Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design
Abstract
:1. Introduction
2. The Functional Framework
2.1. Notation
2.2. Generality on the Model
2.3. Local Stationarity
- (i)
- denotes strictly stationary.
- (ii)
- It holds that
2.4. Sampling Design
2.5. Mixing Condition
2.6. Generality on the Model
2.6.1. Small Ball Probability
2.6.2. VC-Type Classes of Functions
2.7. Conditions and Comments
- (M1)
- The -valued stochastic process is locally stationary. Hence, for each time point , a strictly stationary process exists such that for an arbitrary norm on ,
- (M2)
- For , let be a ball centered at with radius h, and let be positive constants. For all ,
- (M3)
- Let and and . Assume
- (M4)
- is bounded by some constant from above and by some constant from below, that is, for all and .
- (M5)
- is Lipschitz continuous with respect to .
- (M6)
- as .
- (M7)
- is Lipschitz, and it satisfies
- (KB1)
- The kernel is non-negative, bounded by , and has support in such that and . Moreover, exists on and satisfies for two real constants .
- (KB2)
- The kernel is bounded and has compact support . Moreover,
- (KB3)
- The bandwidth h converges to zero at least at a polynomial rate; that is, there exists a small such that for some constant .
- (S1)
- For any with , exists and is continuous on .
- (S2)
- for some and small .
- (B1)
- Let and be two sequences of positive numbers such that , and , or
- (B2)
- We have with for some .
- (B3)
- We have
- (B4)
- We have .
- (R1)
- and ,
- (R2)
- for some and and .
- (R3)
- , where p is defined in the sequel.
- (E1)
- For , it holds that and
- (E2)
- The β-mixing coefficients of the array satisfy with as
- (C1)
- The class of functions is bounded, and its envelope function satisfies for some :
- (C2)
- The class of functions is unbounded and its envelope function satisfies for some :
- (C3)
- The metric entropy of the class satisfies, for some :
Comments
- (C4)′
- We denote by a non-negative continuous function, increasing on , and such that, for some , ultimately as ,For each , we define by . Assuming further that:
- (i)
- for some ;
- (ii)
- for some .
3. Uniform Convergence Rates for Kernel Estimators
3.1. Hoeffding’s Decomposition
- The expectation of :
- For all the position of the argument, construct the function such that:
- Define:
3.2. Strong Uniform Convergence Rate
4. Weak Convergence for Kernel Estimators
5. Applications
5.1. Metric Learning
5.2. Multipartite Ranking
5.3. Set Indexed Conditional U-Statistics
5.4. Discrimination
6. Extension to the Censored Case
- ()
- C and are independent.
- (A.1)
- , where and is a point-wise measurable class of real measurable functions defined on and of type VC.
- (A.2)
- The class of functions has a measurable and uniformly bounded envelope function with,
7. The Bandwidth Selection Criterion
8. Concluding Remarks
9. Mathematical Developments
9.1. Preliminaries
9.2. Proof of Proposition 1
9.2.1. Proof of Lemma 1
- (I):
- The Same Type of Blocks but Not the Same Block
- (II):
- The Same Block
- (III):
- Different Types of Blocks
- (IV):
- Blocks of Different Types
9.2.2. Proof of Theorem 1
- Step 1.
- Step 2.
- Step 3.
- Let .
- Step 4.
9.2.3. Proof of Theorem 2
- converges to a Gaussian process.
- The remainder part does not matter much, in the sense that
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
- (KD1)
- (KB2) in Assumption 2 holds.
- (KD2)
- For any where , exists and is continuous on .
Appendix A.1. Proof of Lemma A6
Appendix A.2. Proof of Lemma A8
References
- Silverman, B.W. Density Estimation for Statistics and Data Analysis; Monographs on Statistics and Applied Probability; Chapman & Hall: London, UK, 1986; pp. x+175. [Google Scholar] [CrossRef]
- Nadaraya, E.A. Nonparametric Estimation of Probability Densities and Regression Curves; Mathematics and Its Applications (Soviet Series); Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1989; Volume 20, pp. x+213. [Google Scholar] [CrossRef]
- Härdle, W. Applied Nonparametric Regression; Econometric Society Monographs; Cambridge University Press: Cambridge, UK, 1990; Volume 19, pp. xvi+333. [Google Scholar] [CrossRef]
- Wand, M.P.; Jones, M.C. Kernel Smoothing; Monographs on Statistics and Applied Probability; Chapman and Hall, Ltd.: London, UK, 1995; Volume 60, pp. xii+212. [Google Scholar] [CrossRef]
- Eggermont, P.P.B.; LaRiccia, V.N. Maximum Penalized Likelihood Estimation. Density Estimation; Springer Series in Statistics; Springer: New York, NY, USA, 2001; Volume I, pp. xviii+510. [Google Scholar]
- Devroye, L.; Lugosi, G. Combinatorial Methods in Density Estimation; Springer Series in Statistics; Springer: New York, NY, USA, 2001; pp. xii+208. [Google Scholar] [CrossRef]
- Ripley, B.D. Spatial statistics: Developments 1980–1983. Internat. Statist. Rev. 1984, 52, 141–150. [Google Scholar] [CrossRef]
- Rosenblatt, M. Stationary Sequences and Random Fields; Birkhäuser Boston, Inc.: Boston, MA, USA, 1985; p. 258. [Google Scholar] [CrossRef]
- Guyon, X. Random Fields on a Network; Probability and Its Applications (New York); Springer: New York, NY, USA, 1995; pp. xii+255. [Google Scholar]
- Cressie, N.A.C. Statistics for Spatial Data, revised ed.; Wiley Classics Library, John Wiley & Sons, Inc.: New York, NY, USA, 2015; pp. xx+900. [Google Scholar]
- Tran, L.T. Kernel density estimation on random fields. J. Multivar. Anal. 1990, 34, 37–53. [Google Scholar] [CrossRef] [Green Version]
- Tran, L.T.; Yakowitz, S. Nearest neighbor estimators for random fields. J. Multivar. Anal. 1993, 44, 23–46. [Google Scholar] [CrossRef] [Green Version]
- Biau, G.; Cadre, B. Nonparametric spatial prediction. Stat. Inference Stoch. Process. 2004, 7, 327–349. [Google Scholar] [CrossRef]
- Dabo-Niang, S.; Yao, A.F. Kernel spatial density estimation in infinite dimension space. Metrika 2013, 76, 19–52. [Google Scholar] [CrossRef] [Green Version]
- Ndiaye, M.; Dabo-Niang, S.; Ngom, P. Nonparametric prediction for spatial dependent functional data under fixed sampling design. Rev. Colomb. Estadíst. 2022, 45, 391–428. [Google Scholar] [CrossRef]
- Hoeffding, W. A class of statistics with asymptotically normal distribution. Ann. Math. Statistics 1948, 19, 293–325. [Google Scholar] [CrossRef]
- Stute, W. Almost sure representations of the product-limit estimator for truncated data. Ann. Statist. 1993, 21, 146–156. [Google Scholar] [CrossRef]
- Arcones, M.A.; Wang, Y. Some new tests for normality based on U-processes. Statist. Probab. Lett. 2006, 76, 69–82. [Google Scholar] [CrossRef]
- Giné, E.; Mason, D.M. Laws of the iterated logarithm for the local U-statistic process. J. Theoret. Probab. 2007, 20, 457–485. [Google Scholar] [CrossRef]
- Giné, E.; Mason, D.M. On local U-statistic processes and the estimation of densities of functions of several sample variables. Ann. Statist. 2007, 35, 1105–1145. [Google Scholar] [CrossRef] [Green Version]
- Schick, A.; Wang, Y.; Wefelmeyer, W. Tests for normality based on density estimators of convolutions. Statist. Probab. Lett. 2011, 81, 337–343. [Google Scholar] [CrossRef]
- Joly, E.; Lugosi, G. Robust estimation of U-statistics. Stoch. Process. Appl. 2016, 126, 3760–3773. [Google Scholar] [CrossRef]
- Lee, S.; Linton, O.; Whang, Y.J. Testing for stochastic monotonicity. Econometrica 2009, 77, 585–602. [Google Scholar] [CrossRef]
- Ghosal, S.; Sen, A.; van der Vaart, A.W. Testing monotonicity of regression. Ann. Statist. 2000, 28, 1054–1082. [Google Scholar] [CrossRef]
- Abrevaya, J.; Jiang, W. A nonparametric approach to measuring and testing curvature. J. Bus. Econom. Statist. 2005, 23, 1–19. [Google Scholar] [CrossRef]
- Nolan, D.; Pollard, D. U-processes: Rates of convergence. Ann. Statist. 1987, 15, 780–799. [Google Scholar] [CrossRef]
- Arcones, M.A.; Giné, E. Limit theorems for U-processes. Ann. Probab. 1993, 21, 1494–1542. [Google Scholar] [CrossRef]
- Sherman, R.P. Maximal inequalities for degenerate U-processes with applications to optimization estimators. Ann. Statist. 1994, 22, 439–459. [Google Scholar] [CrossRef]
- de la Peña, V.H.; Giné, E. Decoupling. From Dependence to Independence, Randomly Stopped Processes. U-Statistics and Processes. Martingales and Beyond; Probability and Its Applications (New York); Springer: New York, NY, USA, 1999; pp. xvi+392. [Google Scholar] [CrossRef]
- Halmos, P.R. The theory of unbiased estimation. Ann. Math. Stat. 1946, 17, 34–43. [Google Scholar] [CrossRef]
- von Mises, R. On the asymptotic distribution of differentiable statistical functions. Ann. Math. Stat. 1947, 18, 309–348. [Google Scholar] [CrossRef]
- Yoshihara, K.i. Limiting behavior of U-statistics for stationary, absolutely regular processes. Z. Wahrscheinlichkeitstheorie und Verw. Gebiete 1976, 35, 237–252. [Google Scholar] [CrossRef]
- Borovkova, S.; Burton, R.; Dehling, H. Limit theorems for functionals of mixing processes with applications to U-statistics and dimension estimation. Trans. Amer. Math. Soc. 2001, 353, 4261–4318. [Google Scholar] [CrossRef]
- Denker, M.; Keller, G. On U-statistics and v. Mises’ statistics for weakly dependent processes. Z. Wahrsch. Verw. Gebiete 1983, 64, 505–522. [Google Scholar] [CrossRef]
- Leucht, A. Degenerate U- and V-statistics under weak dependence: Asymptotic theory and bootstrap consistency. Bernoulli 2012, 18, 552–585. [Google Scholar] [CrossRef]
- Leucht, A.; Neumann, M.H. Degenerate U- and V-statistics under ergodicity: Asymptotics, bootstrap and applications in statistics. Ann. Inst. Statist. Math. 2013, 65, 349–386. [Google Scholar] [CrossRef] [Green Version]
- Bouzebda, S.; Nemouchi, B. Weak-convergence of empirical conditional processes and conditional U-processes involving functional mixing data. Stat. Inference Stoch. Process. Appear 2022, 1–56. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A.; Zari, T. Uniform consistency for functional conditional U-statistics using delta-sequences. Mathematics 2022, 24, 3745. [Google Scholar]
- Soukarieh, I.; Bouzebda, S. Exchangeably Weighted Bootstraps of General Markov U-Process. Mathematics 2022, 10, 3745. [Google Scholar] [CrossRef]
- Bouzebda, S.; Soukarieh, I. Renewal type bootstrap for increasing degree U-process of a Markov chain. J. Multivar. Anal. 2022, 195, 105143. [Google Scholar]
- Bouzebda, S.; Soukarieh, I. Renewal type bootstrap for U-process Markov chains. Markov Process. Related Fields 2022, 13, 1–50. [Google Scholar]
- Frees, E.W. Infinite order U-statistics. Scand. J. Statist. 1989, 16, 29–45. [Google Scholar]
- Rempala, G.; Gupta, A. Weak limits of U-statistics of infinite order. Random Oper. Stochastic Equ. 1999, 7, 39–52. [Google Scholar] [CrossRef]
- Heilig, C.; Nolan, D. Limit theorems for the infinite-degree U-process. Statist. Sinica 2001, 11, 289–302. [Google Scholar]
- Song, Y.; Chen, X.; Kato, K. Approximating high-dimensional infinite-order U-statistics: Statistical and computational guarantees. Electron. J. Stat. 2019, 13, 4794–4848. [Google Scholar] [CrossRef]
- Peng, W.; Coleman, T.; Mentch, L. Rates of convergence for random forests via generalized U-statistics. Electron. J. Stat. 2022, 16, 232–292. [Google Scholar] [CrossRef]
- Faivishevsky, L.; Goldberger, J. ICA based on a Smooth Estimation of the Differential Entropy. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 8–10 December 2008; Koller, D., Schuurmans, D., Bengio, Y., Bottou, L., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2008; Volume 21. [Google Scholar]
- Liu, Q.; Lee, J.; Jordan, M. A Kernelized Stein Discrepancy for Goodness-of-fit Tests. In Proceedings of the 33rd International Conference on Machine Learning, New York, NY, USA, 19–24 June 2016; Balcan, M.F., Weinberger, K.Q., Eds.; PMLR: New York, New York, USA, 2016; Volume 48, pp. 276–284. [Google Scholar]
- Clémençcon, S. On U-processes and clustering performance. In Proceedings of the Advances in Neural Information Processing Systems, Granada, Spain, 12–15 December 2011; Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2011; Volume 24. [Google Scholar]
- Borovskikh, Y.V. U-Statistics in Banach Spaces; VSP: Utrecht, The Netherlands, 1996; pp. xii+420. [Google Scholar]
- Koroljuk, V.S.; Borovskich, Y.V. Theory of U-Statistics; Mathematics and Its Applications; Kluwer Academic Publishers Group: Dordrecht, The Netherlands, 1994; Volume 273, pp. x+552. [Google Scholar]
- Lee, A.J. U-Statistics. Theory and Practice; Statistics: Textbooks and Monographs; Marcel Dekker Inc.: New York, NY, USA, 1990; Volume 110, pp. xii+302. [Google Scholar]
- Aneiros, G.; Cao, R.; Fraiman, R.; Genest, C.; Vieu, P. Recent advances in functional data analysis and high-dimensional statistics. J. Multivar. Anal. 2019, 170, 3–9. [Google Scholar] [CrossRef]
- Ramsay, J.O.; Silverman, B.W. Applied Functional Data Analysis. Methods and Case Studies; Springer Series in Statistics; Springer: New York, NY, USA, 2002; pp. x+190. [Google Scholar] [CrossRef]
- Ferraty, F.; Vieu, P. Nonparametric Functional Data Analysis. Theory and Practice; Springer Series in Statistics; Springer: New York, NY, USA, 2006; pp. xx+258. [Google Scholar]
- Araujo, A.; Giné, E. The Central Limit Theorem for Real and Banach Valued Random Variables; Wiley Series in Probability and Mathematical Statistics; John Wiley & Sons: New York, NY, USA, 1980; pp. xiv+233. [Google Scholar]
- Gasser, T.; Hall, P.; Presnell, B. Nonparametric estimation of the mode of a distribution of random curves. J. R. Stat. Soc. Ser. B Stat. Methodol. 1998, 60, 681–691. [Google Scholar] [CrossRef]
- Bosq, D. Linear Processes in Function Spaces. Theory and Applications; Lecture Notes in Statistics; Springer: New York, NY, USA, 2000; Volume 149, pp. xiv+283. [Google Scholar] [CrossRef]
- Horváth, L.; Kokoszka, P. Inference for Functional Data with Applications; Springer Series in Statistics; Springer: New York, NY, USA, 2012; pp. xiv+422. [Google Scholar] [CrossRef]
- Ling, N.; Vieu, P. Nonparametric modelling for functional data: Selected survey and tracks for future. Statistics 2018, 52, 934–949. [Google Scholar] [CrossRef]
- Ferraty, F.; Laksaci, A.; Tadj, A.; Vieu, P. Rate of uniform consistency for nonparametric estimates with functional variables. J. Statist. Plann. Inference 2010, 140, 335–352. [Google Scholar] [CrossRef]
- Bouzebda, S.; Chaouch, M. Uniform limit theorems for a class of conditional Z-estimators when covariates are functions. J. Multivar. Anal. 2022, 189, 104872. [Google Scholar] [CrossRef]
- Kara-Zaitri, L.; Laksaci, A.; Rachdi, M.; Vieu, P. Uniform in bandwidth consistency for various kernel estimators involving functional data. J. Nonparametr. Stat. 2017, 29, 85–107. [Google Scholar] [CrossRef]
- Attouch, M.; Laksaci, A.; Rafaa, F. On the local linear estimate for functional regression: Uniform in bandwidth consistency. Comm. Statist. Theory Methods 2019, 48, 1836–1853. [Google Scholar] [CrossRef]
- Ling, N.; Meng, S.; Vieu, P. Uniform consistency rate of kNN regression estimation for functional time series data. J. Nonparametr. Stat. 2019, 31, 451–468. [Google Scholar] [CrossRef]
- Bouzebda, S.; Chaouch, M.; Laïb, N. Limiting law results for a class of conditional mode estimates for functional stationary ergodic data. Math. Methods Statist. 2016, 25, 168–195. [Google Scholar] [CrossRef]
- Mohammedi, M.; Bouzebda, S.; Laksaci, A. The consistency and asymptotic normality of the kernel type expectile regression estimator for functional data. J. Multivar. Anal. 2021, 181, 104673. [Google Scholar] [CrossRef]
- Bouzebda, S.; Mohammedi, M.; Laksaci, A. The k-Nearest Neighbors method in single index regression model for functional quasi-associated time series data. Rev. Mat. Complut. 2022, 1–30. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nezzal, A. Uniform consistency and uniform in number of neighbors consistency for nonparametric regression estimates and conditional U-statistics involving functional data. Jpn. J. Stat. Data Sci. 2022, 5, 431–533. [Google Scholar] [CrossRef]
- Didi, S.; Al Harby, A.; Bouzebda, S. Wavelet Density and Regression Estimators for Functional Stationary and Ergodic Data: Discrete Time. Mathematics 2022, 10, 3433. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Kaid, Z.; Laksaci, A. Nonparametric estimation of expectile regression in functional dependent data. J. Nonparametr. Stat. 2022, 34, 250–281. [Google Scholar] [CrossRef]
- Almanjahie, I.M.; Bouzebda, S.; Chikr Elmezouar, Z.; Laksaci, A. The functional kNN estimator of the conditional expectile: Uniform consistency in number of neighbors. Stat. Risk Model. 2022, 38, 47–63. [Google Scholar] [CrossRef]
- Stute, W. Conditional U-statistics. Ann. Probab. 1991, 19, 812–825. [Google Scholar] [CrossRef]
- Sen, A. Uniform strong consistency rates for conditional U-statistics. Sankhyā Ser. A 1994, 56, 179–194. [Google Scholar]
- Prakasa Rao, B.L.S.; Sen, A. Limit distributions of conditional U-statistics. J. Theoret. Probab. 1995, 8, 261–301. [Google Scholar] [CrossRef]
- Harel, M.; Puri, M.L. Conditional U-statistics for dependent random variables. J. Multivar. Anal. 1996, 57, 84–100. [Google Scholar] [CrossRef] [Green Version]
- Stute, W. Symmetrized NN-conditional U-statistics. In Research Developments in Probability and Statistics; VSP: Utrecht, The Netherlands, 1996; pp. 231–237. [Google Scholar]
- Fu, K.A. An application of U-statistics to nonparametric functional data analysis. Comm. Statist. Theory Methods 2012, 41, 1532–1542. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Uniform consistency and uniform in bandwidth consistency for nonparametric regression estimates and conditional U-statistics involving functional data. J. Nonparametr. Stat. 2020, 32, 452–509. [Google Scholar] [CrossRef]
- Bouzebda, S.; Elhattab, I.; Nemouchi, B. On the uniform-in-bandwidth consistency of the general conditional U-statistics based on the copula representation. J. Nonparametr. Stat. 2021, 33, 321–358. [Google Scholar] [CrossRef]
- Jadhav, S.; Ma, S. Kendall’s Tau for Functional Data Analysis. arXiv 2019, arXiv:1912.03725. [Google Scholar]
- Arcones, M.A.; Yu, B. Central limit theorems for empirical and U-processes of stationary mixing sequences. J. Theoret. Probab. 1994, 7, 47–71. [Google Scholar] [CrossRef]
- Bouzebda, S.; Nemouchi, B. Central limit theorems for conditional empirical and conditional U-processes of stationary mixing sequences. Math. Methods Statist. 2019, 28, 169–207. [Google Scholar] [CrossRef]
- Masry, E. Nonparametric regression estimation for dependent functional data: Asymptotic normality. Stoch. Process. Appl. 2005, 115, 155–177. [Google Scholar] [CrossRef] [Green Version]
- Kurisu, D. Nonparametric regression for locally stationary random fields under stochastic sampling design. Bernoulli 2022, 28, 1250–1275. [Google Scholar] [CrossRef]
- Kurisu, D. Nonparametric regression for locally stationary functional time series. Electron. J. Stat. 2022, 16, 3973–3995. [Google Scholar] [CrossRef]
- Kurisu, D.; Kato, K.; Shao, X. Gaussian approximation and spatially dependent wild bootstrap for high-dimensional spatial data. arXiv 2021, arXiv:2103.10720. [Google Scholar]
- Dahlhaus, R. Fitting time series models to nonstationary processes. Ann. Statist. 1997, 25, 1–37. [Google Scholar] [CrossRef]
- Dahlhaus, R.; Subba Rao, S. Statistical inference for time-varying ARCH processes. Ann. Statist. 2006, 34, 1075–1114. [Google Scholar] [CrossRef] [Green Version]
- van Delft, A.; Eichler, M. Locally stationary functional time series. Electron. J. Stat. 2018, 12, 107–170. [Google Scholar] [CrossRef]
- Hall, P.; Patil, P. Properties of nonparametric estimators of autocovariance for stationary random fields. Probab. Theory Related Fields 1994, 99, 399–424. [Google Scholar] [CrossRef]
- Matsuda, Y.; Yajima, Y. Fourier analysis of irregularly spaced data on ℝd. J. R. Stat. Soc. Ser. B Stat. Methodol. 2009, 71, 191–217. [Google Scholar] [CrossRef]
- Lahiri, S.N. Central limit theorems for weighted sums of a spatial process under a class of stochastic and fixed designs. Sankhyā 2003, 65, 356–388. [Google Scholar]
- Lahiri, S.N. Resampling Methods for Dependent Data; Springer Series in Statistics; Springer: New York, NY, USA, 2003; pp. xiv+374. [Google Scholar] [CrossRef]
- Volkonskiĭ, V.A.; Rozanov, Y.A. Some limit theorems for random functions. I. Theor. Probability Appl. 1959, 4, 178–197. [Google Scholar] [CrossRef]
- Rosenblatt, M. Remarks on some nonparametric estimates of a density function. Ann. Math. Statist. 1956, 27, 832–837. [Google Scholar] [CrossRef]
- Ibragimov, I.A.; Solev, V.N. A condition for the regularity of a Gaussian stationary process. Dokl. Akad. Nauk SSSR 1969, 185, 509–512. [Google Scholar]
- Bradley, R.C. A caution on mixing conditions for random fields. Statist. Probab. Lett. 1989, 8, 489–491. [Google Scholar] [CrossRef]
- Bradley, R.C. Some examples of mixing random fields. Rocky Mountain J. Math. 1993, 23, 495–519. [Google Scholar] [CrossRef]
- Doukhan, P. Mixing. Properties and examples; Lecture Notes in Statistics; Springer: New York, NY, USA, 1994; Volume 85, pp. xii+142. [Google Scholar] [CrossRef]
- Dedecker, J.; Doukhan, P.; Lang, G.; León, R.; Louhichi, S.; Prieur, C. Weak Dependence: With Examples and Applications; Lecture Notes in Statistics; Springer: New York, NY, USA, 2007; Volume 190, pp. xiv+318. [Google Scholar]
- Lahiri, S.N.; Zhu, J. Resampling methods for spatial regression models under a class of stochastic designs. Ann. Statist. 2006, 34, 1774–1813. [Google Scholar] [CrossRef] [Green Version]
- Bandyopadhyay, S.; Lahiri, S.N.; Nordman, D.J. A frequency domain empirical likelihood method for irregularly spaced spatial data. Ann. Statist. 2015, 43, 519–545. [Google Scholar] [CrossRef]
- Kolmogorov, A.N.; Tihomirov, V.M. ε-entropy and ε-capacity of sets in functional space. Amer. Math. Soc. Transl. 1961, 17, 277–364. [Google Scholar]
- Dudley, R.M. The sizes of compact subsets of Hilbert space and continuity of Gaussian processes. J. Funct. Anal. 1967, 1, 290–330. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R.M. Uniform Central Limit Theorems; Cambridge Studies in Advanced Mathematics; Cambridge University Press: Cambridge, UK, 1999; Volume 63, pp. xiv+436. [Google Scholar] [CrossRef]
- van der Vaart, A.W.; Wellner, J.A. Weak Convergence and Empirical Processes. With Applications to Statistics; Springer Series in Statistics; Springer: New York, NY, USA, 1996; pp. xvi+508. [Google Scholar] [CrossRef]
- Kosorok, M.R. Introduction to Empirical Processes and Semiparametric Inference; Springer Series in Statistics; Springer: New York, NY, USA, 2008; pp. xiv+483. [Google Scholar] [CrossRef]
- Deheuvels, P. One bootstrap suffices to generate sharp uniform bounds in functional estimation. Kybernetika 2011, 47, 855–865. [Google Scholar]
- Vogt, M. Nonparametric regression for locally stationary time series. Ann. Statist. 2012, 40, 2601–2633. [Google Scholar] [CrossRef]
- Mayer-Wolf, E.; Zeitouni, O. The probability of small Gaussian ellipsoids and associated conditional moments. Ann. Probab. 1993, 21, 14–24. [Google Scholar] [CrossRef]
- Bogachev, V.I. Gaussian Measures; Mathematical Surveys and Monographs; American Mathematical Society: Providence, RI, USA, 1998; Volume 62, pp. xii+433. [Google Scholar] [CrossRef]
- Li, W.V.; Shao, Q.M. Gaussian processes: Inequalities, small ball probabilities and applications. In Stochastic Processes: Theory and Methods; Handbook of Statist: Amsterdam, The Netherlands, 2001; Volume 19, pp. 533–597. [Google Scholar] [CrossRef]
- Ferraty, F.; Mas, A.; Vieu, P. Nonparametric regression on functional data: Inference and practical aspects. Aust. N. Z. J. Stat. 2007, 49, 267–286. [Google Scholar] [CrossRef] [Green Version]
- Lahiri, S.N.; Kaiser, M.S.; Cressie, N.; Hsu, N.J. Prediction of spatial cumulative distribution functions using subsampling. J. Amer. Statist. Assoc. 1999, 94, 86–110. [Google Scholar] [CrossRef]
- van der Vaart, A.W. Asymptotic Statistics; Cambridge Series in Statistical and Probabilistic Mathematics; Cambridge University Press: Cambridge, UK, 1998; Volume 3, pp. xvi+443. [Google Scholar] [CrossRef]
- Mason, D.M. Proving consistency of non-standard kernel estimators. Stat. Inference Stoch. Process. 2012, 15, 151–176. [Google Scholar] [CrossRef]
- Bellet, A.; Habrard, A.; Sebban, M. A Survey on Metric Learning for Feature Vectors and Structured Data. arXiv 2013, arXiv:1306.6709. [Google Scholar]
- Clémençon, S.; Colin, I.; Bellet, A. Scaling-up empirical risk minimization: Optimization of incomplete U-statistics. J. Mach. Learn. Res. 2016, 17, 76. [Google Scholar]
- Jin, R.; Wang, S.; Zhou, Y. Regularized Distance Metric Learning:Theory and Algorithm. In Proceedings of the Advances in Neural Information Processing Systems, Vancouver, BC, Canada, 7–10 December 2009; Bengio, Y., Schuurmans, D., Lafferty, J., Williams, C., Culotta, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2009; Volume 22. [Google Scholar]
- Bellet, A.; Habrard, A. Robustness and generalization for metric learning. Neurocomputing 2015, 151, 259–267. [Google Scholar] [CrossRef] [Green Version]
- Cao, Q.; Guo, Z.C.; Ying, Y. Generalization bounds for metric and similarity learning. Mach. Learn. 2016, 102, 115–132. [Google Scholar] [CrossRef] [Green Version]
- Clémençon, S.; Robbiano, S. The TreeRank Tournament algorithm for multipartite ranking. J. Nonparametr. Stat. 2015, 27, 107–126. [Google Scholar] [CrossRef] [Green Version]
- Clémençon, S.; Robbiano, S.; Vayatis, N. Ranking data with ordinal labels: Optimality and pairwise aggregation. Mach. Learn. 2013, 91, 67–104. [Google Scholar] [CrossRef] [Green Version]
- Dudley, R.M. A course on empirical processes. In École d’été de Probabilités de Saint-Flour, XII—1982; Lecture Notes in Math; Springer: Berlin, Germany, 1984; Volume 1097, pp. 1–142. [Google Scholar] [CrossRef]
- Polonik, W.; Yao, Q. Set-indexed conditional empirical and quantile processes based on dependent data. J. Multivar. Anal. 2002, 80, 234–255. [Google Scholar] [CrossRef] [Green Version]
- Stute, W. Universally consistent conditional U-statistics. Ann. Statist. 1994, 22, 460–473. [Google Scholar] [CrossRef]
- Stute, W. Lp-convergence of conditional U-statistics. J. Multivar. Anal. 1994, 51, 71–82. [Google Scholar] [CrossRef]
- Maillot, B.; Viallon, V. Uniform limit laws of the logarithm for nonparametric estimators of the regression function in presence of censored data. Math. Methods Statist. 2009, 18, 159–184. [Google Scholar] [CrossRef]
- Kohler, M.; Máthé, K.; Pintér, M. Prediction from randomly right censored data. J. Multivar. Anal. 2002, 80, 73–100. [Google Scholar] [CrossRef] [Green Version]
- Carbonez, A.; Györfi, L.; van der Meulen, E.C. Partitioning-estimates of a regression function under random censoring. Statist. Decis. 1995, 13, 21–37. [Google Scholar] [CrossRef]
- Brunel, E.; Comte, F. Adaptive nonparametric regression estimation in presence of right censoring. Math. Methods Statist. 2006, 15, 233–255. [Google Scholar]
- Kaplan, E.L.; Meier, P. Nonparametric estimation from incomplete observations. J. Am. Statist. Assoc. 1958, 53, 457–481. [Google Scholar] [CrossRef]
- Bouzebda, S.; El-hadjali, T. Uniform convergence rate of the kernel regression estimator adaptive to intrinsic dimension in presence of censored data. J. Nonparametr. Stat. 2020, 32, 864–914. [Google Scholar] [CrossRef]
- Datta, S.; Bandyopadhyay, D.; Satten, G.A. Inverse probability of censoring weighted U-statistics for right-censored data with an application to testing hypotheses. Scand. J. Stat. 2010, 37, 680–700. [Google Scholar] [CrossRef]
- Stute, W.; Wang, J.L. Multi-sample U-statistics for censored data. Scand. J. Statist. 1993, 20, 369–374. [Google Scholar]
- Chen, Y.; Datta, S. Adjustments of multi-sample U-statistics to right censored data and confounding covariates. Comput. Statist. Data Anal. 2019, 135, 1–14. [Google Scholar] [CrossRef]
- Yuan, A.; Giurcanu, M.; Luta, G.; Tan, M.T. U-statistics with conditional kernels for incomplete data models. Ann. Inst. Statist. Math. 2017, 69, 271–302. [Google Scholar] [CrossRef]
- Földes, A.; Rejto, L. A LIL type result for the product limit estimator. Z. Wahrsch. Verw. Gebiete 1981, 56, 75–86. [Google Scholar] [CrossRef]
- Bouzebda, S.; El-hadjali, T.; Ferfache, A.A. Uniform in bandwidth consistency of conditional U-statistics adaptive to intrinsic dimension in presence of censored data. Sankhya A 2022, 1–59. [Google Scholar] [CrossRef]
- Hall, P. Asymptotic properties of integrated square error and cross-validation for kernel estimation of a regression function. Z. Wahrsch. Verw. Gebiete 1984, 67, 175–196. [Google Scholar] [CrossRef]
- Härdle, W.; Marron, J.S. Optimal bandwidth selection in nonparametric regression function estimation. Ann. Statist. 1985, 13, 1465–1481. [Google Scholar] [CrossRef]
- Rachdi, M.; Vieu, P. Nonparametric regression for functional data: Automatic smoothing parameter selection. J. Statist. Plann. Inference 2007, 137, 2784–2801. [Google Scholar] [CrossRef]
- Benhenni, K.; Ferraty, F.; Rachdi, M.; Vieu, P. Local smoothing regression with functional data. Comput. Statist. 2007, 22, 353–369. [Google Scholar] [CrossRef]
- Shang, H.L. Bayesian bandwidth estimation for a functional nonparametric regression model with mixed types of regressors and unknown error density. J. Nonparametr. Stat. 2014, 26, 599–615. [Google Scholar] [CrossRef] [Green Version]
- Li, Q.; Maasoumi, E.; Racine, J.S. A nonparametric test for equality of distributions with mixed categorical and continuous data. J. Econom. 2009, 148, 186–200. [Google Scholar] [CrossRef]
- Horowitz, J.L.; Spokoiny, V.G. An adaptive, rate-optimal test of a parametric mean-regression model against a nonparametric alternative. Econometrica 2001, 69, 599–631. [Google Scholar] [CrossRef]
- Gao, J.; Gijbels, I. Bandwidth selection in nonparametric kernel testing. J. Am. Statist. Assoc. 2008, 103, 1584–1594. [Google Scholar] [CrossRef] [Green Version]
- Yu, B. Rates of convergence for empirical processes of stationary mixing sequences. Ann. Probab. 1994, 22, 94–116. [Google Scholar] [CrossRef]
- Bernstein, S. Sur l’extension du théoréme limite du calcul des probabilités aux sommes de quantités dépendantes. Math. Ann. 1927, 97, 1–59. [Google Scholar] [CrossRef]
- Giné, E.; Zinn, J. Some limit theorems for empirical processes. Ann. Probab. 1984, 12, 929–998. [Google Scholar] [CrossRef]
- Bouzebda, S.; Soukarieh, I. Weak Convergence of the Conditional U-statistics for Locally Stationary Functional Time Series. Stat. Inference Stoch. Process. 2022. [Google Scholar]
- Masry, E. Multivariate local polynomial regression for time series: Uniform strong consistency and rates. J. Time Ser. Anal. 1996, 17, 571–599. [Google Scholar] [CrossRef]
- Rio, E. Inequalities and Limit Theorems for Weakly Dependent Sequences. Available online: https://cel.hal.science/cel-00867106/ (accessed on 20 October 2022).
- de la Peña, V.H. Decoupling and Khintchine’s inequalities for U-statistics. Ann. Probab. 1992, 20, 1877–1892. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouzebda, S.; Soukarieh, I. Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics 2023, 11, 16. https://doi.org/10.3390/math11010016
Bouzebda S, Soukarieh I. Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics. 2023; 11(1):16. https://doi.org/10.3390/math11010016
Chicago/Turabian StyleBouzebda, Salim, and Inass Soukarieh. 2023. "Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design" Mathematics 11, no. 1: 16. https://doi.org/10.3390/math11010016
APA StyleBouzebda, S., & Soukarieh, I. (2023). Non-Parametric Conditional U-Processes for Locally Stationary Functional Random Fields under Stochastic Sampling Design. Mathematics, 11(1), 16. https://doi.org/10.3390/math11010016