Fixed Point Results in -Bipolar Metric Spaces with Applications
Abstract
:1. Introduction
2. Preliminaries
- ()
- f is non-decreasing,
- ()
- for each sequence , if and only if
- (i)
- if and only if ,
- (ii)
- (iii)
- for every , , and for every with , we haveThen, is alleged to be an -metric space.
- (bi1)
- if and only if ,
- (bi2)
- , if
- (bi3)
- ;
- (D1)
- if and only if ,
- (D2)
- , if
- (D3)
- for every , , and for every and with , we haveThen is called an -bipolar metric space.
- (i)
- An element is said to be a right point if and a left point if . Additionally, ℓ is said to be a central point if it is both a right and left point.
- (ii)
- A sequence on the set is said to be a right sequence and a sequence () on is called a left sequence. In an -bipolar metric space, a right or a left sequence is said to be a sequence.
- (iii)
- A sequence () is said to converge to an element ℓ, if and only if () is a right sequence, ℓ is a left point and , or () is a left sequence, ℓ is a right point and . A bisequence on is a sequence on the set . If the sequences () and () are convergent, then the bisequence (,) is also convergent, and if () and () converge to a common element, then the bisequence (,) is called biconvergent.
- (iv)
- A bisequence in an -bipolar metric space is called a Cauchy bisequence, if for each there exists such that for all
3. Main Results
4. Application
4.1. Integral Equations
- (i)
- and
- (ii)
- There is a continuous function such that
- (iii)
- i.e.,
4.2. Homotopy
- (hom1)
- for each and where and represent the differential of Ξ and Θ, respectively,
- (hom2)
- for all , and
- (hom3)
- there exists such that
5. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstracts ET leur applications aux equations integrals. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Kannan, R. Some results on fixed points. Bull. Calcutta Math. Soc. 1969, 76, 405–408. [Google Scholar]
- Reich, S. A fixed point theorem. Atti della Accad. Naz. dei Lincei. Cl. di Sci. Fis. Mat. e Naturali. Rend. 1971, 51, 26–28. [Google Scholar]
- Fisher, B. Mappings satisfying a rational inequality. Bull. Math. Soc. Sci. Math. R. S. Roum. (N. S.) 1980, 24, 247–251. [Google Scholar]
- Ćirć, L.B. Generalized contractions and fixed point theorems. Publ. de l’Inst. Math. 1971, 12, 19–26. [Google Scholar]
- Wardowski, D. Fixed points of a new type of contractive mappings in complete metric spaces. Fixed Point Theory Appl. 2012, 2012, 94. [Google Scholar] [CrossRef]
- Khojasteh, F.; Shukla, S.; Radenović, S. A new approach to the study of fixed point theorems for simulation functions. Filomat 2015, 29, 1189–1194. [Google Scholar] [CrossRef]
- Frechet, M. Sur quelques points du calcul fonctionnel. Rend. del Circ. Mat. di Palermo 1906, 22, 1–72. [Google Scholar] [CrossRef]
- Czerwik, S. Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostra 1993, 1, 5–11. [Google Scholar]
- Branciari, A. A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debr. 2000, 57, 31–37. [Google Scholar] [CrossRef]
- Jleli, M.; Samet, B. On a new generalization of metric spaces. J. Fixed Point Theory Appl. 2018, 20, 128. [Google Scholar] [CrossRef]
- Al-Mazrooei, A.E.; Ahmad, J. Fixed point theorems for rational contractions in -metric spaces. J. Mat. Anal. 2019, 10, 79–86. [Google Scholar]
- Mutlu, A.; Gürdal, U. Bipolar metric spaces and some fixed point theorems. J. Nonlinear Sci. Appl. 2016, 9, 5362–5373. [Google Scholar] [CrossRef]
- Gürdal, U.; Mutlu, A.; Ozkan, K. Fixed point results for α-ψ-contractive mappings in bipolar metric spaces. J. Inequal. Spec. Funct. 2020, 11, 64–75. [Google Scholar]
- Gaba, Y.U.; Aphane, M.; Aydi, H. (α, BK)-contractions in bipolar metric spaces. J. Math. 2021, 2021, 5562651. [Google Scholar] [CrossRef]
- Kishore, G.N.V.; Rao, K.P.R.; Sombabu, A.; Rao, R.V.N.S. Related results to hybrid pair of mappings and applications in bipolar metric spaces. J. Math. 2019, 2019, 8485412. [Google Scholar] [CrossRef]
- Kishore, G.N.V.; Rao, K.P.R.; Isik, H.; Rao, B.S.; Sombabu, A. Covariant mappings and coupled fixed point results in bipolar metric spaces. Int. J. Nonlinear Anal. Appl. 2021, 12, 1–15. [Google Scholar]
- Kishore, G.N.V.; Agarwal, R.P.; Rao, B.S.; Rao, R.V.N.S. Caristi type cyclic contraction and common fixed point theorems in bipolar metric spaces with applications. Fixed Point Theory Appl. 2018, 2018, 21. [Google Scholar] [CrossRef]
- Kishore, G.N.V.; Prasad, D.R.; Rao, B.S.; Baghavan, V.S. Some applications via common coupled fixed point theorems in bipolar metric spaces. J. Crit. Rev. 2019, 7, 601–607. [Google Scholar]
- Kishore, G.N.V.; Isik, H.; Aydi, H.; Rao, B.S.; Prasad, D.R. On new types of contraction mappings in bipolar metric spaces and applications. J. Linear Topol. Algebra 2020, 9, 253–266. [Google Scholar]
- Moorthy, C.G.; Siva, G. Bipolar multiplicative metric spaces and fixed point theorems of covariant and contravariant mappings. Math. Anal. Convex Optim. 2021, 2, 39–49. [Google Scholar] [CrossRef]
- Mutlu, A.; Ozkan, K.; Gürdal, U. Coupled fixed point theorems on bipolar metric spaces. Eur. J. Pure Appl. Math. 2017, 10, 655–667. [Google Scholar]
- Mutlu, A.; Ozkan, K.; Gürdal, U. Some common fixed point theorems in bipolar metric spaces. Turk. J. Math. Comput. Sci. 2022, 14, 346–354. [Google Scholar] [CrossRef]
- Rao, B.S.; Kishore, G.N.V.; Kumar, G.K. Geraghty typecontraction and common coupled fixed point theorems in bipolar metric spaces with applications to homotopy. Int. J. Math. Trends Technol. 2018, 63, 25–34. [Google Scholar] [CrossRef]
- Rawat, S.; Dimri, R.C.; Bartwal, A. -Bipolar metric spaces and fixed point theorems with applications. J. Math. Comput. Sci. 2022, 26, 184–195. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alamri, B.
Fixed Point Results in
Alamri B.
Fixed Point Results in
Alamri, Badriah.
2023. "Fixed Point Results in
Alamri, B.
(2023). Fixed Point Results in