Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression
Abstract
:1. Introduction
2. Materials and Methods
2.1. Geographically Weighted Nonparametric Regression (GWNR)
2.2. Weighted Maximum Likelihood Estimator (WMLE)
- Defining a mixed GWNR model
- Assuming distribution
- Determining the distribution of y
- Forming a likelihood function
- Forming a weighted likelihood function
- Specifying the first partial derivative of the likelihood function against the mixed GWNR model parameter
- Getting an estimate of mixed GWNR model parameters.
3. Results
3.1. Parameter Estimation
- P: number of spline components
- M: polynomial degree of spline
- R: number of knot points
- Q: number of Fourier components
- H: number of oscillation parameters.
- t = knot point for spline component
- h = oscillation parameter component.
3.2. Unbiased and Linear Estimator Properties
3.3. Data Application
- Making a scatter plot between the variables and y, as well as and y
- Defining the initial model
- Selecting optimum knots and oscillation parameters
- Estimating parameters of global model with the OLS method based on the initial model formed
- Testing assumptions of spatial heterogeneity on residual values on global models
- Determining the weighting matrix
- Estimating parameters of the GWNR model with the WMLE method
- Choosing the best model based on MSE and R2
- Making conclusions
- yken = estimated poverty percentage for Kendari City
- ymks = estimated poverty percentage for Makassar City
- yman = estimated poverty percentage for Manado City
- ypal = estimated poverty percentage for Palu City
- ygor = estimated poverty percentage for Gorontalo City
- ymaj = estimated poverty percentage for Mamuju City.
4. Conclusions
- The GWNR model using a mixed estimator of truncated spline and Fourier series isWhere is a truncated spline component, is a component of a Fourier series, and is a residual component.
- Estimators of GWNR are , , and . The estimator is an unbiased and linear estimator to observe the response variable.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
Appendix C
Appendix D
References
- Draper, N.R.; Smith, H. Applied Regression Analysis, 3rd ed.; John Wiley & Sons Inc.: Hoboken, NJ, USA, 2014; pp. 1–716. [Google Scholar] [CrossRef]
- Budiantara, I.N. The combination of spline and kernel estimator for nonparametric regression and its properties. Appl. Math. Sci. 2015, 9, 6083–6094. [Google Scholar] [CrossRef]
- Cheng, M.; Paige, R.L.; Sun, S.; Yan, K. Variance reduction for kernel estimators in clustered/longitudinal data analysis. J. Stat. Plan. Inference 2010, 140, 1389–1397. [Google Scholar] [CrossRef]
- Octavanny, M.A.D.; Budiantara, I.N.; Ratnasari, V. Pemodelan faktor-faktor yang memengaruhi provinsi jawa timur menggunakan pendekatan regresi semiparametrik spline. J. Sains Seni ITS 2017, 6, 1–7. [Google Scholar]
- Hidayat, M.F.; Achmad, R.F.A.; Solimun. Estimation of truncated spline function in non-parametric path analysis based on weighted least square (WLS). IOP Conf. Ser. Mater. Sci. Eng. 2019, 546, 5–10. [Google Scholar] [CrossRef]
- Sudiarsa, W.; Budiantara, I.N.; Suhartono, S.; Purnami, S.W. Combined estimator fourier series and spline truncated in multivariable nonparametric regression. Appl. Math. Sci. 2015, 9, 4997–5010. [Google Scholar] [CrossRef]
- Mariati, N.P.A.M.; Budiantara, I.N.; Ratnasari, V. Combination estimation of smoothing spline and fourier series in nonparametric regression. J. Math. 2020, 2020, 4712531. [Google Scholar] [CrossRef]
- Fotheringham, A.S.; Brundson, C.; Charlton, M. Geographically Weighted Regression, the Analysis of Spatially Varying Relationships; John Wiley & Sons Ltd.: Chichester, UK, 2002. [Google Scholar]
- Tang, J.; Gao, F.; Liu, F.; Zhang, W.; Qi, Y. Understanding spatio-temporal characteristics of urban travel demand based on the combination of GWR and GLM. Sustainabily 2019, 11, 5525. [Google Scholar] [CrossRef] [Green Version]
- Dziauddin, M.F. Estimating land value uplift around light rail transit stations in Greater Kuala Lumpur: An empirical study based on geographically weighted regression (GWR). Res. Transp. Econ. 2019, 74, 10–20. [Google Scholar] [CrossRef]
- Sifriyani; Kartiko, S.H.; Budiantara, I.N.; Gunardi. Development of nonparametric geographically weighted regression using truncated spline approach. Songklanakarin J. Sci. Technol. 2018, 40, 909–920. [Google Scholar]
- Fitri, N.; Sifriyani, S.; Yuniarti, D. Nonparametric geographically weighted regression dengan pendekatan spline truncated. Pros. Semin. Nas. Mat. Dan Stat. 2019, 98–105. [Google Scholar]
- Sifriyani, S. Simultaneous hypothesis testing of multivariable nonparametric spline regression in the GWR model. Int. J. Stat. Probab. 2019, 8, 32. [Google Scholar] [CrossRef]
- Nurcahayani, H.; Budiantara, I.N.; Zain, I. The curve estimation of combined truncated spline and fourier series estimator for multiresponse nonparametric regression. Mathematics 2021, 9, 1141. [Google Scholar] [CrossRef]
- Akbarov, A.; Wu, S. Waranty claim forecasting based on weighted maximum likelihood estimator. Qual. Reliab. Eng. Int. 2012, 28, 663–669. [Google Scholar] [CrossRef]
- BPS. Provinsi Sulawesi Tenggara dalam Angka 2021; UD. Resky Bersama: Kendari, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Selatan dalam Angka 2021; BPS Press: Makassar, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Utara dalam Angka 2021; Perum Percetakan NRI: Manado, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Tengah dalam Angka 2021; UD. Rio: Palu, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Sulawesi Barat dalam Angka 2021; Erlangga: Mamuju, Indonesia, 2021. [Google Scholar]
- BPS. Provinsi Gorontalo dalam Angka 2021; CV. Rifaldi: Gorontalo, Indonesia, 2021. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laome, L.; Budiantara, I.N.; Ratnasari, V. Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics 2023, 11, 152. https://doi.org/10.3390/math11010152
Laome L, Budiantara IN, Ratnasari V. Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics. 2023; 11(1):152. https://doi.org/10.3390/math11010152
Chicago/Turabian StyleLaome, Lilis, I Nyoman Budiantara, and Vita Ratnasari. 2023. "Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression" Mathematics 11, no. 1: 152. https://doi.org/10.3390/math11010152
APA StyleLaome, L., Budiantara, I. N., & Ratnasari, V. (2023). Estimation Curve of Mixed Spline Truncated and Fourier Series Estimator for Geographically Weighted Nonparametric Regression. Mathematics, 11(1), 152. https://doi.org/10.3390/math11010152