Total Fractional-Order Variation-Based Constraint Image Deblurring Problem
Abstract
:1. Introduction
1.1. Related Works
1.2. Scope of the Paper
2. Constraint Image Deblurring Problem
2.1. One-Sided Constraint Problem
Algorithm 1 One-sided constraint method |
function: OnesideConstraint()
|
2.2. Two-Sided Constraint Problem
Algorithm 2 Two-sided constraint method |
function: [ u ] = TwosidesConstraint()
Set: |
3. Euler–Lagrange Equations
4. Numerical Implementation
- (1)
- (2)
- .
Algorithm 3 The PCG Method |
function: [ U ] = PCG()
Set: |
5. Numerical Experiments
- From Figure 3, it can be observed that the deblurred images produced by the OSCM exhibit significantly better quality compared to the unconstrained method.
- In Table 1, one can observe that the PSNR and SSIM values of the OSCM are considerably higher than the PSNR and SSIM values of the unconstrained method. The OSCM identifies negative pixels and reduces them as the iterations progress. Finally, it removes them in just 12 iterations, resulting a clear, blur-free image.
- In Table 2, one can observe that the PSNR and SSIM values of TSCM are considerably higher than the PSNR and SSIM values of the unconstrained method. The TSCM identifies pixels that are outside the given range of and modifies them as the number of iterations increases.
- From Table 3, it can be observed that our algorithms (OSCM and TSCM) consistently achieve higher PSNR and SSIM values compared to other methods (OLM, and TLM) for all photos. Although the TLM generates higher PSNR and SSIM values more quickly, the quality of the PSNR and SSIM is inferior to that of OSCM and TSCM.Despite taking less time, our algorithms produce significantly better quality compared to other methods. For example, for the Goldhills image, OLM and TLM require 1005.2589 and 526.5476 s, respectively, to achieve PSNR/SSIM values of and 33.1458/0.7690, respectively. However, OSCM and TSCM take 896.4058 and 909.5469 s, respectively, to achieve higher PSNR/SSIM values of and , respectively. Similar trends can be observed in the Cameraman’s image. Therefore, our algorithms (OSCM and TSCM) produce high-quality deblurred images compared to other methods.
- One can see from Figure 8 that our algorithms (OSCM and TSCM) produce results of slightly higher quality compared to other methods.
- From Table 4, it can be observed that for all photos, our algorithms (OSCM and TSCM) exhibit higher PSNR values compared to other methods (OLM and TLM). Although the TLM generates faster PSNR and SSIM computation, its quality is inferior to that of OSCM and TSCM. Therefore, our algorithms (OSCM and TSCM) produce superior-quality deblurred images when compared to other methods.
- From Figure 11, Figure 12, Figure 13 and Figure 14, and Table 6, it is evident that our methods, OSCM and TSCM, consistently produce better values for PSNR and SSIM when compared to all other methods. These results demonstrate the strong performance of the OSCM and TSCM, which consistently generate high-quality images. A comparison of PSNR and SSIM values for different methods using Levin’s dataset is depicted in Figure 15.
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
References
- Gultekin, G.K.; Saranli, A. Feature detection performance based benchmarking of motion deblurring methods: Applications to vision for legged robots. Image Vis. Comput. 2019, 82, 26–38. [Google Scholar] [CrossRef]
- Zhang, Z.; Zheng, L.; Piao, Y.; Tao, S.; Xu, W.; Gao, T.; Wu, X. Blind remote sensing image deblurring using local binary pattern prior. Remote Sens. 2022, 14, 1276. [Google Scholar] [CrossRef]
- Hansen, M.S.; Sørensen, T.S. Gadgetron: An open source framework for medical image reconstruction. Magn. Reson. Med. 2013, 69, 1768–1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maimone, A.; Fuchs, H. Reducing interference between multiple structured light depth sensors using motion. In Proceedings of the 2012 IEEE Virtual Reality Workshops (VRW), Costa Mesa, CA, USA, 4–8 March 2012; pp. 51–54. [Google Scholar]
- Bonettini, S.; Landi, G.; Piccolomini, E.L.; Zanni, L. Scaling techniques for gradient projection-type methods in astronomical image deblurring. Int. J. Comput. Math. 2013, 90, 9–29. [Google Scholar] [CrossRef]
- Choi, N.R. A Comparative Study of Non-Blind and Blind Deconvolution of Ultrasound Images; University of Southern California: Los Angeles, CA, USA, 2014. [Google Scholar]
- Inampudi, S.; Vani, S.; TB, R. Image Restoration using Non-Blind Deconvolution Approach—A Comparison. Int. J. Electron. Commun. Eng. Technol. 2019, 10, 9–16. [Google Scholar] [CrossRef]
- Tao, S.; Dong, W.; Feng, H.; Xu, Z.; Li, Q. Non-blind image deconvolution using natural image gradient prior. Optik 2013, 124, 6599–6605. [Google Scholar] [CrossRef]
- Xiong, N.; Liu, R.W.; Liang, M.; Wu, D.; Liu, Z.; Wu, H. Effective alternating direction optimization methods for sparsity-constrained blind image deblurring. Sensors 2017, 17, 174. [Google Scholar] [CrossRef] [Green Version]
- Chu, Y.; Zhang, X.; Liu, H. Decoupling Induction and Multi-Order Attention Drop-Out Gating Based Joint Motion Deblurring and Image Super-Resolution. Mathematics 2022, 10, 1837. [Google Scholar] [CrossRef]
- Qi, S.; Zhang, Y.; Wang, C.; Lan, R. Representing Blurred Image without Deblurring. Mathematics 2023, 11, 2239. [Google Scholar] [CrossRef]
- Zhang, K.; Ren, W.; Luo, W.; Lai, W.S.; Stenger, B.; Yang, M.H.; Li, H. Deep image deblurring: A survey. Int. J. Comput. Vis. 2022, 130, 2103–2130. [Google Scholar] [CrossRef]
- Awwal, A.M.; Wang, L.; Kumam, P.; Mohammad, H. A two-step spectral gradient projection method for system of nonlinear monotone equations and image deblurring problems. Symmetry 2020, 12, 874. [Google Scholar] [CrossRef]
- Campisi, P.; Egiazarian, K. Blind Image Deconvolution: Theory and Applications; CRC Press: Boca Raton, FL, USA, 2016. [Google Scholar]
- Ge, X.; Tan, J.; Zhang, L.; Qian, Y. Blind image deconvolution via salient edge selection and mean curvature regularization. Signal Process. 2022, 190, 108336. [Google Scholar] [CrossRef]
- Li, L.; Pan, J.; Lai, W.S.; Gao, C.; Sang, N.; Yang, M.H. Learning a discriminative prior for blind image deblurring. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 8–23 June 2018; pp. 6616–6625. [Google Scholar]
- Yang, D.; Wu, X.; Yin, H. Blind Image Deblurring via a Novel Sparse Channel Prior. Mathematics 2022, 10, 1238. [Google Scholar] [CrossRef]
- Sharif, S.; Naqvi, R.A.; Mehmood, Z.; Hussain, J.; Ali, A.; Lee, S.W. MedDeblur: Medical Image Deblurring with Residual Dense Spatial-Asymmetric Attention. Mathematics 2022, 11, 115. [Google Scholar] [CrossRef]
- Wen, F.; Ying, R.; Liu, Y.; Liu, P.; Truong, T.K. A simple local minimal intensity prior and an improved algorithm for blind image deblurring. IEEE Trans. Circuits Syst. Video Technol. 2020, 31, 2923–2937. [Google Scholar] [CrossRef]
- Lata, M.A.; Ghosh, S.; Bobi, F.; Yousuf, M.A. Novel method to assess motion blur kernel parameters and comparative study of restoration techniques using different image layouts. In Proceedings of the 2016 5th International Conference on Informatics, Electronics and Vision (ICIEV), Dhaka, Bangladesh, 13–14 May 2016; pp. 367–372. [Google Scholar]
- Acar, R.; Vogel, C.R. Analysis of bounded variation penalty methods for ill-posed problems. Inverse Probl. 1994, 10, 1217–1229. [Google Scholar] [CrossRef]
- Tikhonov, A.N. Regularization of incorrectly posed problems. Soviet Math. Dokl. 1963, 4, 1624–1627. [Google Scholar]
- Vogel, C.R.; Oman, M.E. Fast, robust total variation-based reconstruction of noisy, blurred images. IEEE Trans. Image Process. 1998, 7, 813–824. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Ma, R.; Zeng, X.; Liu, W.; Wang, M.; Chen, H. An efficient non-convex total variation approach for image deblurring and denoising. Appl. Math. Comput. 2021, 397, 125977. [Google Scholar] [CrossRef]
- Rudin, L.I.; Osher, S.; Fatemi, E. Nonlinear total variation based noise removal algorithms. Phys. D Nonlinear Phenom. 1992, 60, 259–268. [Google Scholar] [CrossRef]
- Chan, R.; Lanza, A.; Morigi, S.; Sgallari, F. An adaptive strategy for the restoration of textured images using fractional order regularization. Numer. Math. Theory Methods Appl. 2013, 6, 276–296. [Google Scholar] [CrossRef]
- Chen, D.; Chen, Y.; Xue, D. Fractional-order total variation image restoration based on primal-dual algorithm. Abstr. Appl. Anal. 2013, 2013, 585310. [Google Scholar] [CrossRef] [Green Version]
- Chen, D.; Chen, Y.; Xue, D. Three fractional-order TV-L2 models for image denoising. J. Comput. Inf. Syst. 2013, 9, 4773–4780. [Google Scholar]
- Chen, D.; Sun, S.; Zhang, C.; Chen, Y.; Xue, D. Fractional-order TV-L2 model for image denoising. Cent. Eur. J. Phys. 2013, 11, 1414–1422. [Google Scholar] [CrossRef] [Green Version]
- Guo, L.; Zhao, X.L.; Gu, X.M.; Zhao, Y.L.; Zheng, Y.B.; Huang, T.Z. Three-dimensional fractional total variation regularized tensor optimized model for image deblurring. Appl. Math. Comput. 2021, 404, 126224. [Google Scholar] [CrossRef]
- Zhang, J.; Chen, K. A total fractional-order variation model for image restoration with nonhomogeneous boundary conditions and its numerical solution. SIAM J. Imaging Sci. 2015, 8, 2487–2518. [Google Scholar] [CrossRef] [Green Version]
- Zhao, X.L.; Huang, T.Z.; Gu, X.M.; Deng, L.J. Vector extrapolation based Landweber method for discrete ill-posed problems. Math. Probl. Eng. 2017, 2017, 1375716. [Google Scholar] [CrossRef] [Green Version]
- Miller, K.S.; Ross, B. An Introduction to the Fractional Calculus and Fractional Differential Equations; Wiley: New York, NY, USA, 1993. [Google Scholar]
- Oldham, K.; Spanier, J. The Fractional Calculus Theory and Applications of Differentiation and Integration to Arbitrary Order; Elsevier: Amsterdam, The Netherlands, 1974; Volume 111. [Google Scholar]
- Podlubny, I. Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications; Academic Press: Cambridge, MA, USA, 1998; Volume 198. [Google Scholar]
- De Oliveira, E.C.; Tenreiro Machado, J.A. A review of definitions for fractional derivatives and integral. Math. Probl. Eng. 2014, 2014, 238459. [Google Scholar] [CrossRef] [Green Version]
- Mathieu, B.; Melchior, P.; Oustaloup, A.; Ceyral, C. Fractional differentiation for edge detection. Signal Process. 2003, 83, 2421–2432. [Google Scholar] [CrossRef]
- Tian, D.; Xue, D.; Wang, D. A fractional-order adaptive regularization primal–dual algorithm for image denoising. Inf. Sci. 2015, 296, 147–159. [Google Scholar] [CrossRef]
- Fairag, F.; Al-Mahdi, A.; Ahmad, S. Two-level method for the total fractional-order variation model in image deblurring problem. Numer. Algorithms 2020, 85, 931–950. [Google Scholar] [CrossRef]
- Bardsley, J.M.; Vogel, C.R. A nonnegatively constrained convex programming method for image reconstruction. SIAM J. Sci. Comput. 2004, 25, 1326–1343. [Google Scholar] [CrossRef]
- Calvetti, D.; Landi, G.; Reichel, L.; Sgallari, F. Non-negativity and iterative methods for ill-posed problems. Inverse Probl. 2004, 20, 1747. [Google Scholar] [CrossRef]
- Benvenuto, F.; Zanella, R.; Zanni, L.; Bertero, M. Nonnegative least-squares image deblurring: Improved gradient projection approaches. Inverse Probl. 2009, 26, 025004. [Google Scholar] [CrossRef]
- Chan, R.H.; Tao, M.; Yuan, X. Constrained total variation deblurring models and fast algorithms based on alternating direction method of multipliers. SIAM J. Imaging Sci. 2013, 6, 680–697. [Google Scholar] [CrossRef] [Green Version]
- Williams, B.M.; Chen, K.; Harding, S.P. A new constrained total variational deblurring model and its fast algorithm. Numer. Algorithms 2015, 69, 415–441. [Google Scholar] [CrossRef]
- Chan, S.H.; Khoshabeh, R.; Gibson, K.B.; Gill, P.E.; Nguyen, T.Q. An augmented Lagrangian method for total variation video restoration. IEEE Trans. Image Process. 2011, 20, 3097–3111. [Google Scholar] [CrossRef]
- Tai, X.C.; Hahn, J.; Chung, G.J. A fast algorithm for Euler’s elastica model using augmented Lagrangian method. SIAM J. Imaging Sci. 2011, 4, 313–344. [Google Scholar] [CrossRef]
- Wu, C.; Tai, X.C. Augmented Lagrangian method, dual methods, and split Bregman iteration for ROF, vectorial TV, and high order models. SIAM J. Imaging Sci. 2010, 3, 300–339. [Google Scholar] [CrossRef] [Green Version]
- Fletcher, R. Practical Methods of Optimization; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Hestenes, M.R. Multiplier and gradient methods. J. Optim. Theory Appl. 1969, 4, 303–320. [Google Scholar] [CrossRef]
- Powell, M.J.D. A method for nonlinear constraints in minimization problems. In Optomization; Academic Press: Cambridge, MA, USA, 1969; pp. 283–298. [Google Scholar]
- Zhang, J.; Chen, K. Variational image registration by a total fractional-order variation model. J. Comput. Phys. 2015, 293, 442–461. [Google Scholar] [CrossRef] [Green Version]
- Meerschaert, M.M.; Tadjeran, C. Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 2006, 56, 80–90. [Google Scholar] [CrossRef]
- Podlubny, I.; Chechkin, A.; Skovranek, T.; Chen, Y.; Jara, B.M.V. Matrix approach to discrete fractional calculus II: Partial fractional differential equations. J. Comput. Phys. 2009, 228, 3137–3153. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; Du, N. Fast solution methods for space-fractional diffusion equations. J. Comput. Appl. Math. 2014, 255, 376–383. [Google Scholar] [CrossRef]
- Chan, R.H.; Ng, K.P. Toeplitz preconditioners for Hermitian Toeplitz systems. Linear Algebra Its Appl. 1993, 190, 181–208. [Google Scholar] [CrossRef] [Green Version]
- Chan, T.F. An optimal circulant preconditioner for Toeplitz systems. SIAM J. Sci. Stat. Comput. 1988, 9, 766–771. [Google Scholar] [CrossRef]
- Salkuyeh, D.K.; Masoudi, M.; Hezari, D. On the generalized shift-splitting preconditioner for saddle point problems. Appl. Math. Lett. 2015, 48, 55–61. [Google Scholar] [CrossRef] [Green Version]
- Ng, M.K. Iterative Methods for Toeplitz Systems; Oxford University Press: London, UK, 2004. [Google Scholar]
- Sara, U.; Akter, M.; Uddin, M.S. Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study. J. Comput. Commun. 2019, 7, 8–18. [Google Scholar] [CrossRef] [Green Version]
- Hore, A.; Ziou, D. Image quality metrics: PSNR vs. SSIM. In Proceedings of the 2010 20th International Conference on Pattern Recognition, Istanbul, Turkey, 23–26 August 2010; pp. 2366–2369. [Google Scholar]
- Chowdhury, M.R.; Qin, J.; Lou, Y. Non-blind and blind deconvolution under poisson noise using fractional-order total variation. J. Math. Imaging Vis. 2020, 62, 1238–1255. [Google Scholar] [CrossRef]
- Dupé, F.X.; Fadili, M.J.; Starck, J.L. Image deconvolution under Poisson noise using sparse representations and proximal thresholding iteration. In Proceedings of the 2008 IEEE International Conference on Acoustics, Speech and Signal Processing, Las Vegas, NV, USA, 31 March–4 April 2008; pp. 761–764. [Google Scholar]
- Levin, A.; Weiss, Y.; Durand, F.; Freeman, W.T. Understanding and evaluating blind deconvolution algorithms. In Proceedings of the 2009 IEEE Conference on Computer Vision and Pattern Recognition, Miami, FL, USA, 20–25 June 2009; pp. 1964–1971. [Google Scholar]
k | PSNR | SSIM | Negative Pixels | ||
---|---|---|---|---|---|
Blurred | – | – | 25.5453 | 0.7212 | – |
Unconstrained | – | – | 42.7844 | 0.9834 | – |
Constrained | 1 | 1 | 35.2141 | 0.9479 | 538 |
2 | 4.8 | 40.0719 | 0.9775 | 229 | |
3 | 2.4 | 42.1297 | 0.9849 | 140 | |
4 | 1.2 | 42.8566 | 0.9871 | 115 | |
5 | 5.9 | 44.4585 | 0.9912 | 77 | |
6 | 3.0 | 45.5307 | 0.9935 | 56 | |
7 | 1.5 | 45.6246 | 0.9936 | 55 | |
8 | 7.4 | 46.4088 | 0.9950 | 34 | |
9 | 3.7 | 46.5475 | 0.9951 | 25 | |
10 | 1.9 | 46.5729 | 0.9953 | 14 | |
11 | 9.3 | 46.5579 | 0.9953 | 3 | |
12 | 4.6 | 46.5578 | 0.9952 | 0 |
k | PSNR | SSIM | Pixels Outside | ||
---|---|---|---|---|---|
Blurred | – | – | 25.7620 | 0.8750 | – |
Unconstrained | – | – | 51.6217 | 0.9932 | – |
Constrained | 1 | 1 | 47.8605 | 0.9892 | 929 |
2 | 2.9 | 50.7834 | 0.9941 | 379 | |
3 | 8.6 | 50.7834 | 0.9959 | 379 | |
4 | 2.6 | 50.7834 | 0.9960 | 379 | |
5 | 7.7 | 50.7834 | 0.9961 | 379 | |
6 | 2.3 | 50.7834 | 0.9961 | 379 | |
7 | 6.9 | 50.7834 | 0.9962 | 379 | |
8 | 2.1 | 50.7834 | 0.9964 | 379 | |
9 | 6.2 | 50.7834 | 0.9969 | 379 | |
10 | 1.9 | 52.3107 | 0.9973 | 202 | |
11 | 5.6 | 53.2440 | 0.9974 | 112 | |
12 | 1.7 | 53.7802 | 0.9974 | 72 | |
13 | 5.0 | 54.0844 | 0.9979 | 46 | |
14 | 1.5 | 54.2197 | 0.9978 | 24 | |
15 | 4.5 | 54.2212 | 0.9979 | 12 | |
16 | 1.4 | 54.3087 | 0.9980 | 0 |
Blurred | OLM | TLM | OSCM | TSCM | ||
---|---|---|---|---|---|---|
Goldhills | PSNR | 23.1256 | 33.1589 | 33.1458 | 34.8945 | 34.8965 |
SSIM | 0.5687 | 0.7704 | 0.7690 | 0.7788 | 0.7759 | |
CPU-Time | – | 1005.2589 | 526.5476 | 896.4058 | 909.5469 | |
Cameraman | PSNR | 23.5693 | 43.4561 | 43.5489 | 46.0056 | 45.9967 |
SSIM | 0.7524 | 0.7047 | 0.9113 | 0.9186 | 0.9121 | |
CPU-Time | – | 592.3464 | 345.2675 | 512.3641 | 526.3428 |
Blurred | OLM | TLM | OSCM | TSCM | ||
---|---|---|---|---|---|---|
Pepper | PSNR | 23.1579 | 45.2366 | 45.4559 | 46.2973 | 46.3012 |
SSIM | 0.7103 | 0.8395 | 0.8425 | 0.8438 | 0.8442 | |
CPU-Time | – | 880.2645 | 524.7881 | 764.5225 | 791.2988 |
Image | Galaxy | Satel | ||
---|---|---|---|---|
Method | PSNR | SSIM | PSNR | SSIM |
Blurred | 20.6620 | 0.6712 | 20.4559 | 0.7994 |
RLTV | 23.8769 | 0.7560 | 22.2881 | 0.8731 |
NFOV | 24.1417 | 0.8222 | 22.7439 | 0.8759 |
OSCM | 25.0424 | 0.8409 | 24.1290 | 0.8829 |
TSCM | 25.0519 | 0.8425 | 24.1952 | 0.8837 |
Image | Img1 | Img2 | Img3 | Img4 | ||||
---|---|---|---|---|---|---|---|---|
Method | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM | PSNR | SSIM |
Blurred | 20.6620 | 0.6712 | 20.4559 | 0.7994 | 20.0261 | 0.6126 | 21.8748 | 0.6910 |
TV | 23.8769 | 0.7560 | 22.2881 | 0.8731 | 35.1520 | 0.9417 | 36.6872 | 0.9656 |
OLM | 23.8769 | 0.7560 | 22.2881 | 0.8731 | 41.9824 | 0.9723 | 42.7467 | 0.9878 |
TLM | 23.8769 | 0.7560 | 22.2881 | 0.8731 | 41.9562 | 0.9799 | 42.8641 | 0.9864 |
RLTV | 23.8769 | 0.7560 | 22.2881 | 0.8731 | 39.7634 | 0.9719 | 42.8737 | 0.9869 |
NFOV | 24.1417 | 0.8222 | 22.7439 | 0.8759 | 41.1822 | 0.9782 | 41.6221 | 0.9834 |
OSCM | 25.0424 | 0.8409 | 24.1290 | 0.8829 | 42.3956 | 0.9826 | 43.5442 | 0.9885 |
TSCM | 25.0519 | 0.8425 | 24.1952 | 0.8837 | 41.7253 | 0.9803 | 43.5522 | 0.9886 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, S.; Ahmad, S.; Kim, J. Total Fractional-Order Variation-Based Constraint Image Deblurring Problem. Mathematics 2023, 11, 2869. https://doi.org/10.3390/math11132869
Saleem S, Ahmad S, Kim J. Total Fractional-Order Variation-Based Constraint Image Deblurring Problem. Mathematics. 2023; 11(13):2869. https://doi.org/10.3390/math11132869
Chicago/Turabian StyleSaleem, Shahid, Shahbaz Ahmad, and Junseok Kim. 2023. "Total Fractional-Order Variation-Based Constraint Image Deblurring Problem" Mathematics 11, no. 13: 2869. https://doi.org/10.3390/math11132869
APA StyleSaleem, S., Ahmad, S., & Kim, J. (2023). Total Fractional-Order Variation-Based Constraint Image Deblurring Problem. Mathematics, 11(13), 2869. https://doi.org/10.3390/math11132869