A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future
Abstract
:1. Introduction
2. Applications of Big Data Technologies in Different Areas
2.1. Big Data Technologies in the e-Health Sector
- (1)
- Replacing missing categories, and standardizing contents in clinical reports;
- (2)
- Abbreviations substitution, through medical dictionaries and ontologies;
- (3)
- Filtering and eliminating data noise, errors and inconsistency, by using Natural Language Processing (NLP) methods.
2.2. Big Data Technologies in the Transportation Sector
- Supervised learning methods: the major data analytic and machine learning methods used in ITS include regression, decision tree, Artificial Neural Network (ANN) and Support Vector Machine (SVM) [29] (Figure 4). Linear regression is one of the most efficient methods for classification, and it has been applied extensively in ITS, for traffic route analysis and traffic flow prediction [31,32,33]. The decision tree method has been applied to ITS applications, such as traffic accident detection, traffic congestion prediction and accident severity prediction [34,35,36]. In [29], the SVM classifier with the kernel function K (x, x’) could derive the support vector αi:
- Unsupervised learning and ontology-based methods: the conventional unsupervised learning method adopted in ITS is K-means, which has been applied to travel time prediction, travel path planning, etc., [29,37,38]. Ontology-based methods deploy data semantics that can efficiently associate data semantic relations, which are extensively applied in the ITS field for semantic traffic data processing [39,40,41].
- Deep learning and reinforced learning methods: the application of reinforced learning in ITS is to reduce the computational overhead through exploring and learning the optimal policy, based on ITS data [42]. Reinforcement learning is feasible in traffic signal control in ITS, as it incorporates supervised and unsupervised methods [43,44]. The Q-learning in reinforced learning modeling is the value iteration update, which is listed as follows:
2.3. Big Data Technologies in the Business and Financial Sectors
3. Trends in Big Data Technologies
4. Metaverse-Related Technologies and Applications
4.1. Digital Human Reconstruction
4.2. Review of Human Body Modeling
4.3. Optimization-Based Paradigm
4.4. Regression-Based Paradigm
4.5. Technologies in AR/VR/XR Platforms and the Metaverse: Future Trends
- (1)
- Digital human reconstruction is becoming a crucial area for the Metaverse and other VR platforms: this is a core technology that can accelerate the development of the Metaverse, so as to truly realize human–machine interaction in virtual worlds, as mentioned in Section 4.1, Section 4.2 and Section 4.3;
- (2)
- Digital Twin-related methods are the foundation for creating digital worlds that can mimic the physical world. The digital twin is defined as the effortless integration of data between a physical and virtual environment, in either direction [167]. VR-developing tools, such as Unreal Engine, Unity, 3DS Max & Maya, SketchUp, etc., will be the major developer’s toolkits for digital twin models in the coming decades. The future trends in digital twin will focus on the following: enabling a conformance relationship between digital twin and the real world; digital world autonomy, runtime self-adaptation and self-management; and integration and cooperation, to achieve common goals or provide services [168]. A number of digital twin applications have been developed, based on Microsoft Kinect sensors and the Oculus VR headset.
- (3)
- Brain–Computer Interface (BCI) technology will become a very important area for the Metaverse and for VR platforms. Previous research indicates that non-invasive BCI technology has been applied extensively in various areas in recent years, because of its minimal potential risks and time precision [169]. Figure 10 shows the high-performance EEG BCI method (left), and EEG BCI experiments (right) [169,170].
- (1)
- Blockchain technology is an efficient and secure solution for digital worlds, such as the Metaverse. In the blockchain model, a new transaction can be verified and added to existing records, i.e., blocks, through linking the new transaction to previous ones, by cryptographic hash operation [172]. Each block contains a cryptographic hash of the previous block, a timestamp, and transaction data [173]. The main characteristics of blockchain technology are that it is secure, decentralized, digitized, collaborative and immutable: these characteristics make blockchain technology a perfect solution for digital virtual worlds, such as the Metaverse. Currently, the most successful security technology for blockchain employs the Public Key Infrastructure (PKI)-based blockchain methods [174]. Researchers in the field have started to search for more efficient solutions. The future trends in blockchain technology development in the Metaverse intend to focus on more autonomous, intelligent and scalable models, such as intelligence-agent-based blockchain [175], Self-Sovereign Identity (SSI) blockchain [176], non-fungible tokens (NFTs) [177] and bio-identity-based blockchain.
- (2)
- Artificial intelligence (AI) is a discipline essential to almost all areas in our modern world, particularly for future virtual worlds such as the Metaverse. AI can accelerate analytical efficiency, enhance security and privacy, improve interoperability, and provide better solutions for human–machine interaction and collaboration. The increase in applications of Natural Language Processing (NLP), sentiment analysis and brain informatics technologies to digital worlds is stimulating the development of AI in these areas. The successful stories of AI implementation in image recognition, voice recognition, human–machine interaction and intuition, reveal the promising future of AI in the Metaverse and other virtual worlds. A recent survey showed that a majority of studies had focused on exploring efficient integration and collaboration between Edge AI architecture and the Metaverse [178].
5. Discussion
5.1. A Chronicle of the Metaverse and the Role of Big Data in the Metaverse
5.2. Literature Review Methods
6. Conclusions
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Abu-Salih, B.; Wongthongtham, P.; Zhu, D.; Chan, K.Y.; Rudra, A. Introduction to Big Data Technology. In Social Big Data Analytics; Springer: New York, NY, USA, 2021; pp. 15–59. [Google Scholar] [CrossRef]
- Gutierrez, D. Big Data Business Impact: Achieving Business Results through Innovation and Disruption. 5th Annual Big Data Executive Survey for 2017. Available online: https://www.businesswire.com/news/home/20170109005058/en/NewVantage-Partners-Releases-5th-Annual-Big-Data-Executive-Survey-for-2017 (accessed on 30 November 2022).
- Chamorro-Premuzic, T. How the Web Distorts Reality and Impairs Our Judgment Skills. The Guardian. 13 May 2014. Available online: https://www.theguardian.com/media-network/media-network-blog/2014/may/13/internet-confirmation-bias (accessed on 30 November 2022).
- Ning, H.; Wang, H.; Lin, Y.; Wang, W.; Dhelim, S.; Farha, F.; Ding, J.; Daneshmand, M. A Survey on Metaverse: The State-of-the-art, Technologies, Applications, and Challenges. arXiv 2021, arXiv:2111.09673. [Google Scholar]
- Lin, R.; Ye, Z.; Wang, H.; Wu, B. Chronic Diseases and Health Monitoring Big Data: A Survey. IEEE Rev. Biomed. Eng. 2018, 11, 275–288. [Google Scholar] [CrossRef]
- Shashkina, V. Why Your Medical Organization Can no Longer Do without a Healthcare Data Warehouse. Itrex Archive. 3 December 2021. Available online: https://medium.datadriveninvestor.com/why-your-medical-organization-can-no-longer-do-without-a-healthcare-data-warehouse-774cd374e0a (accessed on 30 November 2022).
- Chawla, N.V.; Davis, D. Bringing Big Data to Personalized Healthcare: A Patient-Centered Framework. J. Gen. Intern. Med. 2013, 28, 660–665. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yao, Q.; Tian, Y.; Li, P.-F.; Tian, L.-L.; Qian, Y.-M.; Li, J.-S. Design and Development of a Medical Big Data Processing System Based on Hadoop. J. Med. Syst. 2015, 39. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Qiu, M.; Tsai, C.-W.; Hassan, M.M.; Alamri, A. Health-CPS: Healthcare Cyber-Physical System Assisted by Cloud and Big Data. IEEE Syst. J. 2015, 11, 88–95. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Dayal, U.; Narasayya, V. An overview of business intelligence technology. Commun. ACM 2011, 54, 88–98. [Google Scholar] [CrossRef] [Green Version]
- Rathore, M.M.; Ahmad, A.; Paul, A.; Wan, J.; Zhang, D. Real-time Medical Emergency Response System: Exploiting IoT and Big Data for Public Health. J. Med. Syst. 2016, 40, 283. [Google Scholar] [CrossRef]
- Poon, C.C.Y.; Lo, B.P.L.; Yuce, M.R.; Alomainy, A.; Hao, Y. Body Sensor Networks: In the Era of Big Data and Beyond. IEEE Rev. Biomed. Eng. 2015, 8, 4–16. [Google Scholar] [CrossRef]
- Bussmann, J.B.J.; Martens, W.L.J.; Tulen, J.H.M.; Schasfoort, F.C.; Berg-Emons, H.J.G.V.D.; Stam, H.J. Measuring daily behavior using ambulatory accelerometry: The Activity Monitor. Behav. Res. Methods Instrum. Comput. 2001, 33, 349–356. [Google Scholar] [CrossRef] [Green Version]
- Malasri, K.; Wang, L. Addressing security in medical sensor networks. In Proceedings of the HealthNet’07: 1st ACM SIGMOBILE International Workshop on Systems and Networking Support for Healthcare and Assisted Living Environments, New York, NY, USA, 11 June 2007; pp. 7–12. [Google Scholar] [CrossRef]
- Lavigne, T.; Mbarek, B.; Pitner, T. A Real Time Healthcare Tracking System based on Blockchain Application. In Proceedings of the 2021 IEEE/ACS 18th International Conference on Computer Systems and Applications, Tangier, Marocco, 8–11 November 2021; pp. 1–8. [Google Scholar]
- Lee, S.; Gandla, S.; Naqi, M.; Jung, U.; Youn, H.; Pyun, D.; Rhee, Y.; Kang, S.; Kwon, H.-J.; Kim, H.; et al. All-Day Mobile Healthcare Monitoring System Based on Heterogeneous Stretchable Sensors for Medical Emergency. IEEE Trans. Ind. Electron. 2019, 67, 8808–8816. [Google Scholar] [CrossRef]
- Chakraborty, C.; Kishor, A. Real-Time Cloud-Based Patient-Centric Monitoring Using Computational Health Systems. IEEE Trans. Comput. Soc. Syst. 2022, 9, 1613–1623. [Google Scholar] [CrossRef]
- Jiang, Y.; Sha, L.; Rahmaniheris, M.; Wan, B.; Hosseini, M.; Tan, P.; Berlin, R.B. Sepsis Patient Detection and Monitor Based on Auto-BN. J. Med. Syst. 2016, 40, 111. [Google Scholar] [CrossRef] [PubMed]
- Dillinger, P.; Vogelbruch, J.F.; Leinen, J.; Suslov, S.; Patzak, R.; Winkler, H.; Schwan, K. FPGA-Based Real-Time Image Seg-mentation for Medical Systems and Data Processing. IEEE Trans. Nucl. Sci. 2006, 53, 2097–2101. [Google Scholar] [CrossRef]
- He, D.; Chen, C.; Chan, S.; Bu, J.; Vasilakos, A.V. ReTrust: Attack-Resistant and Lightweight Trust Management for Medical Sensor Networks. IEEE Trans. Inf. Technol. Biomed. 2012, 16, 623–632. [Google Scholar] [CrossRef]
- Zwolenski, M.; Weatherill, L. The Digital Universe Rich Data and the Increasing Value of the Internet of Things. J. Telecommun. Digit. Econ. 2014, 2, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Mønsted, T. Achieving veracity: A study of the development and use of an information system for data analysis in preventive healthcare. Health Inform. J. 2017, 25, 491–499. [Google Scholar] [CrossRef] [Green Version]
- Naeini, E.K.; Azimi, I.; Rahmani, A.M.; Liljeberg, P.; Dutt, N. A Real-time PPG Quality Assessment Approach for Healthcare Internet-of-Things. Procedia Comput. Sci. 2019, 151, 551–558. [Google Scholar] [CrossRef]
- Naeini, E.K.; Shahhosseini, S.; Kanduri, A.; Liljeberg, P.; Rahmani, A.M.; Dutt, N. AMSER: Adaptive Multimodal Sensing for Energy Efficient and Resilient eHealth Systems. In Proceedings of the 2022 Design, Automation & Test in Europe Conference & Exhibition (DATE), Antwerp, Belgium, 14–23 March 2022; pp. 1455–1460. [Google Scholar] [CrossRef]
- Muhammad, G.; Alshehri, F.; Karray, F.; El Saddik, A.; Alsulaiman, M.; Falk, T.H. A comprehensive survey on multimodal medical signals fusion for smart healthcare systems. Inf. Fusion 2021, 76, 355–375. [Google Scholar] [CrossRef]
- Deshpande, P.; Rasin, A.; Tchoua, R.; Furst, J.; Raicu, D.; Antani, S. Enhancing Recall Using Data Cleaning for Biomedical Big Data. In Proceedings of the IEEE 33rd International Symposium on Computer-Based Medical Systems (CBMS), Rochester, MN, USA, 28–30 July 2020; pp. 265–270. [Google Scholar]
- Zhang, J.; Wang, F.-Y.; Wang, K.; Lin, W.-H.; Xu, X.; Chen, C. Data-Driven Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2011, 12, 1624–1639. [Google Scholar] [CrossRef]
- Shi, Q.; Abdel-Aty, M. Big data applications in real-time traffic operation and safety monitoring and improvement on urban express ways. Transp. Res. C Emerg. Technol. 2015, 58, 380–394. [Google Scholar] [CrossRef]
- Zhu, L.; Yu, F.R.; Wang, Y.; Ning, B.; Tang, T. Big Data Analytics in Intelligent Transportation Systems: A Survey. IEEE Trans. Intell. Transp. Syst. 2019, 20, 383–398. [Google Scholar] [CrossRef]
- Mohamed, N.; Al-Jaroodi, J. Real-time big data analytics: Applications and challenges. In Proceedings of the 2014 International Conference on High Performance Computing & Simulation (HPCS), Bologna, Italy, 21–25 July 2014; pp. 305–310. [Google Scholar] [CrossRef]
- Lin, X.; Wang, P.; Wu, B. Log analysis in cloud computing environment with Hadoop and Spark. In Proceedings of the 2013 5th IEEE International Conference on Broadband Network & Multimedia Technology, Bristol, UK, 17–19 November 2013; pp. 273–276. [Google Scholar] [CrossRef]
- Shan, Z.; Zhao, D.; Xia, Y. Urban road traffic speed estimation for missing probe vehicle data based on multiple linear regression model. In Proceedings of the 16th International IEEE Conference on Intelligent Transportation Systems (ITSC 2013), The Hague, The Netherlands, 6–9 October 2013; pp. 118–123. [Google Scholar]
- Zenina, N.; Borisov, A. Regression Analysis for Transport Trip Generation Evaluation. Inf. Technol. Manag. Sci. 2013, 16, 89–94. [Google Scholar] [CrossRef] [Green Version]
- Abellán, J.; López, G.; de Oña, J. Analysis of traffic accident severity using Decision Rules via Decision Trees. Expert Syst. Appl. 2013, 40, 6047–6054. [Google Scholar] [CrossRef] [Green Version]
- Xie, C.; Lu, J.; Parkany, E. Work Travel Mode Choice Modeling with Data Mining: Decision Trees and Neural Networks. Transp. Res. Rec. J. Transp. Res. Board 2003, 1854, 50–61. [Google Scholar] [CrossRef]
- Silva, C.; Saraee, M. Predicting Road Traffic Accident Severity using Decision Trees and Time-Series Calendar Heatmaps. In Proceedings of the 2019 IEEE Conference on Sustainable Utilization and Development in Engineering and Technologies (CSUDET), Penang, Malaysia, 7–9 November 2019; pp. 99–104. [Google Scholar] [CrossRef]
- Meng, Y.; Liu, X. Application of K-means Algorithm Based on Ant Clustering Algorithm in Macroscopic Planning of Highway Transportation Hub. In Proceedings of the 2007 First IEEE International Symposium on Information Technologies and Applications in Education, Kunming, China, 23–25 November 2007; pp. 483–488. [Google Scholar] [CrossRef]
- Nath, R.P.D.; Lee, H.-J.; Chowdhury, N.K.; Chang, J.-W. Modified K-Means Clustering for Travel Time Prediction Based on Historical Traffic Data. In Proceedings of the International Conference on Knowledge-Based and Intelligent Information and Engineering Systems, Cardiff, UK, 8–10 September 2010; pp. 511–521. [Google Scholar] [CrossRef]
- Fernandez, S.; Ito, T. Driver Behavior Model Based on Ontology for Intelligent Transportation Systems. In International Workshop on Learning Technology for Education in Cloud; Springer: Cham, Switzerland, 2015; pp. 227–231. [Google Scholar] [CrossRef]
- Fernandez, S.; Ito, T. Using SSN ontology for automatic traffic light settings on intelligent transportation systems. In Proceedings of the 2016 IEEE International Conference on Agents (ICA), Matsue, Japan, 28–30 September 2016; pp. 106–107. [Google Scholar]
- Gregor, D.; Toral, S.; Ariza, T.; Barrero, F.; Gregor, R.; Rodas, J.; Arzamendia, M. A methodology for structured ontology construction applied to intelligent transportation systems. Comput. Stand. Interfaces 2016, 47, 108–119. [Google Scholar] [CrossRef] [Green Version]
- Michalski, R.S.; Carbonell, J.G.; Mitchell, T.M. Machine Learning: An Artificial Intelligence Approach; Springer: New York, NY, USA, 2013; pp. 300–460. [Google Scholar]
- Li, L.; Lv, Y.; Wang, F.-Y. Traffic signal timing via deep reinforcement learning. IEEE/CAA J. Autom. Sin. 2016, 3, 247–254. [Google Scholar] [CrossRef]
- Arel, I.; Liu, C.; Urbanik, T.; Kohls, A. Reinforcement learning-based multi-agent system for network traffic signal control. IET Intell. Transp. Syst. 2010, 4, 128–135. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.; Bradley, J.; Yavuz, B.; Sparks, E.; Venkataraman, S.; Liu, D.; Freeman, J.; Tsai, D.B.; Amde, M.; Owen, S.; et al. Mllib: Machine learning in apache spark. J. Mach. Learn. Res. 2016, 17, 1–7. [Google Scholar]
- Mian, R.; Ghanbari, H.; Zareian, S.; Shtern, M.; Litoiu, M. A Data Platform for the Highway Traffic Data. In Proceedings of the 2014 IEEE 8th International Symposium on the Maintenance and Evolution of Service-Oriented and Cloud-Based Systems, Raleigh, NC, USA, 29 September 2014; pp. 47–52. [Google Scholar] [CrossRef]
- Shtern, M.; Mian, R.; Litoiu, M.; Zareian, S.; Abdelgawad, H.; Tizghadam, A. Towards a Multi-cluster Analytical Engine for Transportation Data. In Proceedings of the 2014 International Conference on Cloud and Autonomic Computing, Washington, DC, USA, 8–12 September 2014; pp. 249–257. [Google Scholar] [CrossRef]
- Zareian, S.; Veleda, R.; Litoiu, M.; Shtern, M.; Ghanbari, H.; Garg, M. K-feed—A data-oriented approach to application per-formance management in cloud. In Proceedings of the 2015 IEEE 8th International Conference on Cloud Computing, New York, NY, USA, 27 June–2 July 2015; pp. 1045–1048. [Google Scholar]
- Khazaei, H.; Zareian, S.; Veleda, R.; Litoiu, M. Sipresk: A Big Data Analytic Platform for Smart Transportation. In Proceedings of the Smart City 360° 2016. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, Bratislava, Slovakia; Toronto, ON, Canada, 13–16 October 2015; Springer: Cham, Switzerland, 2015; Volume 166, pp. 419–430. [Google Scholar]
- Kamel, I.R.; Abdelgawad, H.; Abdulhai, B. Transportation Big Data Simulation Platform for the Greater Toronto Area (GTA). In Smart City 360°; Springer: New York, NY, USA, 2016; pp. 443–454. [Google Scholar] [CrossRef]
- Cheng, N.; Lyu, F.; Chen, J.; Xu, W.; Zhou, H.; Zhang, S.; Shen, X. Big Data Driven Vehicular Networks. IEEE Netw. 2018, 32, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Avdeeva, I.L.; Polyanin, A.V.; Golovina, T.A. Digitalization of industrial economic systems: Problems and consequences of modern technologies. Econ. Control. Law 2019, 19, 238–245. [Google Scholar] [CrossRef]
- Hale, G.; Lopez, J.A. Monitoring banking system connectedness with big data. J. Econ. 2019, 212, 203–220. [Google Scholar] [CrossRef]
- Hasan, M.; Popp, J.; Oláh, J. Current landscape and influence of big data on finance. J. Big Data 2020, 7, 21. [Google Scholar] [CrossRef]
- Einav, L.; Levin, J. The Data Revolution and Economic Analysis. Innov. Policy Econ. 2014, 14, 1–24. [Google Scholar] [CrossRef] [Green Version]
- Cheng, X.; Liu, S.; Sun, X.; Wang, Z.; Zhou, H.; Shao, Y.; Shen, H. Combating emerging financial risks in the big data era: A perspective review. Fundam. Res. 2021, 1, 595–606. [Google Scholar] [CrossRef]
- Gates, C.; Matthews, P. Data is the new currency. In Proceedings of the 2014 New Security Paradigms Workshop; ACM: Victoria, Australia, 2014; pp. 105–116. [Google Scholar]
- Shen, D.; Chen, S. Big data finance and financial markets. In Proceedings of the Big Data in Computational Social Science and Humanities; Chen, S.H., Ed.; Series: Computational Social Sciences. Springer: New York, NY, USA, 2018; pp. 235–248. [Google Scholar]
- Sun, Y.; Shi, Y.; Zhang, Z. Finance Big Data: Management, Analysis, and Applications. Int. J. Electron. Commer. 2019, 23, 9–11. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Zhao, Y.; Sun, L. Big Data Analytics for Venture Capital Application: Towards Innovation Performance Improvement. Int. J. Inf. Manag. 2018, 50, 557–565. [Google Scholar] [CrossRef]
- Tang, Y.; Xiong, J.J.; Luo, Y.; Zhang, Y.-C. How Do the Global Stock Markets Influence One Another? Evidence from Finance Big Data and Granger Causality Directed Network. Int. J. Electron. Commer. 2019, 23, 85–109. [Google Scholar] [CrossRef] [Green Version]
- Yadegaridehkordi, E.; Nilashi, M.; Shuib, L.; Nasir, M.H.N.B.M.; Asadi, S.; Samad, S.; Awang, N.F. The impact of big data on firm performance in hotel industry. Electron. Commer. Res. Appl. 2019, 40, 100921. [Google Scholar] [CrossRef]
- Wright, L.T.; Robin, R.; Stone, M.; Aravopoulou, E. Adoption of Big Data Technology for Innovation in B2B Marketing. J. Bus. Bus. Mark. 2019, 26, 281–293. [Google Scholar] [CrossRef]
- Chai, S.; Shih, W. Why big data isn’t enough. MIT Sloan Manag. Rev. 2017, 58, 57–61. [Google Scholar]
- Loukis, E.; Kyriakou, N.; Pazalos, K.; Popa, S. Inter-organizational innovation and cloud computing. Electron. Commer. Res. 2016, 17, 379–401. [Google Scholar] [CrossRef]
- Babu, M.M.; Rahman, M.; Alam, A.; Dey, B.L. Exploring big data-driven innovation in the manufacturing sector: Evidence from UK firms. Ann. Oper. Res. 2021, 1–28. [Google Scholar] [CrossRef] [PubMed]
- Pousttchi, K.; Hufenbach, Y. Engineering the Value Network of the Customer Interface and Marketing in the Data-Rich Retail Environment. Int. J. Electron. Commer. 2014, 18, 17–42. [Google Scholar] [CrossRef]
- Grover, P.; Kar, A.K. Big Data Analytics: A Review on Theoretical Contributions and Tools Used in Literature. Glob. J. Flex. Syst. Manag. 2017, 18, 203–229. [Google Scholar] [CrossRef]
- Lacity, M.; Willcocks, L. Business process outsourcing and dynamic innovation. Strateg. Outsourcing Int. J. 2014, 7, 66–92. [Google Scholar] [CrossRef]
- Zhan, Y.; Tan, K.H.; Ji, G.; Chung, L.; Tseng, M. A big data framework for facilitating product innovation processes. Bus. Process. Manag. J. 2017, 23, 518–536. [Google Scholar] [CrossRef] [Green Version]
- Wamba, S.F. Big data analytics and business process innovation. Bus. Process. Manag. J. 2017, 23, 470–476. [Google Scholar] [CrossRef]
- Han, J.; Pei, J.; Tong, H. Data Mining Concepts and Techniques, 4th ed.; Elsevier: Amsterdam, The Netherlands, 2022. [Google Scholar]
- Willis, G.; Tranos, E. Using ‘Big Data’ to understand the impacts of Uber on taxis in New York City. Travel Behav. Soc. 2021, 22, 94–107. [Google Scholar] [CrossRef]
- Zhang, H.L.; Zhao, Y.; Pang, C.; He, J. Splitting Large Medical Data Sets Based on Normal Distribution in Cloud Environment. IEEE Trans. Cloud Comput. 2015, 8, 518–531. [Google Scholar] [CrossRef]
- Lyko, K.; Nitzschke, M.; Ngomo, A.N. Big Data Acquisition. In New Horizons for a Data-Driven Economy; Cavanillas, J.M., Ed.; Springer Press: New York, NY, USA, 2016; pp. 39–61. [Google Scholar]
- Coda, F.A.; Filho, D.J.S.; Junqueira, F.; Miyagi, P.E. Big Data Acquisition Architecture: An Industry 4.0 Approach. In Technological Innovation for Life Improvement; Camarinha-Matos, L., Farhadi, N., Lopes, F., Pereira, H., Eds.; Springer: New York, NY, USA, 2020; pp. 222–229. [Google Scholar]
- Chang, W.; Boyd, D.; Levin, O. NIST Big Data Interoperability Framework: Volume 6, Reference Architecture; National Institute of Standards and Technology: Gaithersburg, MD, USA, 2019. Available online: https://www.nist.gov/publications/nist-big-data-interoperability-framework-volume-6-reference-architecture?pub_id=918936 (accessed on 19 October 2022).
- Jain, P.; Gyanchandani, M.; Khare, N. Big data privacy: A technological perspective and review. J. Big Data 2016, 3, 25. [Google Scholar] [CrossRef] [Green Version]
- Rafiq, F.; Awan, M.J.; Yasin, A.; Nobanee, H.; Zain, A.M.; Bahaj, S.A. Privacy Prevention of Big Data Applications: A Systematic Literature Review. SAGE Open 2022, 12. [Google Scholar] [CrossRef]
- Saheb, T.; Saheb, T. Understanding the development trends of big data technologies: An analysis of patents and the cited scholarly works. J. Big Data 2020, 7, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Vinoski, S. Advanced Message Queuing Protocol. IEEE Internet Comput. 2006, 10, 87–89. [Google Scholar] [CrossRef] [Green Version]
- Saint-Andre, P.; Smith, K.; Tronçon, R. XMPP: The Definitive Guide: Building Real-Time Applications with Jabber Technologies, 1st ed.; O’Reilly Press: Sebastopol, CA, USA, 2009. [Google Scholar]
- Moniruzzaman, A.B.; Hossain, S.A. NoSQL Database: New Era of Databases for Big Data Analytics-Classification, Characteristics and Comparison. arXiv 2013, arXiv:1307.0191. [Google Scholar]
- Hannah, S.; Deepa, A.J.; Chooralil, V.S.; BrillySangeetha, S.; Yuvaraj, N.; Raja, R.A.; Suresh, C.; Vignesh, R.; AbdullahR, Y.; Srihari, K.; et al. Blockchain-Based Deep Learning to Process IoT Data Acquisition in Cognitive Data. BioMed Res. Int. 2022, 2022, 5038851. [Google Scholar] [CrossRef]
- Tittel, E. Data Fabric for Dummies. Hitachi Vantara Special Edition; John Wiley & Sons Press: Hoboken, NJ, USA, 2021. [Google Scholar]
- Zhang, Y.; Yang, X.J.; Zhou, F. Disengagement Cause-and-Effect Relationships Extraction Using an NLP Pipeline. IEEE Trans. Intell. Transp. Syst. 2022, 23, 1–10. [Google Scholar] [CrossRef]
- Cook, I. Apache Hive Language Manual. Apache Software Foundation. 2018. Available online: https://cwiki.apache.org/confluence/display/Hive/LanguageManual (accessed on 9 December 2022).
- IBM Cloud Education. Hadoop vs. Spark: What’s the Difference? IBM Company Press. 2021. Available online: https://www.ibm.com/cloud/blog/hadoop-vs-spark (accessed on 30 November 2022).
- Chen, S.; Haziza, D.; Mashreghi, Z. A Comparison of Existing Bootstrap Algorithms for Multi-Stage Sampling Designs. Stats 2022, 5, 521–537. [Google Scholar] [CrossRef]
- Fu, Y.; Xiao, N.; Chen, T.; Wang, J. Fog-to-MultiCloud Cooperative Ehealth Data Management with Application-Aware Secure Deduplication. IEEE Trans. Dependable Secur. Comput. 2022, 19, 3136–3148. [Google Scholar] [CrossRef]
- Zheng, Z.; Zhu, J.; Lyu, M.R. Service-Generated Big Data and Big Data-as-a-Service: An Overview. In Proceedings of the 2013 IEEE International Congress on Big Data, Silicon Valley, CA, USA, 6–9 October 2013; pp. 403–410. [Google Scholar] [CrossRef]
- Lu, J.; Shen, J.; Vijayakumar, P.; Gupta, B.B. Blockchain-Based Secure Data Storage Protocol for Sensors in the Industrial Internet of Things. IEEE Trans. Ind. Inform. 2021, 18, 5422–5431. [Google Scholar] [CrossRef]
- Tallis, B. NVM Express, Inc. Documentation. NVMe 1.4 Specification Published: Further Optimizing Performance and Reli-Ability. Available online: https://www.anandtech.com/show/14543/nvme-14-specification-published (accessed on 10 December 2022).
- Huang, Q.; Zhang, H.L.; Chen, G.; Tong, J.; Lee, S. An Optimized High Dimension Data Reduction Method based on Covariance. In Proceedings of the Web Intelligence Workshops (WI), Niagara Falls, ON, Canada, 17–20 November 2022; pp. 1–6. [Google Scholar]
- Niemann, K.; Wolpers, M. A new collaborative filtering approach for increasing the aggregate diversity of recommender systems. In Proceedings of the 19th ACM SIGKDD on Knowledge Discovery and Data mining (KDD), Chicago, IL, USA, 11–14 August 2013; pp. 955–963. [Google Scholar] [CrossRef]
- Winlaw, M.; Hynes, M.B.; Caterini, A.; De Sterck, H. Algorithmic Acceleration of Parallel ALS for Collaborative Filtering: Speeding up Distributed Big Data Recommendation in Spark. In Proceedings of the IEEE 21st International Conference on Parallel and Distributed Systems (ICPADS), Melbourne, Australia, 14–17 December 2015; pp. 682–691. [Google Scholar] [CrossRef]
- Kriegel, H.; Kröger, P.; Sander, J.; Zimek, A. Density-based clustering. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 2011, 1, 231–240. [Google Scholar] [CrossRef]
- Akinduko, A.A.; Mirkes, E.; Gorban, A. SOM: Stochastic initialization versus principal components. Inf. Sci. 2016, 364–365, 213–221. [Google Scholar] [CrossRef]
- Sangeetha, K.; Prabha, D. RETRACTED ARTICLE: Sentiment analysis of student feedback using multi-head attention fusion model of word and context embedding for LSTM. J. Ambient. Intell. Humaniz. Comput. 2020, 12, 4117–4126. [Google Scholar] [CrossRef]
- Rani, K.S.; Kumari, M.; Singh, V.B.; Sharma, M. Deep Learning with Big Data: An Emerging Trend. In Proceedings of the 19th International Conference on Computational Science and Its Applications, Saint Petersburg, Russia, 1–4 July 2019; pp. 93–101. [Google Scholar]
- Moran, A.; Gadepally, V.; Hubbell, M.; Kepner, J. Improving Big Data visual analytics with interactive virtual reality. In Proceedings of the IEEE High Performance Extreme Computing Conference (HPEC), Waltham, MA, USA, 15–17 September 2015; pp. 1–6. [Google Scholar]
- Im, D.; Lee, S.; Lee, H.; Yoon, B.; So, F.; Jeong, J. A Data-Centric Approach to Design and Analysis of a Surface-Inspection System Based on Deep Learning in the Plastic Injection Molding Industry. Processes 2021, 9, 1895. [Google Scholar] [CrossRef]
- Salomaa, A. Public-Key Cryptography, 2nd ed.; Springer: Berlin, Germany, 1996; p. 275. [Google Scholar]
- Xu, K.; Yue, H.; Guo, L.; Guo, Y.; Fang, Y. Privacy-Preserving Machine Learning Algorithms for Big Data Systems. In Proceedings of the IEEE 35th International Conference on Distributed Computing Systems, Columbus, OH, USA, 29 June–2 July 2015; pp. 318–327. [Google Scholar]
- Dwork, C.; Roth, A. The Algorithmic Foundations of Differential Privacy. Found. Trends Theor. Comput. Sci. 2014, 9, 211–407. [Google Scholar] [CrossRef]
- Bhathal, G.S.; Singh, A. Big Data: Hadoop framework vulnerabilities, security issues and attacks. Array 2019, 1–2. [Google Scholar] [CrossRef]
- Jagatheesaperumal, S.K.; Rahouti, M.; Ahmad, K.; Al-Fuqaha, A.; Guizani, M. The Duo of Artificial Intelligence and Big Data for Industry 4.0: Applications, Techniques, Challenges, and Future Research Directions. IEEE Internet Things J. 2021, 9, 12861–12885. [Google Scholar] [CrossRef]
- Wang, X.; Yang, L.T.; Liu, H.; Deen, M.J. A Big Data-as-a-Service Framework: State-of-the-Art and Perspectives. IEEE Trans. Big Data 2017, 4, 325–340. [Google Scholar] [CrossRef]
- Oseledets, I. Tensor-Train Decomposition. SIAM J. Sci. Comput. 2011, 33, 2295–2317. [Google Scholar] [CrossRef]
- Dionisio, J.; Gilbert, R. 3D virtual worlds and the Metaverse: Current status and future possibilities. ACM Comput. Surv. 2013, 45, 1–38. [Google Scholar] [CrossRef]
- Suzuki, S.-N.; Kanematsu, H.; Barry, D.M.; Ogawa, N.; Yajima, K.; Nakahira, K.T.; Shirai, T.; Kawaguchi, M.; Kobayashi, T.; Yoshitake, M. Virtual Experiments in Metaverse and their Applications to Collaborative Projects: The framework and its significance. Procedia Comput. Sci. 2020, 176, 2125–2132. [Google Scholar] [CrossRef]
- Gogolin, G.; Gogolin, E.; Kam, H.-J. Virtual worlds and social media: Security and privacy concerns, implications, and practices. Int. J. Artif. Life Res. 2014, 4, 30–42. [Google Scholar] [CrossRef]
- Mozumder, M.A.I.; Sheeraz, M.M.; Athar, A.; Aich, S.; Kim, H.-C. Overview: Technology Roadmap of the Future Trend of Metaverse based on IoT, Blockchain, AI Technique, and Medical Domain Metaverse Activity. In Proceedings of the 24th Interna-tional Conference on Advanced Communication Technology, Pyeongchang, Korea, 13–16 February 2022; pp. 256–261. [Google Scholar]
- de Gérase, N. Nicomachi Geraseni Pythagorei Introductionis Arithmeticae Libri II; Bibliotheca Scriptorum Graecorum et Romanorum Teubneriana; Aedibvs B.G. Teubneri: Stuttgart, Germany, 1866; pp. 1–198. Available online: https://openlibrary.org/works/OL3947510W/Nicomachi_Geraseni_Pythagorei_introductionis_arithmeticae_libri_II (accessed on 30 November 2022).
- Rivest, R.L.; Shamir, A.; Adleman, L. A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 1978, 21, 120–126. [Google Scholar] [CrossRef] [Green Version]
- Kolotouros, N.; Pavlakos, G.; Black, M.; Daniilidis, K. Learning to Reconstruct 3D Human Pose and Shape via Model-Fitting in the Loop. In Proceedings of the IEEE International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019. [Google Scholar] [CrossRef] [Green Version]
- Cao, Z.; Hidalgo, G.; Simon, T.; Wei, S.E.; Sheikh, Y. OpenPose: Realtime Multi-Person 2D Pose Estimation Using Part Affinity Fields. IEEE Trans. Pattern Anal. Mach. Intell. 2019, 43, 172–186. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lin, S.; Yang, L.; Saleemi, I.; Sengupta, S. Robust high-resolution video matting with temporal guidance. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 4 – 8 January 2022; pp. 238–247. [Google Scholar]
- Bhatia, S.; Sigal, L.; Isard, M.; Black, M. 3D Human Limb Detection using Space Carving and Multi-View Eigen Models. In Proceedings of the 2004 Conference on Computer Vision and Pattern Recognition Workshop, Washington, DC, USA, 27 June–2 July 2004; p. 17. [Google Scholar]
- Agarwal, A.; Triggs, B. Recovering 3D Human Pose from Monocular Images. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 44–58. [Google Scholar] [CrossRef] [Green Version]
- Martinez, J.; Hossain, R.; Romero, J.; Little, J.J. A Simple Yet Effective Baseline for 3D Human Pose Estimation. In Proceedings of the IEEE International Conference on Computer Vision, ICCV 2017, Venice, Italy, 22–29 October 2017; pp. 2659–2668. [Google Scholar]
- Mehta, D.; Sotnychenko, O.; Mueller, F.; Xu, W.; Elgharib, M.; Fua, P.; Seidel, H.P.; Rhodin, H.; Pons-Moll, G.; Theobalt, C. XNect: Real-time multi-person 3D motion capture with a single RGB camera. ACM Trans. Graph. 2020, 39, 82:1–82:17. [Google Scholar] [CrossRef]
- Federica, B.; Kanazawa, A.; Lassner, C.; Gehler, P.; Romero, J.; Black, M.J. Keep it SMPL: Automatic estimation of 3D human pose and shape from a single image. In European Conference on Computer Vision; Springer: Cham, Switzerland, 2016; pp. 561–578. [Google Scholar]
- Kanazawa, A.; Black, M.J.; Jacobs, D.W.; Malik, J. End-to-end Recovery of Human Shape and Pose. In Proceedings of the Computer Vision and Pattern Regognition (CVPR), San Juan, PR, USA, 17–19 June 2018; pp. 1–10. [Google Scholar]
- Pavlakos, G.; Zhu, L.; Zhou, X.; Daniilidis, K. Learning to Estimate 3D Human Pose and Shape from a Single Color Image. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 459–468. [Google Scholar]
- Pavlakos, G.; Choutas, V.; Ghorbani, N.; Bolkart, T.; Osman, A.A.; Tzionas, D.; Black, M.J. Expressive body capture: 3d hands, face, and body from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2019; pp. 10975–10985. [Google Scholar]
- Choutas, V.; Pavlakos, G.; Bolkart, T.; Tzionas, D.; Black, M.J. Monocular Expressive Body Regression Through Body-Driven Attention. In Proceedings of the European Conference on Computer Vision; Springer: Cham, Switzerland, 2020; pp. 20–40. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Z.; An, L.; Li, M.; Yu, T.; Liu, Y. Lightweight multi-person total motion capture using sparse multi-view cameras. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 5560–5569. [Google Scholar]
- Zheng, Z.; Yu, T.; Liu, Y.; Dai, Q. Pamir: Parametric model-conditioned implicit representation for image-based human re-construction. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 44, 3170–3184. [Google Scholar] [CrossRef]
- Huang, Z.; Xu, Y.; Lassner, C.; Li, H.; Tung, T. Arch: Animatable reconstruction of clothed humans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 13–19 June 2020; pp. 3093–3102. [Google Scholar]
- Ma, Q.; Yang, J.; Tang, S.; Black, M.J. The power of points for modeling humans in clothing. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 10–17 October 2021; pp. 10974–10984. [Google Scholar]
- Peng, S.; Zhang, Y.; Xu, Y.; Wang, Q.; Shuai, Q.; Bao, H.; Zhou, X. Neural Body: Implicit Neural Representations with Structured Latent Codes for Novel View Synthesis of Dynamic Humans. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 9050–9059. [Google Scholar] [CrossRef]
- Mir, A.; Alldieck, T.; Pons-Moll, G. Learning to transfer texture from clothing images to 3d humans. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 13–19 June 2020; pp. 7023–7034. [Google Scholar]
- Yang, F.; Li, R.; Georgakis, G.; Karanam, S.; Chen, T.; Ling, H.; Wu, Z. Robust multi-modal 3d patient body modeling. In Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention; Springer: New York, NY, USA, 2020; pp. 86–95. [Google Scholar]
- Lee, H.-J.; Chen, Z. Determination of 3D human body postures from a single view. Comput. Vis. Graph. Image Process. 1985, 30, 148–168. [Google Scholar] [CrossRef]
- Nevatia, R.; Binford, T.O. Description and recognition of curved objects. Artif. Intell. 1977, 8, 77–98. [Google Scholar] [CrossRef]
- Ju, S.X.; Black, M.J.; Yacoob, Y. Cardboard people: A parameterized model of articulated image motion. In Proceedings of the Second International Conference on Automatic Face and Gesture Recognition, Killington, VT, USA, 14–16 October 1996; pp. 38–44. [Google Scholar]
- Wang, M.; Qiu, F.; Liu, W.; Qian, C.; Zhou, X.; Ma, L. Monocular Human Pose and Shape Reconstruction using Part Differen-tiable Rendering. Comput. Graph. Forum 2020, 39, 351–362. [Google Scholar] [CrossRef]
- Robinette, K.M.; Blackwell, S.; Daanen, H.; Boehmer, M.; Fleming, S. Civilian American and European Surface Anthropometry Resource (CAESAR), Final Report. Volume 1. Summary. 2002. Available online: https://www.humanics-es.com/CAESARvol1.pdf (accessed on 30 November 2022).
- Anguelov, D.; Srinivasan, P.; Koller, D.; Thrun, S.; Rodgers, J.; Davis, J. SCAPE: Shape completion and animation of people. ACM Trans. Graph. 2005, 24, 408–416. [Google Scholar] [CrossRef]
- Loper, M.; Mahmood, N.; Romero, J.; Pons-Moll, G.; Black, M.J. SMPL: A Skinned Multi-Person Linear Model. ACM Trans. Graphics 2015, 34, 248. [Google Scholar] [CrossRef]
- Romero, J.; Tzionas, D.; Black, M.J. Embodied hands: Modeling and capturing hands and bodies together. arXiv 2022, arXiv:2201.02610. [Google Scholar] [CrossRef] [Green Version]
- Blanz, V.; Vetter, T. A morphable model for the synthesis of 3D faces. In Siggraph 1999, Computer Graphics Proceedings; Rockwood, A., Ed.; Addison Wesley Longman: Los Angeles, CA, USA, 1999; pp. 187–194. [Google Scholar] [CrossRef]
- Osman, A.A.A.; Bolkart, T.; Black, M.J. STAR: A Sparse Trained Articulated Human Body Regressor. In Proceedings of the European Conference on Computer Vision (ECCV), Glasgow, UK, 23–28 August 2020; pp. 598–613. [Google Scholar]
- Saito, S.; Huang, Z.; Natsume, R.; Morishima, S.; Li, H.; Kanazawa, A. PIFu: Pixel-Aligned Implicit Function for High-Resolution Clothed Human Digitization. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision (ICCV), Seoul, Korea, 27 October–2 November 2019; pp. 2304–2314. [Google Scholar]
- Saito, S.; Simon, T.; Saragih, J.; Joo, H. PIFuHD: Multi-Level Pixel-Aligned Implicit Function for High-Resolution 3D Human Digitization. In Proceedings of the 2020 IEEE/CVF Conference on CVPR, Seattle, DC, USA, 13–19 June 2020; pp. 81–90. [Google Scholar] [CrossRef]
- Balan, A.O.; Sigal, L.; Black, M.J.; Davis, J.E.; Haussecker, H.W. Detailed Human Shape and Pose from Images. In Proceedings of the 2007 IEEE Conference on Computer Vision and Pattern Recognition, Minneapolis, MN, USA, 17–22 June 2007; pp. 1–8. [Google Scholar] [CrossRef] [Green Version]
- Guan, P.; Weiss, A.; Balan, A.O.; Black, M.J. Estimating human shape and pose from a single image. In Proceedings of the 2009 IEEE 12th International Conference on Computer Vision, Kyoto, Japan, 29 September–2 October 2009; pp. 1381–1388. [Google Scholar]
- Pishchulin, L.; Insafutdinov, E.; Tang, S.; Andres, B.; Andriluka, M.; Gehler, P.V.; Schiele, B. DeepCut: Joint Subset Partition and Labeling for Multi Person Pose Estimation. In Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016; pp. 4929–4937. [Google Scholar]
- Zanfir, A.; Marinoiu, E.; Sminchisescu, C. Monocular 3D Pose and Shape Estimation of Multiple People in Natural Scenes: The Importance of Multiple Scene Constraints. In Proceedings of the 2018 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2018, Salt Lake City, UT, USA, 18–22 June 2018; pp. 2148–2157. [Google Scholar] [CrossRef]
- Christoph, L.; Romero, J.; Kiefel, M.; Bogo, F.; Black, M.J.; Gehler, P.V. Unite the people: Closing the loop between 3d and 2d human representations. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 6050–6059. [Google Scholar]
- Xiang, D.; Joo, H.; Sheikh, Y. Monocular total capture: Posing face, body, and hands in the wild. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019. [Google Scholar]
- Joo, H.; Neverova, N.; Vedaldi, A. Exemplar Fine-Tuning for 3D Human Model Fitting Towards In-the-Wild 3D Human Pose Estimation. In Proceedings of the 2021 International Conference on 3D Vision (3DV), Virtual, 1–3 December 2021; pp. 42–52. [Google Scholar] [CrossRef]
- Song, J.; Chen, X.; Hilliges, O. Human body model fitting by learned gradient descent. In Proceedings of the European Conference on Computer Vision, Glasgow, UK, 23–28 August 2020; Springer: Cham, Switzerland, 2020; pp. 744–760. [Google Scholar]
- Iqbal, U.; Xie, K.; Guo, Y.; Kautz, J.; Molchanov, P. KAMA: 3D Keypoint Aware Body Mesh Articulation. In Proceedings of the 2021 International Conference on 3D Vision (3DV), Virtual, 1–3 December 2021; pp. 689–699. [Google Scholar] [CrossRef]
- Li, J.; Xu, C.; Chen, Z.; Bian, S.; Yang, L.; Lu, C. HybrIK: A Hybrid Analytical-Neural Inverse Kinematics Solution for 3D Human Pose and Shape Estimation. In Proceedings of the IEEE/CVF CVPR, Virtual, 20–25 June 2021; pp. 3382–3392. [Google Scholar] [CrossRef]
- Jiang, W.; Kolotouros, N.; Pavlakos, G.; Zhou, X.; Daniilidis, K. Coherent reconstruction of multiple humans from a single image. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, DC, USA, 13–19 June 2020; pp. 5579–5588. [Google Scholar]
- Kolotouros, N.; Pavlakos, G.; Daniilidis, K. Convolutional mesh regression for single-image human shape reconstruction. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4501–4510. [Google Scholar]
- Kocabas, M.; Athanasiou, N.; Black, M.J. VIBE: Video Inference for Human Body Pose and Shape Estimation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Seattle, DC, USA, 13–19 June 2020; pp. 5252–5262. [Google Scholar]
- Mahmood, N.; Ghorbani, N.; Troje, N.F.; Pons-Moll, G.; Black, M.J. AMASS: Archive of Motion Capture as Surface Shapes. In Proceedings of the International Conference on Computer Vision, Seoul, Korea, 27–28 October 2019; pp. 5442–5451. [Google Scholar]
- Feng, Y.; Choutas, V.; Bolkart, T.; Tzionas, D.; Black, M.J. Collaborative regression of expressive bodies using moderation. In Proceedings of the 2021 International Conference on 3D Vision (3DV), London, UK, 1–3 December 2021; pp. 792–804. [Google Scholar]
- Zanfir, A.; Bazavan, E.G.; Zanfir, M.; Freeman, W.T.; Sukthankar, R.; Sminchisescu, C. Neural descent for visual 3d human pose and shape. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 14484–14493. [Google Scholar]
- Zhou, Y.; Habermann, M.; Habibie, I.; Tewari, A.; Theobalt, C.; Xu, F. Monocular Real-Time Full Body Capture with Inter-Part Correlations. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 4811–4822. [Google Scholar]
- Moon, G.; Lee, K.M. Pose2pose: 3d positional pose-guided 3d rotational pose prediction for expressive 3d human pose and mesh estimation. arXiv 2020, arXiv:2011.11534. [Google Scholar]
- Wang, Y.; Su, Z.; Zhang, N.; Xing, R.; Liu, D.; Luan, T.H.; Shen, X. A Survey on Metaverse: Fundamentals, Security, and Privacy. In IEEE Communications Surveys & Tutorials 2022; IEEE Press: New York, NY, USA, 2022; pp. 1–32. [Google Scholar]
- Huang, J.; Zhang, H.L.; Lu, H.; Xin, Y.; Li, S. A Novel Position-based VR Online Shopping Recommendation System based on Optimized Collaborative Filtering Algorithm. In Proceedings of the Web Intelligence Workshops (WI), Melbourne, VIC, Canada, 14–17 December 2022; pp. 1–7. [Google Scholar]
- Fuller, A.; Fan, Z.; Day, C.; Barlow, C. Digital Twin: Enabling Technologies, Challenges and Open Research. IEEE Access 2020, 8, 108952–108971. [Google Scholar] [CrossRef]
- Carver, J.; Staron, M.; Capilla, R.; Muccini, H.; Hochstein, L. Digital Twins. IEEE Softw. 2022, 39, 97–99. [Google Scholar] [CrossRef]
- Zhang, H.L.; Liu, J.; Dowens, M.G. Complex brain activity analysis and recognition based on multiagent methods. Concurr. Comput. Pr. Exp. 2020, 34, e5855. [Google Scholar] [CrossRef]
- Zhang, H.; Zhao, Q.; Lee, S.; Dowens, M.G. EEG-Based Driver Drowsiness Detection Using the Dynamic Time Dependency Method. In Proceedings of the Brain Informatics, Haikou, China, 13–15 December 2019; pp. 39–47. [Google Scholar] [CrossRef]
- Zhang, H.L.; Lee, S.; Li, X.; He, J. EEG Self-Adjusting Data Analysis Based on Optimized Sampling for Robot Control. Electronics 2020, 9, 925. [Google Scholar] [CrossRef]
- Xu, H.; Li, Z.; Li, Z.; Zhang, X.; Sun, Y.; Zhang, L. Metaverse Native Communication: A Blockchain and Spectrum Prospective. In Proceedings of the IEEE International Conference on Communications Workshops, Seoul, Korea, 16–20 May 2022; pp. 7–12. [Google Scholar]
- Narayanan, A.; Bonneau, J.; Felten, E.; Miller, A.; Goldfeder, S. Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction; Princeton University Press: Princeton, NJ, USA, 2016. [Google Scholar]
- Talamo, M.; Arcieri, F.; Dimitri, A.; Schunck, H.C. A blockchain based PKI validation system based on rare events manage-ment. Future Internet 2020, 12, 40. [Google Scholar] [CrossRef] [Green Version]
- Badruddoja, S.; Dantu, R.; He, Y.; Thompson, M.; Salau, A.; Upadhyay, K. Trusted AI with Blockchain to Empower Metaverse. International Conference on Blockchain Computing and Applications (BCCA); IEEE Press: New York, NY, USA, 2022; pp. 237–245. [Google Scholar]
- Mühle, A.; Grüner, A.; Gayvoronskaya, T.; Meinel, C. A survey on essential components of a self-sovereign identity. Comput. Sci. Rev. 2018, 30, 80–86. [Google Scholar] [CrossRef]
- Heimes, A.; Zenkert, J.; Fathi, M. Current State and Latest Trends in Blockchain Technology and its Usage and the Effects on Business Use Cases. In Proceedings of the IEEE International Conference on Systems, Man, and Cybernetics (SMC), Melbourne, Australia, 17–20 October 2021; pp. 3311–3316. [Google Scholar] [CrossRef]
- Chang, L.; Zhang, Z.; Li, P.; Xi, S.; Guo, W.; Shen, Y.; Xiong, Z.; Kang, J.; Niyato, D.; Qiao, X.; et al. 6G-Enabled Edge AI for Metaverse: Challenges, Methods, and Future Research Directions. J. Commun. Inf. Netw. 2022, 7, 107–121. [Google Scholar] [CrossRef]
- Prayitno; Shyu, C.-R.; Putra, K.T.; Chen, H.-C.; Tsai, Y.-Y.; Hossain, K.S.M.T.; Jiang, W.; Shae, Z.-Y. A Systematic Review of Federated Learning in the Healthcare Area: From the Perspective of Data Properties and Applications. Appl. Sci. 2021, 11, 11191. [Google Scholar] [CrossRef]
- Bhugaonkar, K.; Bhugaonkar, R.; Masne, N. The Trend of Metaverse and Augmented & Virtual Reality Extending to the Healthcare System. Cureus 2022, 14, 29071. [Google Scholar] [CrossRef]
- Sun, H.; Rabbani, M.R.; Sial, M.S.; Yu, S.; Filipe, J.A.; Cherian, J. Identifying Big Data’s Opportunities, Challenges, and Implications in Finance. Mathematics 2020, 8, 1738. [Google Scholar] [CrossRef]
- Musamih, A.; Dirir, A.; Yaqoob, I.; Salah, K.; Jayaraman, R.; Puthal, D. NFTs in Smart Cities: Vision, Applications, and Chal-lenges. IEEE Consum. Electron. Mag. 2022, 1–14. [Google Scholar] [CrossRef]
- Edwards, C. Are NFTs Key to Accessing the Metaverse? Eng. Technol. 2022, 17, 1–8. [Google Scholar] [CrossRef]
- Shabihi, N.; Kim, M.S. Big Data Analytics in Education: A Data-Driven Literature Review. In Proceedings of the International Conference on Advanced Learning Technologies (ICALT), Tartu, Estonia, 12–15 July 2021; pp. 154–156. [Google Scholar]
- Qureshi, H.; Sagar, A.K.; Astya, R.; Shrivastava, G. Big Data Analytics for Smart Education. In Proceedings of the IEEE 6th Inter-national Conference on Computing, Communication and Automation (ICCCA), Arad, Romania, 17–19 December 2021; pp. 650–658. [Google Scholar]
- Gim, G.; Bae, H.; Kang, S. Metaverse Learning: The Relationship among Quality of VR-Based Education, Self-Determination, and Learner Satisfaction. In Proceedings of the IEEE/ACIS 7th International Conference on Big Data, Cloud Computing, and Data Science, Danang, Vietnam, 4–6 October 2022; pp. 279–284. [Google Scholar] [CrossRef]
- Agrawal, D.; Budak, C.; El Abbadi, A.; Georgiou, T.; Yan, X. Big Data in Online Social Networks: User Interaction Analysis to Model User Behavior in Social Networks. In Proceedings of the Databases in Networked Information Systems, Aizu-Wakamatsu, Japan, 24–26 March 2014; Madaan, A., Kikuchi, S., Bhalla, S., Eds.; Lecture Notes in Computer Science. pp. 1–16. [Google Scholar] [CrossRef]
- Britto, L.F.S.; Pacifico, L.D.S. Evaluating Video Game Acceptance in Game Reviews using Sentiment Analysis Techniques. In Proceedings of the SBGames, Virtual, 7–10 November 2020; pp. 399–402. [Google Scholar]
- Mirza-Babaei, P.; Robinson, R.; Mandryk, R.; Pirker, J.; Kang, C.; Fletcher, A. Games and the Metaverse. In Proceedings of the Annual Symposium on Computer-Human Interaction in Play, Bremen, Germany, 2–5 November 2022; pp. 318–319. [Google Scholar]
- Cheng, R.; Wu, N.; Varvello, M.; Chen, S.; Han, B. Are we ready for Metaverse: A measurement study of social virtual reality platforms. In Proceedings of the 22nd ACM Internet Measurement Conference, Nice, France, 25–27 October 2022; pp. 504–518. [Google Scholar]
- Templier, M.; Paré, G. A framework for guiding and evaluating literature reviews. Commun. Assoc. Inf. Syst. 2015, 37, 112–137. [Google Scholar] [CrossRef] [Green Version]
- Snyder, H. Literature review as a research methodology: An overview and guidelines. J. Bus. Res. 2019, 104, 333–339. [Google Scholar] [CrossRef]
- Chen, C. How to Use CiteSpace (6.1.R5) Advanced. CiteSpace. 2020. Available online: https://citespace.podia.com/ebook-how-to-use-citespace (accessed on 30 November 2022).
- Hare, P. Literature Reviews: Google Scholar. Bank Street College of Education. 2020. Available online: https://www.bankstreet.edu/library/blog/google-scholar/ (accessed on 30 November 2022).
- Suzanne, F. Semantic Scholar. J. Med. Libr. Assoc. 2018, 106, 145–147. [Google Scholar]
- Hu, X.; Liu, Y.; Zhang, H.L.; Wang, W.; Li, Y.; Meng, C.; Fu, Z. Noninvasive Human-Computer Interface Methods and Ap-plications for Robotic Control: Past, Current, and Future. Comput. Intell. Neurosci. 2022, 2022, 1635672. [Google Scholar]
- Hobson, D. How Banks Can Make Money in the Metaverse. Future of Finance, 17 June 2022; 1–4. [Google Scholar]
- Falchuk, B.; Loeb, S.; Neff, R. The Social Metaverse: Battle for Privacy. IEEE Technol. Soc. Mag. 2018, 37, 52–61. [Google Scholar] [CrossRef]
- Abiri, R.; Borhani, S.; Sellers, E.W.; Jiang, Y.; Zhao, X. A comprehensive review of EEG-based brain-computer interface par-adigms. J. Neural Eng. 2019, 16, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Oudeyer, P.Y.; Gottlieb, J.; Lopes, M. Intrinsic motivation, curiosity, and learning: Theory and applications in educational technologies. Prog. Brain Res. 2016, 229, 257–284. [Google Scholar] [PubMed] [Green Version]
- Fahimi, F.; Dosen, S.; Ang, K.K.; Mrachacz-Kersting, N.; Guan, C. Generative Adversarial Networks-Based Data Augmentation for Brain–Computer Interface. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 4039–4051. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Huang, X.; Wang, Y.; Gao, X. Combination of Augmented Reality Based Brain- Computer Interface and Computer Vision for High-Level Control of a Robotic Arm. IEEE Trans. Neural Syst. Rehabil. Eng. 2020, 28, 3140–3147. [Google Scholar] [CrossRef]
Big Data Technologies | Business/Financial Activities | Industrial Applications/Platforms |
---|---|---|
Advanced message queuing protocol (AMQP), XMPP, Extract, Transform, Load (ETL)—NoSQL, etc. | Business data acquisition, data cleaning, data pre-processing |
|
Hadoop, Hive, Hydra, Pig, Spark, Mapreduce, Storm, Segmentation (NAD, Bootstrapping), etc. | Data storage, data management, data infrastructure, data migration |
|
Collaborative filtering (recommender), linear regression, K-means clustering, apriori association rule, C4.5 (Decision Tree), SVM, etc. | Business analytics, sale prediction, market prediction, financial investment trends analysis |
|
Attribute-based encryption, 3KDEC, storage path encryption, differential privacy, fast anonymization of big data streams, top-down specialization, etc. | Business data privacy, data security, data recovery, big data encryption |
|
Categories | Current Big Data Technologies | Future Trends |
---|---|---|
Big data acquisition and pre-processing | Future big data acquisition and pre-processing technologies should be able to deal efficiently with more unstructured, high dimensional data; several techniques are suggested below: | |
Big data storage and data infrastructure | Future trends in big data storage methods will focus on more elastic and cloud-based solutions: | |
Big data analytics | The trends in big data analytics are in the following areas: | |
Big Data privacy and security |
| The trends in big data privacy and security will mainly focus on cloud- and blockchain-related areas:
|
Sectors | Big Data | Metaverse |
---|---|---|
Healthcare |
|
|
Finance and Economy |
|
|
Education |
| |
Entertainment and Social |
Review Content | Review Approach | Retrieval Tools | Data Sources |
---|---|---|---|
Big data applications in different sectors (Section 1) | Narrative and systematic review |
|
|
Metaverse technologies and applications (Section 4.1, Section 4.2, Section 4.3 and Section 4.4) | Narrative and systematic review |
|
|
Future trends in big data and Metaverse technologies | Integrative review |
|
|
Correlation of big data and Metaverse and future development | Systematics and integrative review |
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Lee, S.; Lu, Y.; Yu, X.; Lu, H. A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future. Mathematics 2023, 11, 96. https://doi.org/10.3390/math11010096
Zhang H, Lee S, Lu Y, Yu X, Lu H. A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future. Mathematics. 2023; 11(1):96. https://doi.org/10.3390/math11010096
Chicago/Turabian StyleZhang, Haolan, Sanghyuk Lee, Yifan Lu, Xin Yu, and Huanda Lu. 2023. "A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future" Mathematics 11, no. 1: 96. https://doi.org/10.3390/math11010096
APA StyleZhang, H., Lee, S., Lu, Y., Yu, X., & Lu, H. (2023). A Survey on Big Data Technologies and Their Applications to the Metaverse: Past, Current and Future. Mathematics, 11(1), 96. https://doi.org/10.3390/math11010096