On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral
Abstract
:1. Introduction
2. Preliminaries
- 1.
- 2.
- 3.
- 4.
- 5.
- .
- (i)
- If , so for , we obtain
- (ii)
- If and , then for , we have
- (i)
- If , then
- (ii)
- If , then
3. Main Results
4. Applications
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baleanu, D.; Diethelm, K.; Scalas, E.; Trujillo, J.I. Fractional Calculus, Models and Numerical Methods; Series on Complexity, Nonlinearity and Chaos; World Scientific Publishing Co., Pte. Ltd.: Hackensack, NJ, USA, 2012. [Google Scholar]
- Chen, F.-L.; Zhou, Y. Attractivity fractional functional differential equations. Comput. Math. Appl. 2011, 62, 1359–1369. [Google Scholar] [CrossRef] [Green Version]
- Hilfer, R. (Ed.) Applications of Fractional Calculus in Physics; World Scientific Publishing Co., Inc.: River Edge, NJ, USA, 2000. [Google Scholar]
- Shatanawi, W.; Boutiara, A.; Abdo, M.S.; Jeelani, M.B.; Abodayeh, K. Nonlocal and multiple-point fractional boundary value problem in the frame of a generalized Hilfer derivative. Adv. Differ. Equ. 2021, 2021, 294. [Google Scholar] [CrossRef]
- Magin, R.L. Fractional Calculus in Bioengineering; Begell House: Redding, CT, USA, 2006. [Google Scholar]
- Shah, K.; Khan, R.A. Existence and uniqueness results to a coupled system of fractional order boundary value problems by topological degree theory. Numer. Funct. Anal. Optim. 2016, 37, 887–899. [Google Scholar] [CrossRef]
- Khan, H.; Gómez-Aguilar, J.F.; Alkhazzan, A.; Khan, A. A fractional order HIV-TB coinfection model with nonsingular Mittag-Leffler Law. Math. Methods Appl. Sci. 2020, 43, 3786–3806. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity, An Introduction to Mathematical Models; Imperial College Press: London, UK, 2010. [Google Scholar]
- Podlubny, I. Fractional differential equations, An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications. In Mathematics in Science and Engineering; Academic Press, Inc.: San Diego, CA, USA, 1999. [Google Scholar]
- Zada, A.; Waheed, H.; Alzabut, J.; Wang, X. Existence and stability of impulsive coupled system of fractional integrodifferential equations. Demonstr. Math. 2019, 52, 296–335. [Google Scholar] [CrossRef]
- Yang, X.-J. A new integral transform operator for solving the heat-diffusion problem. Appl. Math. Lett. 2017, 64, 193–197. [Google Scholar] [CrossRef]
- Yang, X.-J.; Baleanu, D.; Srivastava, H.M. Localfractional Integral Transforms and Their Applications; Elsevier/Academic Press: Amsterdam, The Netherlands, 2016. [Google Scholar]
- Yang, X.-J.; Machado, J.A.T. A new fractional operator of variable order: Application in the description of anomalous diffusion. Phys. A 2017, 418, 276–283. [Google Scholar] [CrossRef] [Green Version]
- Matar, M.M.; Amra, I.A.; Alzabut, J. Existence of solutions for tripled system of fractional differential equations involving cyclic permutation boundary conditions. Bound. Value Probl. 2020, 2020, 140. [Google Scholar] [CrossRef]
- Boulares, H.; Ardjouni, A.; Laskri, Y. Existence and uniqueness of solutions for nonlinear fractional nabla difference systems with initial conditions. Fract. Differ. Calc. 2017, 7, 247–263. [Google Scholar] [CrossRef] [Green Version]
- Hallaci, A.; Boulares, H.; Ardjouni, A. Existence and uniqueness for delay fractional differential equations with mixed fractional derivatives. Open J. Math. Anal. 2020, 4, 26–31. [Google Scholar] [CrossRef]
- Hallaci, A.; Boulares, H.; Kurulay, M. On the Study of Nonlinear Fractional Differential Equations on Unbounded Interval. Gen. Lett. Math. 2018, 5, 111–117. [Google Scholar] [CrossRef]
- Boulares, H.; Ardjouni, A.; Laskri, Y. Existence and Uniqueness of Solutions to Fractional Order Nonlinear Neutral Differential Equations. Appl. Math. E-Notes 2018, 18, 25–33. Available online: http://www.math.nthu.edu.tw/amen/ (accessed on 30 December 2022).
- Biroud, K. Nonlocal fractional system involving the fractional p,q-Laplacians and singular potentials. Arab. J. Math. 2022, 11, 497–505. [Google Scholar] [CrossRef]
- Mukherjee, T.; Sreenadh, K. On Dirichlet problem for fractional p-Laplacian with singular non-linearity. Adv. Nonlinear Anal. 2019, 8, 52–72. [Google Scholar] [CrossRef] [Green Version]
- Mazón, J.M.; Rossi, J.D.; Toledo, J. Fractional p-Laplacian evolution equations. J. Math. Pures Appl. 2016, 105, 810–844. [Google Scholar] [CrossRef]
- Razani, A.; Behboudi, F. Weak solutions for some fractional singular (p; q)-Laplacian nonlocal problems with Hardy potential. Rend. Circ. Mat. Palermo Ser. 2022, 2, 1–16. [Google Scholar] [CrossRef]
- Abdolrazaghi, F.; Razani, A. A unique weak solution for a kind of coupled system of fractional Schrodinger equations. Opusc. Math. 2020, 40, 313–322. [Google Scholar] [CrossRef]
- Zeng, F.-H.; Li, C.-P.; Liu, F.-W.; Turner, I. The use of finite difference element approaches for solving the time-fractional subdiffusion equation. SIAM J. Sci. Comput. 2013, 35, 2976–3000. [Google Scholar] [CrossRef]
- Zhang, Y.-N.; Sun, Z.-Z.; Zhao, X. Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation. SIAM J. Numer. Anal. 2012, 50, 1535–1555. [Google Scholar] [CrossRef]
- Alzabut, J.; Selvam, A.G.M.; El-Nabulsi, R.A.; Vignesh, D.; Samei, M.E. Asymptotic Stability of Nonlinear Discrete Fractional Pantograph Equations with Non-Local Initial Conditions. Symmetry 2021, 13, 473. [Google Scholar] [CrossRef]
- Zhao, X.; Sun, Z.-Z. A box-type scheme fractional sub-diffusion equation with Neumann boundary conditions. J. Comput. Phys. 2011, 230, 6061–6074. [Google Scholar] [CrossRef]
- Chen, W.; Sun, H.-G.; Zhang, X.-D.; Korošak, D. Anomalous diffusion modeling by fractal and fractional derivatives. Comput. Math. Appl. 2010, 59, 1754–1758. [Google Scholar] [CrossRef] [Green Version]
- Chen, R.; Zhou, S.-M. Well-posedness and persistence properties for two-component higher order Camassa-Holm systems with fractional inertia operator. Nonlinear Anal. Real World Appl. 2017, 33, 121–138. [Google Scholar] [CrossRef] [Green Version]
- Fiscella, A.; Pucci, P. p-fractional Kirchhoff equations involving critical nonlinearities. Nonlinear Anal. Real World Appl. 2017, 35, 350–378. [Google Scholar] [CrossRef]
- Sun, H.-G.; Chen, W.; Li, C.-P.; Chen, Y.-Q. Finite difference schemes for variable-order time fractional diffusion equation. Int. J. Bifurc. Chaos Appl. Sci. Eng. 2012, 22, 1250085. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.-G.; Chen, W.; Wei, H.; Chen, Y.-Q. A comparative study of constant-order and variable-order fractional models in characterizing memory property of systems. Eur. Phys. J. 2011, 193, 185–192. [Google Scholar] [CrossRef]
- Butzer, P.L.; Kilbas, A.A.; Trujillo, J.I. Fractional calculus in the Mellin setting and Hadamard-type fractional integrals. J. Math. Anal. Appl. 2002, 269, 1–27. [Google Scholar] [CrossRef] [Green Version]
- Gambo, Y.Y.; Jarad, F.; Baleanu, D.; Abdeljawad, T. On Caputo modification of the Hadamard fractional derivatives. Adv. Differ. Equ. 2014, 2014, 1–12. [Google Scholar] [CrossRef] [Green Version]
- Samko, S.G.; Kilbas, A.A.; Marichev, O.I. Fractional Integrals and Derivatives: Theory and Applications; Gordon and Breach Science: Yverdon, Switzerland, 1993. [Google Scholar]
- Kilbas, A.A.; Srivastava, H.M.; Trujillo, J.J. Theory and Applications Fractional Differential Equations; North-Holland Mathematics Studies; Elsevier Science B.V.: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Pan, N.; Zhang, B.-L.; Cao, J. Degenerate Kirchhoff-type diffusion problems involving the fractional p-Laplacian. Nonlinear Anal. Real World Appl. 2017, 37, 56–70. [Google Scholar] [CrossRef]
- Tao, F.; Wu, X. Existence and multiplicity of positive solutions for fractional Schrödinger equations with critical growth. Nonlinear Anal. Real World Appl. 2017, 35, 158–174. [Google Scholar] [CrossRef]
- Almeida, R. A Caputo fractional derivative of a function with respect to another function. Commun. Nonlinear Sci. Numer. Simul. 2017, 44, 460–481. [Google Scholar] [CrossRef] [Green Version]
- Abdelkrim, S.; Alzabut, J.; Sudsutad, W.; Thaiprayoon, C. On Impulsive Implicit ψ-Caputo Hybrid Fractional Differential Equations with Retardation and Anticipation. Mathematics 2022, 10, 4821. [Google Scholar]
- Abbas, S.; Benchohra, M.; Hamidi, N.; Henderson, J. Caputo–Hadamard fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2018, 21, 1027–1045. [Google Scholar] [CrossRef]
- Boutiara, A.; Guerbati, K.; Benbachir, M. Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces. AIMS Math. 2020, 5, 259–272. [Google Scholar]
- Aghajani, A.; Pourhadi, E.; Trujillo, J.J. Application of measure of noncompactness to a Cauchy problem for fractional differential equations in Banach spaces. Fract. Calc. Appl. Anal. 2013, 16, 962–977. [Google Scholar] [CrossRef]
- Kucche, K.D.; Mali, A.D.; Sousa, J.V.C. On the nonlinear Ψ-Hilfer fractional differential equations. Comput. Appl. Math. 2019, 38, 73. [Google Scholar] [CrossRef]
- Boutiara, A.; Benbachir, M.; Alzabut, J.; Samei, M.E. Monotone iterative and upper–lower solutions techniques for solving nonlinear ψ-Caputo fractional boundary value problem. Fractal Fract. 2021, 5, 194. [Google Scholar] [CrossRef]
- Chen, C.; Bohner, M.; Jia, B. Method of upper and lower solutions for nonlinear Caputo fractional difference equations and its applications. Fract. Calc. Appl. Anal. 2019, 22, 1307–1320. [Google Scholar] [CrossRef]
- Zeidler, E. Nonlinear Functional Analysis and Its Applications, II/B, Nonlinear Monotone Operators; Translated from the German by the Author and Leo F. Boron; Springer: New York, NY, USA, 1990. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boulares, H.; Moumen, A.; Fernane, K.; Alzabut, J.; Saber, H.; Alraqad, T.; Benaissa, M. On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral. Mathematics 2023, 11, 1465. https://doi.org/10.3390/math11061465
Boulares H, Moumen A, Fernane K, Alzabut J, Saber H, Alraqad T, Benaissa M. On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral. Mathematics. 2023; 11(6):1465. https://doi.org/10.3390/math11061465
Chicago/Turabian StyleBoulares, Hamid, Abdelkader Moumen, Khaireddine Fernane, Jehad Alzabut, Hicham Saber, Tariq Alraqad, and Mhamed Benaissa. 2023. "On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral" Mathematics 11, no. 6: 1465. https://doi.org/10.3390/math11061465
APA StyleBoulares, H., Moumen, A., Fernane, K., Alzabut, J., Saber, H., Alraqad, T., & Benaissa, M. (2023). On Solutions of Fractional Integrodifferential Systems Involving Ψ-Caputo Derivative and Ψ-Riemann–Liouville Fractional Integral. Mathematics, 11(6), 1465. https://doi.org/10.3390/math11061465