Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis
Abstract
:1. Introduction
2. Problem Establishment and Preliminaries
2.1. Conformable Calculus
2.2. Model Formulation
2.3. Practical Stability with Respect to Manifolds Technique
2.4. Conformable Lyapunov Functions Method
3. Comparison Results and Boundedness
4. Practical Stability with Respect to Manifolds Results
5. Illustrative Examples
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ahmad, S.; Stamova, I.M. (Eds.) Lotka–Volterra and Related Systems: Recent Developments in Population Dynamics, 1st ed.; Walter de Gruyter: Berlin, Germany, 2013; ISBN 978-3-11-026951-2. [Google Scholar]
- Gopalsamy, K. Stability and Oscillations in Delay Differential Equations of Population Dynamics, 1st ed.; Springer: Boston, MA, USA, 1992; ISBN 978-990-481-4119-7. [Google Scholar]
- Takeuchi, Y. Global Dynamical Properties of Lotka–Volterra Systems, 1st ed.; World Scientific: Singapore, 1996; ISBN 9810224710. [Google Scholar]
- Cui, J. The effect of dispersal on permanence in a predator-prey population growth model. Comput. Math. Appl. 2002, 44, 1085–1097. [Google Scholar] [CrossRef]
- Dos Santos, L.S.; Alcarás, J.R.; Da Costa, L.M.; Simões, M.M.R.; Martinez, A.S. Analytical solutions of microplastic particles dispersion using a Lotka–Volterra predator–prey model with time-varying intraspecies coefficients. Math. Comput. Appl. 2022, 27, 66. [Google Scholar] [CrossRef]
- Xu, R.; Chaplain, M.A.J.; Davidson, F.A. Periodic solution of a Lotka–Volterra predator-prey model with dispersion and time delays. Appl. Math. Comput. 2004, 148, 537–560. [Google Scholar] [CrossRef]
- Zhang, L.; Teng, Z. Boundedness and permanence in a class of periodic time-dependent predator–prey system with prey dispersal and predator density-independence. Chaos Solitons Fract. 2008, 36, 729–739. [Google Scholar] [CrossRef]
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.J. Fractional Calculus: Models and Numerical Methods, 1st ed.; World Scientific: Singapore, 2012; ISBN 978-981-4355-20-9. [Google Scholar]
- Bazhlekova, E. Fractional Evolution Equations in Banach Spaces. Ph.D. Thesis, University of Technology, Eindhoven, The Netherlands, 2001. [Google Scholar]
- Magin, R. Fractional Calculus in Bioengineering, 1st ed.; Begell House: Redding, CA, USA, 2006; ISBN 978-1567002157. [Google Scholar]
- Podlubny, I. Fractional Differential Equations, 1st ed.; Academic Press: San Diego, CA, USA, 1999; ISBN 558840-2. [Google Scholar]
- Abbas, S.; Banerjee, M.; Momani, S. Dynamical analysis of fractional-order modified logistic model. Comput. Math. Appl. 2011, 62, 1098–1104. [Google Scholar] [CrossRef]
- Mohyud-Din, S.T.; Ali, A.; Bin-Mohsin, B. On biological population model of fractional order. Int. J. Biomath. 2016, 9, 1650070. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I. On almost periodic processes in impulsive fractional-order competitive systems. J. Math. Chem. 2018, 56, 583–596. [Google Scholar] [CrossRef]
- Agrawal, S.K.; Srivastava, M.; Das, S. Synchronization between fractional-order Ravinovich–Fabrikant and Lotka–Volterra systems. Nonlinear Dynam. 2012, 69, 2277–2288. [Google Scholar] [CrossRef]
- Das, S.K.; Gupta, P.K. A mathematical model on fractional Lotka–Volterra equations. J. Theor. Biol. 2011, 277, 1–6. [Google Scholar] [CrossRef]
- Gatabazi, P.; Mba, J.C.; Pindza, E. Fractional gray Lotka–Volterra models with application to cryptocurrencies adoption. Chaos 2019, 29, 073116. [Google Scholar] [CrossRef]
- Jun, Z.; Kim, C.-G. Positive solutions for a Lotka–Volterra prey-predator model with cross-diffusion of fractional type. Results Math. 2014, 65, 293–320. [Google Scholar] [CrossRef]
- Matlob, M.A.; Towers, I.N.; Jovanoski, Z.; Irwin, A.J. Memory and mutualism in species sustainability: A time-fractional Lotka–Volterra model with harvesting. arXiv 2020, arXiv:1904.12340v2. [Google Scholar]
- Wang, Y.; Liu, S. Fractal analysis and control of the fractional Lotka–Volterra model. Nonlinear Dyn. 2019, 95, 1457–1470. [Google Scholar] [CrossRef]
- Higazi, M.; Alsallami, S.A.M.; Abdel-Khalek, S.; El-Mesady, A. Dynamical and structural study of a generalized Caputo fractional order Lotka–Volterra model. Results Phys. 2022, 37, 105478. [Google Scholar] [CrossRef]
- Haddad, W.M.; Chellaboina, V.S.; Nersesov, S.G. Impulsive and Hybrid Dynamical Systems, Stability, Dissipativity, and Control, 1st ed.; Princeton University Press: Princeton, NJ, USA, 2006; ISBN 9780691127156. [Google Scholar]
- Li, X.; Song, S. Impulsive Systems with Delays: Stability and Control, 1st ed.; Science Press & Springer: Singapore, 2022; ISBN 978-981-16-4686-7. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Applied Impulsive Mathematical Models, 1st ed.; Springer: Cham, Switzerland, 2016; ISBN 978-3-319-28060-8. [Google Scholar]
- Stamova, I.M.; Stamov, G.T. Functional and Impulsive Differential Equations of Fractional Order: Qualitative Analysis and Applications, 1st ed.; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: Abingdon, UK, 2017; ISBN 9781498764834. [Google Scholar]
- Yang, T. Impulsive Control Theory, 1st ed.; Springer: Berlin, Germany, 2001; ISBN 978-3-540-47710-5. [Google Scholar]
- Dong, L.; Chen, L.; Sun, L. Extinction and permanence of the predator-prey system with stocking of prey and harvesting of predator impulsively. Math. Methods Appl. Sci. 2006, 29, 415–425. [Google Scholar] [CrossRef]
- Du, W.-S.; Kostić, M.; Velinov, D. Almost periodic solutions of abstract impulsive Volterra integro-differential inclusions. Fractal Fract. 2023, 7, 147. [Google Scholar] [CrossRef]
- Dong, L.; Takeuchi, Y. Impulsive control of multiple Lotka–Volterra systems. Nonlinear Anal. Real World Appl. 2013, 14, 1144–1154. [Google Scholar] [CrossRef]
- Stamova, I.M. Impulsive control for stability of n-species Lotka–Volterra cooperation models with finite delays. Appl. Math. Lett. 2010, 23, 1003–1007. [Google Scholar] [CrossRef]
- Struk, O.O.; Tkachenko, V. On impulsive Lotka–Volterra systems with diffusion. Ukr. Math. J. 2002, 54, 629–646. [Google Scholar] [CrossRef]
- Tang, S.; Chen, L. The periodic predator-prey Lotka–Volterra model with impulsive effects. J. Mech. Med. Biol. 2002, 2, 267–296. [Google Scholar] [CrossRef]
- Yu, X.; Wang, Q.; Bai, Y. Permanence and almost periodic solutions for N-species nonautonomous Lotka–Volterra competitive systems with delays and impulsive perturbations on time scales. Complexity 2018, 2018, 2658745. [Google Scholar] [CrossRef]
- Tuladhar, R.; Santamaria, F.; Stamova, I. Fractional Lotka–Volterra-type cooperation models: Impulsive control on their stability behavior. Entropy 2020, 22, 970. [Google Scholar] [CrossRef] [PubMed]
- Beghin, L.; Mainardi, F.; Garrappa, R. (Eds.) Nonlocal and Fractional Operators, 1st ed.; Springer: Cham, Switzerland, 2021; ISBN 978-3-030-69235-3. [Google Scholar]
- Tarasov, V.E. Nonlocal probability theory: General fractional calculus approach. Mathematics 2022, 10, 3848. [Google Scholar] [CrossRef]
- Zhang, T.; Xiong, L. Periodic motion for impulsive fractional functional differential equations with piecewise Caputo derivative. Appl. Math. Lett. 2020, 101, 106072. [Google Scholar] [CrossRef]
- Zhang, T.; Li, Y. Exponential Euler scheme of multi-delay Caputo–Fabrizio fractional-order differential equations. Appl. Math. Lett. 2022, 124, 107709. [Google Scholar] [CrossRef]
- Abdeljawad, T. On conformable fractional calculus. J. Comput. Appl. Math. 2015, 279, 57–66. [Google Scholar] [CrossRef]
- Khalil, R.; Al Horani, M.; Yousef, A.; Sababheh, M. A new definition of fractional derivative. J. Comput. Appl. Math. 2014, 264, 65–70. [Google Scholar] [CrossRef]
- Kiskinov, H.; Petkova, M.; Zahariev, A. Remarks about the existence of conformable derivatives and some consequences. arXiv 2019, arXiv:1907.03486. [Google Scholar]
- Kiskinov, H.; Petkova, M.; Zahariev, A. About the Cauchy problem for nonlinear system with conformable derivatives and variable delays. AIP Conf. Proc. 2019, 2172, 050006. [Google Scholar]
- Kiskinov, H.; Petkova, M.; Zahariev, A. Veselinova, M. Some results about conformable derivatives in Banach spaces and an application to the partial differential equations. AIP Conf. Proc. 2021, 2333, 120002. [Google Scholar]
- Martynyuk, A.A.; Stamova, I.M. Fractional-like derivative of Lyapunov-type functions and applications to the stability analysis of motion. Electron. J. Differ. Equ. 2018, 2018, 1–12. [Google Scholar]
- Pospíšil, M.; Pospíšilova Škripkova, L. Sturm’s theorems for conformable fractional differential equation. Math. Commun. 2016, 21, 273–281. [Google Scholar]
- Souahi, A.; Ben Makhlouf, A.; Hammami, M.A. Stability analysis of conformable fractional-order nonlinear systems. Indag. Math. (N.S.) 2017, 28, 1265–1274. [Google Scholar] [CrossRef]
- Bohner, M.; Hatipoğlu, V.F. Cobweb model with conformable fractional derivatives. Math. Methods Appl. Sci. 2018, 41, 9010–9017. [Google Scholar] [CrossRef]
- Eslami, M.; Rezazadeh, H. The first integral method for Wu-Zhang system with conformable time-fractional derivative. Calcolo 2016, 53, 475–485. [Google Scholar] [CrossRef]
- Harir, A.; Malliani, S.; Chandli, L.S. Solutions of conformable fractional-order SIR epidemic model. Int. J. Differ. Equ. 2021, 2021, 6636686. [Google Scholar] [CrossRef]
- Xie, W.; Liu, C.; Wu, W.Z.; Li, W.; Liu, C. Continuous grey model with conformable fractional derivative. Chaos Solitons Fract. 2020, 139, 110285. [Google Scholar] [CrossRef]
- Yel, G.; Baskonus, H.M. Solitons in conformable time-fractional Wu–Zhang system arising in coastal design. Pramana—J. Phys. 2019, 93, 57. [Google Scholar] [CrossRef]
- Sitho, S.; Ntouyas, S.K.; Agarwal, P.; Tariboon, J. Noninstantaneous impulsive inequalities via conformable fractional calculus. J. Inequal. Appl. 2018, 2018, 261. [Google Scholar] [CrossRef]
- Stamov, G.; Martynyuk, A.; Stamova, I. Impulsive fractional-like differential equations: Practical stability and boundedness with respect to h-manifolds. Fractal Fract. 2019, 3, 50. [Google Scholar] [CrossRef]
- Tariboon, J.; Ntouyas, S.K. Oscillation of impulsive conformable fractional differential equations. Open Math. 2016, 14, 497–508. [Google Scholar] [CrossRef]
- Ballinger, G.; Liu, X. Practical stability of impulsive delay differential equations and applications to control problems. In Optimization Methods and Applications. Applied Optimization; Yang, X., Teo, K.L., Caccetta, L., Eds.; Springer: Boston, MA, USA, 2001; pp. 3–21. ISBN 978-1-4419-4850-2. [Google Scholar]
- Lakshmikantham, V.; Leela, S.; Martynyuk, A.A. Practical Stability of Nonlinear Systems; World Scientific: Teaneck, NJ, USA, 1990; ISBN 981-02-0351-9. [Google Scholar]
- Martynyuk, A.A. (Ed.) Advances in Stability Theory at the end of the 20th Century. Stability and Control: Theory, Methods and Applications, 1st ed.; Taylor and Francis: New York, NY, USA, 2002; ISBN 0-203-16657-4. [Google Scholar]
- Stamova, I. Vector Lyapunov functions for practical stability of nonlinear impulsive functional differential equations. J. Math. Anal. Appl. 2007, 325, 612–623. [Google Scholar] [CrossRef]
- Stamov, T. Neural networks in engineering design: Robust practical stability analysis. Cybern. Inf. Technol. 2021, 21, 3–14. [Google Scholar] [CrossRef]
- Tian, Y.; Sun, Y. Practical stability and stabilisation of switched delay systems with non-vanishing perturbations. IET Control Theory Appl. 2019, 13, 1329–1335. [Google Scholar] [CrossRef]
- Yao, Q.; Lin, P.; Wang, L.; Wang, Y. Practical exponential stability of impulsive stochastic reaction-diffusion systems with delays. IEEE Trans. Cybern. 2022, 52, 2687–2697. [Google Scholar]
- Stamov, G.; Gospodinova, E.; Stamova, I. Practical exponential stability with respect to h-manifolds of discontinuous delayed Cohen–Grossberg neural networks with variable impulsive perturbations. Math. Model. Control 2021, 1, 26–34. [Google Scholar] [CrossRef]
- Stamov, G.; Stamova, I.M.; Li, X.; Gospodinova, E. Practical stability with respect to h-manifolds for impulsive control functional differential equations with variable impulsive perturbations. Mathematics 2019, 7, 656. [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Stamov, G.; Stamova, I. Practical stability analysis with respect to manifolds and boundedness of differential equations with fractional-like derivatives. Rocky Mt. J. Math. 2019, 49, 211–233. [Google Scholar] [CrossRef]
- Liu, B.; Liu, X.; Liao, X. Robust stability of uncertain impulsive dynamical systems. J. Math. Anal. Appl. 2004, 290, 519–533. [Google Scholar] [CrossRef]
- Stamov, G.T.; Simeonov, S.; Stamova, I.M. Uncertain impulsive Lotka–Volterra competitive systems: Robust stability of almost periodic solutions. Chaos Solitons Fractals 2018, 110, 178–184. [Google Scholar] [CrossRef]
- Martynyuk, A.A.; Martynyuk-Chernienko, Y.A. Uncertain Dynamical Systems: Stability and Motion Control, 1st ed.; Chapman and Hall/CRC: Boca Raton, FL, USA, 2019; ISBN 9780367382070. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martynyuk, A.; Stamov, G.; Stamova, I.; Gospodinova, E. Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis. Mathematics 2023, 11, 2221. https://doi.org/10.3390/math11102221
Martynyuk A, Stamov G, Stamova I, Gospodinova E. Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis. Mathematics. 2023; 11(10):2221. https://doi.org/10.3390/math11102221
Chicago/Turabian StyleMartynyuk, Anatoliy, Gani Stamov, Ivanka Stamova, and Ekaterina Gospodinova. 2023. "Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis" Mathematics 11, no. 10: 2221. https://doi.org/10.3390/math11102221
APA StyleMartynyuk, A., Stamov, G., Stamova, I., & Gospodinova, E. (2023). Formulation of Impulsive Ecological Systems Using the Conformable Calculus Approach: Qualitative Analysis. Mathematics, 11(10), 2221. https://doi.org/10.3390/math11102221