomial distribution. Sankhyā Indian J. Stat. Ser. A 2002, 64, 293–305. [Google Scholar]
- Konvalina, J. A unified interpretation of the binomial coefficients, the Stirling numbers, and the Gaussian coefficients. Ame. Math. Mon. 2000, 107, 901–910. [Google Scholar] [CrossRef]
- Victor, K.; Pokman, C. Quantum Calculus Universitext; Springer: New York, NY, USA, 2002; ISBN 0-387-95341-8. [Google Scholar]
- Luo, Q.M.; Srivastava, H.M. q-extension of some relationships between the Bernoulli and Euler polynomials. Taiwan. J. Math. 2011, 15, 241–257. [Google Scholar] [CrossRef]
- Milovanovic, G.V.; Rassias, M.T. Analytic Number Theory, Approximation Theory and Special Functions; Springer: New York, NY, USA, 2016; ISBN 978-1-4939-0258-3. [Google Scholar]
- Ostrovska, S. q-Bernstein polynomials and their iterates. J. Approx. Theory 2003, 123, 232–255. [Google Scholar] [CrossRef] [Green Version]
- Phillips, G.M. Bernstein polynomials based on q-integers. Ann. Numer. Anal. 1997, 4, 511–518. [Google Scholar]
- Ryoo, C.S. A note on the zeros of the q-Bernoulli polynomials. J. Appl. Math. Inform. 2010, 28, 805–811. [Google Scholar]
- Ryoo, C.S.; Kim, T.; Agarwal, R.P. A numerical investigation of the roots of q-polynomials. Inter. J. Comput. Math. 2006, 83, 223–234. [Google Scholar] [CrossRef]
n | ||
---|---|---|
0 | 1 | 1 |
1 | ||
2 | ||
3 | ||
⋮ | ⋮ | ⋮ |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryoo, C.-S.; Kang, J.-Y. Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials. Mathematics 2022, 10, 1181. https://doi.org/10.3390/math10071181
Ryoo C-S, Kang J-Y. Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials. Mathematics. 2022; 10(7):1181. https://doi.org/10.3390/math10071181
Chicago/Turabian StyleRyoo, Cheon-Seoung, and Jung-Yoog Kang. 2022. "Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials" Mathematics 10, no. 7: 1181. https://doi.org/10.3390/math10071181
APA StyleRyoo, C. -S., & Kang, J. -Y. (2022). Various Types of q-Differential Equations of Higher Order for q-Euler and q-Genocchi Polynomials. Mathematics, 10(7), 1181. https://doi.org/10.3390/math10071181