Internet of Drones: Routing Algorithms, Techniques and Challenges
Abstract
:1. Introduction
Article Structure
2. Related Work
- This article presents the architecture of the IoD.
- This article investigates the IoD key requirements.
- This article discusses the routing algorithms for IoDs.
- This article highlights the future directions and open research challenges related to IoD.
3. Architecture of IoD
3.1. Classification of Drones
3.2. Architecture of IoD
Cluster-Based IoD Network
4. Routing Algorithms
4.1. Genetic Algorithm
- Elitism
- Crossover
- Mutation
- Elimination
4.2. Bee Optimisation Algorithm
- Worker
- Supervisor
- Scout
4.3. Chicken Swarm Optimisation Algorithm
4.4. UAV-UAV (U2U) Communication
4.5. IoD Data Security
4.5.1. Random Mobility Data Collection
4.5.2. Deterministic Mobility Data Collection
5. Future Research Directions
5.1. Routing Challenges
5.2. Packet Mobility in IoDs
5.3. Packet Delivery Ratio
5.4. Quality of Service
5.5. Energy Consumption
5.6. Reliability
5.7. Throughput and Delay
5.8. Failure Detection
5.9. Performance Evaluation
5.10. Security
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Nauman, A.; Jamshed, M.A.; Qadri, Y.A.; Ali, R.; Kim, S.W. Reliability Optimization in Narrowband Device-to-Device Communication for 5G and Beyond-5G Networks. IEEE Access 2021, 9, 157584–157596. [Google Scholar] [CrossRef]
- Nauman, A.; Qadri, Y.A.; Amjad, M.; Zikria, Y.B.; Afzal, M.K.; Kim, S.W. Multimedia Internet of Things: A Comprehensive Survey. IEEE Access 2020, 8, 8202–8250. [Google Scholar] [CrossRef]
- Liu, X.; Mei, K.; Yu, S. Clustering algorithm in wireless sensor networks based on differential evolution algorithm. In Proceedings of the 2020 IEEE 4th Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Chongqing, China, 12–14 June 2020; Volume 1, pp. 478–482. [Google Scholar]
- Sharma, R.; Prakash, S.; Roy, P. Methodology, Applications, and Challenges of WSN-IoT. In Proceedings of the 2020 International Conference on Electrical and Electronics Engineering (ICE3), Gorakhpur, India, 14–15 February 2020; pp. 502–507. [Google Scholar]
- Abualigah, L.; Diabat, A.; Sumari, P.; Gandomi, A.H. Applications, Deployments, and Integration of Internet of Drones (IoD): A Review. IEEE Sens. J. 2021, 21, 25532–25546. [Google Scholar] [CrossRef]
- Haider, S.K.; Jamshed, M.A.; Jiang, A.; Pervaiz, H.; Ni, Q. UAV-assisted cluster-head selection mechanism for wireless sensor network applications. In Proceedings of the 2019 UK/China Emerging Technologies (UCET), Glasgow, UK, 21–22 August 2019; pp. 1–2. [Google Scholar]
- Haider, S.K.; Jamshed, M.A.; Jiang, A.; Pervaiz, H. An energy efficient cluster-heads re-usability mechanism for wireless sensor networks. In Proceedings of the 2019 IEEE International Conference on Communications Workshops (ICC Workshops), Shanghai, China, 20–24 May 2019; pp. 1–6. [Google Scholar]
- Arafat, M.Y.; Moh, S. Routing Protocols for Unmanned Aerial Vehicle Networks: A Survey. IEEE Access 2019, 7, 99694–99720. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Moh, S. A survey on cluster-based routing protocols for unmanned aerial vehicle networks. IEEE Access 2018, 7, 498–516. [Google Scholar] [CrossRef]
- Nayyar, A.; Nguyen, B.L.; Nguyen, N.G. The internet of drone things (IoDT): Future envision of smart drones. In First International Conference on Sustainable Technologies for Computational Intelligence; Springer: Singapore, 2020; pp. 563–580. [Google Scholar]
- Cho, A.; Kim, J.; Lee, S.; Kee, C. Wind estimation and airspeed calibration using a UAV with a single-antenna GPS receiver and pitot tube. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 109–117. [Google Scholar] [CrossRef]
- Semsch, E.; Jakob, M.; Pavlicek, D.; Pechoucek, M. Autonomous UAV surveillance in complex urban environments. In Proceedings of the 2009 IEEE/WIC/ACM International Joint Conference on Web Intelligence and Intelligent Agent Technology, Milan, Italy, 15–18 September 2009; Volume 2, pp. 82–85. [Google Scholar]
- Oubbati, O.S.; Lakas, A.; Zhou, F.; Güneş, M.; Lagraa, N.; Yagoubi, M.B. Intelligent UAV-assisted routing protocol for urban VANETs. Comput. Commun. 2017, 107, 93–111. [Google Scholar] [CrossRef]
- Barrado, C.; Messeguer, R.; López, J.; Pastor, E.; Santamaria, E.; Royo, P. Wildfire monitoring using a mixed air-ground mobile network. IEEE Pervasive Comput. 2010, 9, 24–32. [Google Scholar] [CrossRef]
- Xiang, H.; Tian, L. Development of a low-cost agricultural remote sensing system based on an autonomous unmanned aerial vehicle (UAV). Biosyst. Eng. 2011, 108, 174–190. [Google Scholar] [CrossRef]
- Lottes, P.; Khanna, R.; Pfeifer, J.; Siegwart, R.; Stachniss, C. UAV-based crop and weed classification for smart farming. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 3024–3031. [Google Scholar]
- Arafat, M.Y.; Moh, S. Location-aided delay tolerant routing protocol in UAV networks for post-disaster operation. IEEE Access 2018, 6, 59891–59906. [Google Scholar] [CrossRef]
- Sánchez-García, J.; Reina, D.; Toral, S. A distributed PSO-based exploration algorithm for a UAV network assisting a disaster scenario. Future Gener. Comput. Syst. 2019, 90, 129–148. [Google Scholar] [CrossRef]
- Gupta, L.; Jain, R.; Vaszkun, G. Survey of important issues in UAV communication networks. IEEE Commun. Surv. Tutor. 2015, 18, 1123–1152. [Google Scholar] [CrossRef] [Green Version]
- Hayat, S.; Yanmaz, E.; Muzaffar, R. Survey on unmanned aerial vehicle networks for civil applications: A communications viewpoint. IEEE Commun. Surv. Tutor. 2016, 18, 2624–2661. [Google Scholar] [CrossRef]
- De Freitas, E.P.; Heimfarth, T.; Netto, I.F.; Lino, C.E.; Pereira, C.E.; Ferreira, A.M.; Wagner, F.R.; Larsson, T. UAV relay network to support WSN connectivity. In Proceedings of the International Congress on Ultra Modern Telecommunications and Control Systems, Moscow, Russia, 18–20 October 2010; pp. 309–314. [Google Scholar]
- Arafat, M.Y.; Moh, S. Localization and clustering based on swarm intelligence in UAV networks for emergency communications. IEEE Internet Things J. 2019, 6, 8958–8976. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Wu, Q.; Zeng, Y.; Zhang, R. Joint trajectory and communication design for multi-UAV enabled wireless networks. IEEE Trans. Wirel. Commun. 2018, 17, 2109–2121. [Google Scholar] [CrossRef] [Green Version]
- Ali, R.; Nauman, A.; Zikria, Y.B.; Kim, B.S.; Kim, S.W. Performance optimization of QoS-supported dense WLANS using machine-learning-enabled Enhanced Distributed Channel Access (MEDCA) mechanism. Neural Comput. Appl. 2019, 32, 13107–13115. [Google Scholar] [CrossRef]
- Nain, Z.; Musaddiq, A.; Qadri, Y.A.; Nauman, A.; Afzal, M.K.; Kim, S.W. RIATA: A Reinforcement Learning-Based Intelligent Routing Update Scheme for Future Generation IoT Networks. IEEE Access 2021, 9, 81161–81172. [Google Scholar] [CrossRef]
- Lin, J.W.; Chelliah, P.R.; Hsu, M.C.; Hou, J.X. Efficient fault-tolerant routing in IoT wireless sensor networks based on bipartite-flow graph modeling. IEEE Access 2019, 7, 14022–14034. [Google Scholar] [CrossRef]
- Khan, A.U.R.; Madani, S.A.; Hayat, K.; Khan, S.U. Clustering-based power-controlled routing for mobile wireless sensor networks. Int. J. Commun. Syst. 2012, 25, 529–542. [Google Scholar] [CrossRef]
- Deshpande, V.V.; Patil, A.R.B. Energy efficient clustering in wireless sensor network using cluster of cluster heads. In Proceedings of the 2013 tenth international conference on wireless and optical communications networks (WOCN), Bhopal, India, 26–28 July 2013; pp. 1–5. [Google Scholar]
- Karim, L.; Nasser, N.; Sheltami, T. A fault-tolerant energy-efficient clustering protocol of a wireless sensor network. Wirel. Commun. Mob. Comput. 2014, 14, 175–185. [Google Scholar] [CrossRef]
- Azharuddin, M.; Kuila, P.; Jana, P.K. Energy efficient fault tolerant clustering and routing algorithms for wireless sensor networks. Comput. Electr. Eng. 2015, 41, 177–190. [Google Scholar] [CrossRef]
- Jannu, S.; Jana, P.K. A grid based clustering and routing algorithm for solving hot spot problem in wireless sensor networks. Wirel. Netw. 2016, 22, 1901–1916. [Google Scholar] [CrossRef]
- Bhushan, B.; Sahoo, G. FLEAC: Fuzzy Logic-based Energy Adequate Clustering Protocol for Wireless Sensor Networks using Improved Grasshopper Optimization Algorithm. Wirel. Pers. Commun. 2022, 124, 573–606. [Google Scholar] [CrossRef]
- Younis, O.; Fahmy, S. HEED: A hybrid, energy-efficient, distributed clustering approach for ad hoc sensor networks. IEEE Trans. Mob. Comput. 2004, 3, 366–379. [Google Scholar] [CrossRef] [Green Version]
- Tarhani, M.; Kavian, Y.S.; Siavoshi, S. SEECH: Scalable energy efficient clustering hierarchy protocol in wireless sensor networks. IEEE Sens. J. 2014, 14, 3944–3954. [Google Scholar] [CrossRef]
- Aliti, A.; Sevrani, K. A security model for Wireless Sensor Networks. In Proceedings of the 2019 42nd International Convention on Information and Communication Technology, Electronics and Microelectronics (MIPRO), Ottawa, ON, Canada, 5–7 May 2019; pp. 1165–1168. [Google Scholar]
- Singh, M.K.; Amin, S.I.; Imam, S.A.; Sachan, V.K.; Choudhary, A. A Survey of Wireless Sensor Network and its types. In Proceedings of the 2018 International Conference on Advances in Computing, Communication Control and Networking (ICACCCN), Greater Noida, India, 12–13 October 2018; pp. 326–330. [Google Scholar]
- Ullo, S.; Gallo, M.; Palmieri, G.; Amenta, P.; Russo, M.; Romano, G.; Ferrucci, M.; Ferrara, A.; De Angelis, M. Application of wireless sensor networks to environmental monitoring for sustainable mobility. In Proceedings of the 2018 IEEE International Conference on Environmental Engineering (EE), Milan, Italy, 12–14 March 2018; pp. 1–7. [Google Scholar]
- Reddy, D.L.; Aran, V.; Paramkusam, A.; Nagaraju, N. Wireless sensor networks algorithms to improve energy efficiency. In Proceedings of the 2017 International Conference on Intelligent Sustainable Systems (ICISS), Palladam, India, 7–8 December 2017; pp. 1164–1166. [Google Scholar]
- Naqvi, S.A.R.; Hassan, S.A.; Pervaiz, H.; Ni, Q. Drone-aided communication as a key enabler for 5G and resilient public safety networks. IEEE Commun. Mag. 2018, 56, 36–42. [Google Scholar] [CrossRef] [Green Version]
- Jamshed, M.A.; Amjad, O.; Zeydan, E. Multicore energy efficient scheduling with energy harvesting for wireless multimedia sensor networks. In Proceedings of the 2017 International Multi-topic Conference (INMIC), Lahore, Pakistan, 24–26 November 2017; pp. 1–5. [Google Scholar]
- Dou, S.; Liu, D. A reliable MAC protocol for hybrid wireless sensor networks. In Proceedings of the 2016 IEEE International Conference on Internet of Things (iThings) and IEEE Green Computing and Communications (GreenCom) and IEEE Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data (SmartData), Chengdu, China, 15–18 December 2016; pp. 211–216. [Google Scholar]
- Kim, J.; Kim, S.; Ju, C.; Son, H.I. Unmanned Aerial Vehicles in Agriculture: A Review of Perspective of Platform, Control, and Applications. IEEE Access 2019, 7, 105100–105115. [Google Scholar] [CrossRef]
- Chamola, V.; Kotesh, P.; Agarwal, A.; Naren; Gupta, N.; Guizani, M. A Comprehensive Review of Unmanned Aerial Vehicle Attacks and Neutralization Techniques. Ad Hoc Netw. 2021, 111, 102324. [Google Scholar] [CrossRef]
- Videras Rodríguez, M.; Melgar, S.G.; Cordero, A.S.; Márquez, J.M.A. A Critical Review of Unmanned Aerial Vehicles (UAVs) Use in Architecture and Urbanism: Scientometric and Bibliometric Analysis. Appl. Sci. 2021, 11, 9966. [Google Scholar] [CrossRef]
- Siddiqi, M.A.; Iwendi, C.; Jaroslava, K.; Anumbe, N. Analysis on security-related concerns of unmanned aerial vehicle: Attacks, Limitations, and recommendations. Math. Biosci. Eng. 2022, 19, 2641–2670. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, M.A.; Nauman, A.; Abbasi, M.A.B.; Kim, S.W. Antenna Selection and Designing for THz Applications: Suitability and Performance Evaluation: A Survey. IEEE Access 2020, 8, 113246–113261. [Google Scholar] [CrossRef]
- Nauman, A.; Maqsood, M. System design and performance evaluation of high altitude platform: Link budget and power budget. In Proceedings of the 2017 19th International Conference on Advanced Communication Technology (ICACT), PyeongChang, Korea, 19–22 February 2017; pp. 138–142. [Google Scholar] [CrossRef]
- Gupta, R.; Tanwar, S.; Al-Turjman, F.; Italiya, P.; Nauman, A.; Kim, S.W. Smart Contract Privacy Protection Using AI in Cyber-Physical Systems: Tools, Techniques and Challenges. IEEE Access 2020, 8, 24746–24772. [Google Scholar] [CrossRef]
- Nauman, A.; Jamshed, M.A.; Ahmad, Y.; Ali, R.; Zikria, Y.B.; Won Kim, S. An Intelligent Deterministic D2D Communication in Narrow-band Internet of Things. In Proceedings of the 2019 15th International Wireless Communications Mobile Computing Conference (IWCMC), Tangier, Morocco, 24–28 June 2019; pp. 2111–2115. [Google Scholar] [CrossRef]
- Shahraki, A.; Taherkordi, A.; Haugen, Ø.; Eliassen, F. Clustering objectives in wireless sensor networks: A survey and research direction analysis. Comput. Netw. 2020, 180, 107376. [Google Scholar] [CrossRef]
- Vakaloudis, A.; O’Leary, C. A framework for rapid integration of IoT Systems with industrial environments. In Proceedings of the 2019 IEEE 5th World Forum on Internet of Things (WF-IoT), Limerick, Ireland, 15–18 April 2019; pp. 601–605. [Google Scholar] [CrossRef]
- Arafat, M.Y.; Habib, M.A.; Moh, S. Routing protocols for UAV-aided wireless sensor networks. Appl. Sci. 2020, 10, 4077. [Google Scholar] [CrossRef]
- Javed, A.; Umair, M.Y.; Mirza, A.; Wakeel, A.; Subhan, F.; Khan, W.Z. Position Vectors Based Efficient Indoor Positioning System. Cmc-Comput. Mater. Contin. 2021, 67, 1781–1799. [Google Scholar] [CrossRef]
- Wang, G.; Lee, B.S.; Ahn, J.Y.; Cho, G. A UAV-aided cluster head election framework and applying such to security-driven cluster head election schemes: A survey. Secur. Commun. Netw. 2018, 2018, 6475927. [Google Scholar] [CrossRef]
- Sayyed, A.; De Araújo, G.M.; Bodanese, J.P.; Becker, L.B. Dual-stack single-radio communication architecture for UAV acting as a mobile node to collect data in WSNs. Sensors 2015, 15, 23376–23401. [Google Scholar] [CrossRef] [Green Version]
- Ekici, E.; Gu, Y.; Bozdag, D. Mobility-based communication in wireless sensor networks. IEEE Commun. Mag. 2006, 44, 56–62. [Google Scholar] [CrossRef]
- Khan, A.W.; Abdullah, A.H.; Anisi, M.H.; Bangash, J.I. A comprehensive study of data collection schemes using mobile sinks in wireless sensor networks. Sensors 2014, 14, 2510–2548. [Google Scholar] [CrossRef]
- Safdar, V.; Bashir, F.; Hamid, Z.; Afzal, H.; Pyun, J.Y. A hybrid routing protocol for wireless sensor networks with mobile sinks. In Proceedings of the ISWPC 2012 Proceedings, Dalian, China, 3–5 July 2012; pp. 1–5. [Google Scholar]
- Chakrabarti, A.; Sabharwal, A.; Aazhang, B. Using predictable observer mobility for power efficient design of sensor networks. In Proceedings of the Information Processing in Sensor Networks, Palo Alto, CA, USA, 22–23 April 2003; pp. 129–145. [Google Scholar]
- Tang, B.; Wang, J.; Geng, X.; Zheng, Y.; Kim, J.U. A novel data retrieving mechanism in wireless sensor networks with path-limited mobile sink. Int. J. Grid. Distrib. Comput. 2012, 5, 133–140. [Google Scholar]
- Oliveira, H.A.; Barreto, R.S.; Fontao, A.L.; Loureiro, A.A.; Nakamura, E.F. A novel greedy forward algorithm for routing data toward a high speed sink in wireless sensor networks. In Proceedings of the 2010 19th International Conference on Computer Communications and Networks, Zurich, Switzerland, 2–5 August 2010; pp. 1–7. [Google Scholar]
- Nauman, A.; Jamshed, M.A.; Ali, R.; Cengiz, K.; Zulqarnain; Kim, S.W. Reinforcement learning-enabled Intelligent Device-to-Device (I-D2D) communication in Narrowband Internet of Things (NB-IoT). Comput. Commun. 2021, 176, 13–22. [Google Scholar] [CrossRef]
- Preeth, S.S.L.; Dhanalakshmi, R.; Kumar, R.; Shakeel, P.M. An adaptive fuzzy rule based energy efficient clustering and immune-inspired routing protocol for WSN-assisted IoT system. J. Ambient. Intell. Humaniz. Comput. 2018, 1–13. [Google Scholar] [CrossRef]
- Bouachir, O.; Aloqaily, M.; Garcia, F.; Larrieu, N.; Gayraud, T. Testbed of QoS ad-hoc network designed for cooperative multi-drone tasks. In Proceedings of the 17th ACM International Symposium on Mobility Management and Wireless Access, Miami Beach, FL, USA, 25–29 November 2019; pp. 89–95. [Google Scholar]
- Jamshed, M.A.; Ur-Rehman, M.; Frnda, J.; Althuwayb, A.A.; Nauman, A.; Cengiz, K. Dual Band and Dual Diversity Four-Element MIMO Dipole for 5G Handsets. Sensors 2021, 21, 767. [Google Scholar] [CrossRef] [PubMed]
- Jamshed, M.A.; Nauman, A.; Khan, M.F.; Khan, M.I. An energy efficient scheduling mechanism using concept of light weight processors for Wireless Multimedia Sensor Networks. In Proceedings of the 2017 14th International Bhurban Conference on Applied Sciences and Technology (IBCAST), Islamabad, Pakistan, 10–14 January 2017; pp. 792–794. [Google Scholar] [CrossRef]
- Nisha, U.N.; Basha, A.M. Triangular fuzzy-based spectral clustering for energy-efficient routing in wireless sensor network. J. Supercomput. 2020, 76, 4302–4327. [Google Scholar] [CrossRef]
- Randhawa, S.; Jain, S. MLBC: Multi-objective load balancing clustering technique in wireless sensor networks. Appl. Soft Comput. 2019, 74, 66–89. [Google Scholar] [CrossRef]
- Tazibt, C.Y.; Bekhti, M.; Djamah, T.; Achir, N.; Boussetta, K. Wireless sensor network clustering for UAV-based data gathering. In Proceedings of the 2017 Wireless Days, Porto, Portugal, 29–31 March 2017; pp. 245–247. [Google Scholar]
- Jawhar, I.; Mohamed, N.; Al-Jaroodi, J.; Agrawal, D.P.; Zhang, S. Communication and networking of UAV-based systems: Classification and associated architectures. J. Netw. Comput. Appl. 2017, 84, 93–108. [Google Scholar] [CrossRef]
- Shahraki, A.; Rafsanjani, M.K.; Saeid, A.B. A new approach for energy and delay trade-off intra-clustering routing in WSNs. Comput. Math. Appl. 2011, 62, 1670–1676. [Google Scholar] [CrossRef] [Green Version]
- Li, B.; Fei, Z.; Zhang, Y. UAV communications for 5G and beyond: Recent advances and future trends. IEEE Internet Things J. 2018, 6, 2241–2263. [Google Scholar] [CrossRef] [Green Version]
Ref. | Year | Applications | Architecture | Routing | Future Research Directions | Performance Metrics |
---|---|---|---|---|---|---|
[9] | 2018 | ✓ | x | x | x | x |
[8] | 2019 | ✓ | x | x | x | x |
[43] | 2019 | ✓ | x | x | x | x |
[5] | 2021 | ✓ | x | x | x | x |
[44] | 2021 | x | ✓ | x | x | x |
[45] | 2021 | x | x | x | x | x |
[46] | 2022 | x | x | x | x | x |
This Work | 2022 | ✓ | ✓ | ✓ | ✓ | ✓ |
Characteristics | Improvement Area | |
---|---|---|
1 | Routing | New Path Formation |
2 | Packet Mobility | Seamless Data Transfer |
3 | Packet Delivery Ratio | Time Constraint |
4 | Quality of Service | Latest Equipment |
5 | Energy Consumption | Li-ion, H-fuel batteries |
6 | Reliability | Lossless Transfer, Improved PDR |
7 | Throughput and Delay | Efficiency |
8 | Failure detection | Fault replacement |
9 | Performance Evaluation | On-time Delivery |
10 | Security | Encryption |
Category | Routing Technique | Facilities | Challenges |
---|---|---|---|
Network Structure Based Routing | Flat Routing | Wake-up schedule of sensor nodes and trajectory of UAV | Reliable data collection in the fading channel |
Linear Sensor Routing | Nodes remain between two parallel lines that stretch for a long transmission distance | Multi-hop routing can cause high energy dissipation | |
Cluster-Based Routing | All nodes are allowed to make independent decisions, coordinated clustering | Finding new routes results in significant routing overhead | |
Tree-Based Routing | Parent node acts as sink node | Overhead in broadcasting and errors in data reconstruction process | |
Location-Based Routing | UAV broadcast geographical location and clock time | Time required to empower sensor nodes unconsidered | |
Protocol Operation Based Routing | Swarm Intelligence Routing | Determining the network topology and use of UAV for data collection | Wind effect is travel time of UAVs to be taken into account [2] |
Multi-Path Routing | Aims to reduce the distance between senders and receivers to obtain better channel quality | Efficient data gathering is a challenging task [2] | |
Shortest Path Routing | Voronoi diagram provides feasible UAV routing path | Minimizing the UAV overall trajectory distance [2] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haider, S.K.; Nauman, A.; Jamshed, M.A.; Jiang, A.; Batool, S.; Kim, S.W. Internet of Drones: Routing Algorithms, Techniques and Challenges. Mathematics 2022, 10, 1488. https://doi.org/10.3390/math10091488
Haider SK, Nauman A, Jamshed MA, Jiang A, Batool S, Kim SW. Internet of Drones: Routing Algorithms, Techniques and Challenges. Mathematics. 2022; 10(9):1488. https://doi.org/10.3390/math10091488
Chicago/Turabian StyleHaider, Syed Kamran, Ali Nauman, Muhammad Ali Jamshed, Aimin Jiang, Sahar Batool, and Sung Won Kim. 2022. "Internet of Drones: Routing Algorithms, Techniques and Challenges" Mathematics 10, no. 9: 1488. https://doi.org/10.3390/math10091488
APA StyleHaider, S. K., Nauman, A., Jamshed, M. A., Jiang, A., Batool, S., & Kim, S. W. (2022). Internet of Drones: Routing Algorithms, Techniques and Challenges. Mathematics, 10(9), 1488. https://doi.org/10.3390/math10091488