Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations
Abstract
:1. Introduction
2. Hermite Interpolation Polynomials
2.1. Cubic Hermite Polynomial
2.2. Quintic Hermite Polynomial
2.3. Septic Hermite Polynomial
3. Literature Review on Hermite Polynomials
4. Application of Hermite as a Basis Function
- Kuramoto–Sivashinsky equation:
- One-dimensional convection–diffusion equation:
- Washing of packed bed of porous particles model:
- Linear convection–diffusion problem:
- Benjamin–Bona–Mahony–Burgers problem:
5. Author’s Contribution
- Singularly perturbed differential problem:
- Modified Burgers’ equation:
- Modified regularised long wave equation:
- Hodgkin–Huxley equation:
6. Conclusions
7. Future Applications/Advancements
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szego, G. Orthogonal Polynomials; American Mathematical Society: Providence, RI, USA, 1975. [Google Scholar]
- Podolsky, B.; Pauling, L. The momentum distribution in hydrogen-like atoms. Phys. Rev. 1929, 34, 109. [Google Scholar] [CrossRef]
- Schweizer, W. Numerical Quantum Dynamics; Kluwer Academic Publishers: Dordrecht, The Netherlands, 2001. [Google Scholar]
- Nikiforov, A.F.; Suslov, S.K.; Uvarov, V.B. Classical Orthogonal Polynomials of a Discrete Variable; Springer: Berlin/Heidelberg, Germany, 1991. [Google Scholar]
- Hermite, C. Sur deux limites dune integrale definie. Mathesis 1883, 3, 1–82. [Google Scholar]
- Aung, P.P. Application of Hermite Polynomials in the Quantum Simple Harmonic Oscillator; Physical Chemistry I Legacy Project: New York, NY, USA, 2004. [Google Scholar]
- Siuly, S.; Alcin, O.F.; Bajaj, V.; Sengur, A.; Zhang, Y. Exploring Hermite transformation in brain signal analysis for the detection of epileptic seizure. IET Sci. Meas. Technol. 2019, 13, 35–41. [Google Scholar] [CrossRef]
- Makram-Ebeid, S.; Mory, B. Scale-space image analysis based on Hermite polynomials theory. In Proceedings of the International Conference on Scale-Space Theories in Computer Vision, Isle of Skye, UK, 10–12 June 2003; Springer: Berlin/Heidelberg, Germany, 2003; pp. 57–71. [Google Scholar]
- Escalante-Ramasrez, B. The Hermite transform as an efficient model for local image analysis: An application to medical image fusion. Comput. Electr. Eng. 2008, 34, 99–110. [Google Scholar] [CrossRef]
- Martens, J.B. Application of scale space to image coding. IEEE Trans. Commun. 1990, 38, 1585–1591. [Google Scholar] [CrossRef]
- Escalante-Ramirez, B.; Martens, J.B. Noise reduction in computed tomography images by means of polynomial transforms. J. Vis. Commun. Image Represent. 1992, 3, 272–285. [Google Scholar] [CrossRef]
- Mahadevan, A.; Acharya, S.; Sheffer, D.B. Ballisto cardiogram artifact removal in EEG-FMRI signals using discrete Hermite transforms. IEEE J. Sel. Top. Signal. Process. 2008, 2, 839–853. [Google Scholar] [CrossRef]
- Zakrajsek, H. Applications of Hermite transforms in computer algebra. Adv. Appl. Math. 2003, 31, 301–320. [Google Scholar] [CrossRef]
- Akbulut, Y.; Guo, Y.; Şengür, A.; Aslan, M. An effective color texture image segmentation algorithm based on Hermite transform. Appl. Soft Comput. 2018, 67, 494–504. [Google Scholar] [CrossRef]
- Yeap, Z.X.; Sim, K.S.; Tso, C.P. Adaptive tuning piecewise cubic Hermite interpolation with Wiener filter in wavelet domain for scanning electron microscope images. Microsc. Res. Tech. 2019, 82, 402–414. [Google Scholar] [CrossRef]
- Dyksen, W.R.; Rice, J.R. A new ordering scheme for the Hermite bicubic collocation equations. In Elliptic Problem Solvers; Department of Computer Science Technical Reports; Academic Press: Cambridge, MA, USA, 1984; pp. 467–480. [Google Scholar]
- Arora, S.; Kaur, I. An efficient scheme for numerical solution of Burgers’ equation using quintic Hermite interpolating polynomials. Arab. J. Math. 2016, 5, 23–34. [Google Scholar] [CrossRef] [Green Version]
- Kumari, A.; Kukreja, V.K. Error bounds for septic Hermite interpolation and its implementation to study modified Burgers’ equation. Numer. Algo. 2022, 89, 1799–1821. [Google Scholar] [CrossRef]
- Boor, C.D. Practical Guide to Splines; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Varma, A.K.; Prasad, J. An analogue of a problem of P. Erdos and E. Feldheim on Lp convergence of interpolating processes. J. Approx. Theory 1989, 56, 225240. [Google Scholar] [CrossRef] [Green Version]
- Nevai, P.; Vertesi, P. Mean convergence of Hermite-Fejer interpolation. J. Approx. Theory 1976, 56, 310–311. [Google Scholar] [CrossRef] [Green Version]
- Nevai, P.; Vertesi, P. Convergence of Hermite-Fejer interpolation at zeros of generalized Jacobi polynomials. Acta Sci. Math. 1989, 53, 77–98. [Google Scholar]
- Nevai, P.; Yuan, X. Mean convergence of Hermite interpolation. J. Approx. Theory 1994, 77, 282–304. [Google Scholar] [CrossRef] [Green Version]
- Al-Khaled, K. Hermite interpolation based on Chebyshev nodes. Math. Sci. Res. 2000, 4, 1–9. [Google Scholar]
- Al-Khaled, K.; Khalil, R. Some norms estimates of Hermite type interpolation operators. Numer. Funct. Anal. Optim. 2000, 21, 579–588. [Google Scholar] [CrossRef]
- Agarwal, R.P. Sharp Hermite interpolation error bounds for derivatives. Nonlinear Anal. Theory Methods Appl. 1991, 17, 773–786. [Google Scholar] [CrossRef]
- Agarwal, R.P.; Wong, P.J.Y. Explicit error bounds for the derivatives of piecewise-Hermite interpolation in L2-norm. Math. Comp. Model. 1994, 19, 21–30. [Google Scholar] [CrossRef]
- Schultz, M.H. Spline Analysis; Prentice-Hall: Englewood Cliffs, NJ, USA, 1973. [Google Scholar]
- Agarwal, R.P.; Wong, P.J.Y. Optimal error bounds for the derivatives of two point hermite interpolation. Comput. Math. Appl. 1991, 21, 21–35. [Google Scholar] [CrossRef] [Green Version]
- Agarwal, R.P.; Wong, P.J.Y. Error Inequalities in Polynomial Interpolation and Their Applications; Kluwer Academic Publishers: Dordrecht, The Netherlands, 1993. [Google Scholar]
- Al-Khaled, K.; Marwan, A. Convergence and norm estimates of Hermite interpolation at zeros of Chebyshev polynomials. SpringerPlus 2016, 5, 1992. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pottinger, P. Zur Hermite interpolation. Agnew. Math. Mech. 1976, 56, 310–311. [Google Scholar] [CrossRef]
- Pottinger, P. On the approximation of functions and their derivatives by Hermite interpolation. J. Approx. Theory 1978, 23, 267–273. [Google Scholar] [CrossRef]
- Szabados, J.; Varma, A.K. On the derivatives of Hermite-Fejdr interpolating polynomials. Acta Math. Hung. 1990, 55, 301–309. [Google Scholar] [CrossRef]
- Min, G. On approximation of functions and their derivatives by quasi-Hermite interpolation. Int. J. Math. Math. Sci. 1996, 19, 279–286. [Google Scholar] [CrossRef] [Green Version]
- Berriochoa, E.; Cachafeiro, A.; DiAaz, J.; Illan, J. Explicit formulas for Hermite-type interpolation on the circle and applications. Electron. Trans. Numer. Anal. 2015, 44, 140–152. [Google Scholar]
- Costabile, F.A.; DellAccio, F. Polynomial approximation of CM functions by means of boundary values and applications: A survey. J. Comput. Appl. Math. 2007, 210, 116–135. [Google Scholar] [CrossRef] [Green Version]
- Mastroianni, G.; Milovanovic, G. Interpolation Processes: Basic Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2008. [Google Scholar]
- Ciarlet, P.G.; Schultz, M.H.; Varga, R.S. Numerical methods of high-order accuracy for nonlinear boundary value problems. Numer. Math. 1967, 9, 394–430. [Google Scholar] [CrossRef]
- Birkhoff, G.; Priver, A. Hermite interpolation errors for derivatives. J. Math. Phys. 1967, 46, 440–447. [Google Scholar] [CrossRef]
- Riess, R.D. Error estimates of Hermite interpolation. BIT Numer. Math. 1973, 13, 338–343. [Google Scholar] [CrossRef]
- Hall, C.A. On error bounds for spline interpolation. J. Approx. Theory 1968, 1, 209–218. [Google Scholar] [CrossRef] [Green Version]
- Chen, F.; Wong, P.J. Error inequalities for quintic and biquintic discrete Hermite interpolation. J. Comput. Appl. Math. 2011, 235, 4589–4600. [Google Scholar] [CrossRef]
- Wong, P.J.Y.; Agarwal, R.P. Error inequalities for discrete Hermite and spline interpolation. In Recent Progress in Inequalities; Milovanovic, G.V., Ed.; Kluwer: Dordrecht, The Netherlands, 1998; pp. 397–422. [Google Scholar]
- Criscuolo, G.; Della, B.; Vecchia Mastroianni, G. Hermite interpolation and mean convergence of its derivatives. Calcolo 1991, 28, 111–127. [Google Scholar] [CrossRef]
- Cirillo, E.; Hormann, K. An iterative approach to barycentric rational Hermite interpolation. Numer. Math. 2018, 140, 939–962. [Google Scholar] [CrossRef]
- Cirillo, E.; Hormann, K.; Sidon, J. Convergence rates of a Hermite generalization of Floater-Hormann interpolants. J. Comput. Appl. Math. 2020, 371, 112624. [Google Scholar] [CrossRef]
- Varma, A.K.; Katsifarakis, K.L. Optimal error bounds for Hermite interpolation. J. Apprrox. Theory 1987, 51, 350–359. [Google Scholar] [CrossRef]
- Birkhoff, G.; Schultz, M.H.; Varga, R.S. Piecewise Hermite interpolation in one and two variables with applications to partial differential equations. Numer. Math 1968, 11, 232–256. [Google Scholar] [CrossRef]
- Wong, P.J.Y.; Agarwal, R.P. Explicit error estimates for quintic and biquintic spline interpolation. Comput. Math. Appl. 1989, 18, 701–722. [Google Scholar] [CrossRef] [Green Version]
- Varma, A.K.; Howell, G. Best error bounds for derivatives in two point Birkhoff interpolation problems. J. Approx. Theory 1983, 38, 258–268. [Google Scholar] [CrossRef] [Green Version]
- Sard, A. Linear Approximation; American Mathematical Society: Providence, RI, USA, 1963; Volume 9. [Google Scholar]
- Foster, W.H.; Krasikov, L. Explicit bounds for Hermite polynomials in the oscillatory region. LMS J. Comput. Math. 2000, 3, 307–314. [Google Scholar] [CrossRef] [Green Version]
- Larsson-Cohn, L. Lp-norms of Hermite polynomials and an extremal problem on Wiener chaos. Ark. FöR Mat. 2002, 40, 133–144. [Google Scholar] [CrossRef]
- Xu, G.Q.; Liu, Y.P.; Xiong, L.Y. Exact constants for simultaneous approximation of Sobolev classes by piecewise Hermite interpolation. Anal. Math. 2019, 45, 621–645. [Google Scholar] [CrossRef]
- Todorov, P.G. On the nth derivative of the function f(zp) and a new extension of the theory of generalized Hermite polynomials. Lith. Math. J. 1992, 32, 110–122. [Google Scholar] [CrossRef]
- Farouki, R.T.; Al-Kandari, M.; Sakkalis, T. Hermite interpolation by rotation-invariant spatial Pythagorean-hodograph curves. Adv. Comput. Math. 2002, 17, 369–383. [Google Scholar] [CrossRef]
- Juttler, B.; Maurer, C. Cubic Pythagorean hodograph spline curves and applications to sweep surface modeling. Comput. Aided Des. 1999, 31, 73–83. [Google Scholar] [CrossRef]
- Kim, G.I.; Kong, J.H.; Lee, S. First order Hermite interpolation with spherical Pythagorean-hodograph curves. J. Appl. Math. Comput. 2007, 23, 73–86. [Google Scholar] [CrossRef]
- Manni, C.; Sestini, A.; Farouki, R.T.; Han, C.Y. Characterization and construction of helical polynomial space curves. J. Comput. Appl. Math. 2004, 162, 365–392. [Google Scholar]
- Pelosi, F.; Farouki, R.T.; Manni, C.; Sestini, A. Geometric Hermite interpolation by spatial Pythagorean hodograph cubics. Adv. Comput. Math. 2005, 22, 325–352. [Google Scholar] [CrossRef]
- Farouki, R.T.; Neff, C.A. Hermite interpolation by Pythagorean-hodograph quintics. Math. Comput. 1995, 64, 1589–1609. [Google Scholar] [CrossRef]
- Albrecht, G.; Farouki, R.T. Construction of C2 Pythagorean-hodograph interpolating splines by the homotopy method. Adv. Comput. Math. 1996, 5, 417–442. [Google Scholar] [CrossRef]
- Walton, D.J.; Meek, D.S. Geometric Hermite interpolation with Tschirnhausen cubics. J. Comput. Appl. Math. 1997, 81, 299–309. [Google Scholar]
- Juttler, B. Hermite interpolation by Pythagorean hodograph curves of degree seven. Math. Comput. 2001, 70, 1089–1111. [Google Scholar] [CrossRef] [Green Version]
- Kong, J.H.; Jeong, S.P.; Lee, S.; Kim, G.I. C1 Hermite interpolation with simple planar PH curves by speed reparametrization. Comput. Aided Geom. Des. 2008, 25, 214–229. [Google Scholar] [CrossRef]
- Choi, H.I.; Lee, D.S.; Moon, H.P. Clifford algebra, spin representation, and rational parametrization of curves and surfaces. Adv. Comput. Math. 2001, 17, 5–48. [Google Scholar] [CrossRef]
- Kim, G.I.; Ahn, M.H. C1 Hermite interpolation using MPH quartic. Comp. Aided Geo Des. 2003, 20, 469–492. [Google Scholar] [CrossRef]
- Sir, Z.; Juttler, B. Euclidean and Minkowski Pythagorean hodograph curves over planar cubics. Comput. Aided Geo Des. 2005, 22, 753–770. [Google Scholar] [CrossRef]
- Han, X. A degree by degree recursive construction of Hermite spline interpolants. J. Comput. Appl. Math. 2009, 225, 113–123. [Google Scholar] [CrossRef] [Green Version]
- De Boor, C.; Höllig, K.; Sabin, M. High accuracy geometric Hermite interpolation. Comput. Aided Geo Des. 1987, 4, 269–278. [Google Scholar] [CrossRef] [Green Version]
- Borzov, V.V. Generalized Hermite Polynomials. arXiv 2001, arXiv:0101216. [Google Scholar]
- Chand, A.K.B.; Viswanathan, P. Cubic Hermite and cubic spline fractal interpolation functions. In AIP Conference Proceedings; American Institute of Physics: College Park, MD, USA, 2012; Volume 1479, pp. 1467–1470. [Google Scholar]
- Holvorcem, P.R. Asymptotic summation of Hermite series. J. Phys. Math. Gen. 1992, 25, 909. [Google Scholar] [CrossRef]
- Carlitz, L. The bilinear generating funktion for Hermite polynomials in several variables. Math. Zeitsch. 1957, 68, 284–289. [Google Scholar] [CrossRef]
- Kashpur, O.F. Hermite Interpolation Polynomial for Functions of Several Variables. Cybern. Syst. Anal. 2022, 58, 399–408. [Google Scholar] [CrossRef]
- Glasser, M.L.; Shawagfeh, N. On squares of Hermite polynomials. Aequationes Math. 1983, 26, 221–224. [Google Scholar] [CrossRef]
- Szeliski, R.; Ito, M.R. New Hermite cubic interpolator for two-dimensional curve generation. IEEE Proc. (Comp. Digit. Tech.) 1986, 133, 341–347. [Google Scholar] [CrossRef]
- Casciola, G.; Romani, L. A Piecewise Rational Quintic Hermite Interpolant for Use in CAGD. In Mathematical Methods for Curves and Surfaces, Proceedings of the 9th International Conference; Nashboro Press: Brentwood, TN, USA, 2005; pp. 39–49. [Google Scholar]
- Xia, Y.; Lu, N. A new beam element for second-order effect analysis of beam structures. Eng. Mech. 2007, 24, 39–43. [Google Scholar]
- Ivan, M. A note on the Hermite interpolation polynomial for rational functions. Appl. Numer. Math. 2007, 57, 230–233. [Google Scholar] [CrossRef]
- Messaoudi, A.; Sadaka, R.; Sadok, H. New algorithm for computing the Hermite interpolation polynomial. Numer. Algorithms 2018, 77, 1069–1092. [Google Scholar] [CrossRef]
- Rizk, M.M. Expansions for the fundamental Hermite interpolation polynomials in terms of chebyshev polynomials. Ukr. Math. J. 2001, 53, 155–165. [Google Scholar] [CrossRef]
- Witschel, W. The integral properties of the Hermite polynomials using operator methods. J. Appl. Math. Phys. 1973, 24, 861–870. [Google Scholar]
- Stevens, H. Some congruence properties of the Hermite polynomials. Archiv der Mathematik 1963, 14, 391–398. [Google Scholar] [CrossRef]
- Mathur, K.K.; Sharma, A. Some interpolatory properties of the Hermite polynomials. Acta Math. 1961, 12, 193–207. [Google Scholar] [CrossRef]
- Dette, H.; Studden, W.J. Some new asymptotic properties for the zeros of Jacobi, Laguerre, and Hermite polynomials. Constr. Approx. 1995, 11, 227–238. [Google Scholar] [CrossRef]
- Xiang, S. Asymptotics on Laguerre or Hermite polynomial expansions and their applications in Gauss quadrature. J. Math. Anal. Appl. 2012, 393, 434–444. [Google Scholar] [CrossRef] [Green Version]
- Defez, E.; Jódar, L. Some applications of the Hermite matrix polynomials series expansions. J. Comput. Appl. Math. 1998, 99, 105–117. [Google Scholar] [CrossRef] [Green Version]
- Han, C.Y.; Moon, H.P.; Kwon, S.H. A new selection scheme for spatial Pythagorean hodograph quintic Hermite interpolants. Comp. Aided Geo Des. 2020, 78, 101827. [Google Scholar] [CrossRef]
- Millham, C.B.; Meyer, A.C. Modified Hermite quintic curves and applications. Comput. Aided Geo Des. 1991, 23, 707–712. [Google Scholar] [CrossRef]
- Cramer, E. Hermite interpolation polynomials and distributions of ordered data. Stat. Meth. 2009, 6, 337–343. [Google Scholar] [CrossRef]
- Kassebaum, P.G.; Boucher, C.R.; Ram-Mohan, L.R. Application of group representation theory to derive Hermite interpolation polynomials on a triangle. J. Comput. Phys. 2012, 231, 5747–5760. [Google Scholar] [CrossRef]
- Phung, V.M. Hermite interpolation on algebraic curves in C2. Indag. Math. 2019, 30, 874–890. [Google Scholar] [CrossRef]
- Boyd, J.P. The rate of convergence of Hermite function series. Math. Comput. 1980, 35, 1309–1316. [Google Scholar] [CrossRef]
- Boyd, J.P. Asymptotic coefficients of Hermite function series. J. Comput. Phys. 1984, 54, 382–410. [Google Scholar] [CrossRef] [Green Version]
- Boyd, J.P.; Moore, D.W. Summability methods for Hermite functions. Dynam. Atomos. Sci. 1986, 10, 51–62. [Google Scholar] [CrossRef] [Green Version]
- Qi, F.; Guo, B.N. Some properties of the Hermite polynomials and their squares and generating functions. Georgian Math. J. 2021, 28, 925–935. [Google Scholar] [CrossRef]
- Dyksen, W.R.; Lynch, R.E.; Rice, J.R.; Houstis, E.N. The performance of the collocation and Galerkin methods with Hermite bicubics. SIAM J. Numer. Anal. 1984, 22, 695–715. [Google Scholar] [CrossRef] [Green Version]
- Houstis, E.N. Collocation methods for linear elliptic problems. BIT Numer. Math. 1978, 18, 301–310. [Google Scholar] [CrossRef]
- Prenter, P.M.; Russell, R.D. Orthogonal collocation for elliptic partial differential equations. SIAM J. Numer. Anal. 1976, 13, 923–939. [Google Scholar] [CrossRef]
- Bhuiyan, M.A.; Allayla, R.I.; Hussain, T.; Ishaq, A.M.; Mohsen, M.F.N. Solution of the transport equation by the collocation method in conjunction with the adaptive Hermite element family. Water Resour. Res. 1990, 26, 2661–2677. [Google Scholar]
- Chawla, T.C.; Leaf, G.; Chen, W.L.; Grolmes, M.A. The application of the collocation method using Hermite cubic splines to nonlinear transient one-dimensional heat conduction problems. J. Heat Transf. 1975, 97, 562–569. [Google Scholar] [CrossRef] [Green Version]
- Dyksen, W.R. Tensor product generalized ADI methods for separable elliptic problems. SIAM J. Numer. Anal. 1987, 24, 59–76. [Google Scholar] [CrossRef]
- Duarte, B.P.M.; Portugal, A.A.T.G. Moving finite elements method applied to the solution of front reaction models: Causticizing reaction. Comput. Them. Engng. 1995, 19, 421–426. [Google Scholar] [CrossRef]
- Leão, C.P.; Rodrigues, A.E. Transient and steady-state models for simulated moving bed processes: Numerical solutions. Comput. Chem. Eng. 2004, 28, 1725–1741. [Google Scholar] [CrossRef]
- Bialecki, B. Cyclic reduction and FACR methods for piecewise Hermite bicubic orthogonal spline collocation. Numer. Algorithms 1994, 8, 167–184. [Google Scholar] [CrossRef]
- Bialecki, B. Preconditioned Richardson and minimal residual iterative methods for piecewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Sci. Comput. 1994, 15, 668–680. [Google Scholar] [CrossRef]
- Bialecki, B.; Fairweather, G.; Remington, K.A. Fourier methods for piecewise Hermite bicubic orthogonal spline collocation. East-West J. Numer. Math. 1994, 2, 1–20. [Google Scholar]
- Bialecki, B.; Fairweather, G.; Bennett, K.R. Fast direct solvers for piecewise Hermite bicubic orthogonal spline collocation equations. SIAM J. Numer. Anal. 1992, 29, 156–173. [Google Scholar] [CrossRef]
- Schumer, J.W.; Holloway, J.P. Vlasov simulations using velocity-scaled Hermite representations. J. Comput. Phys. 1998, 144, 626–661. [Google Scholar] [CrossRef]
- Sun, W. A high order direct method for solving Poisson’s equation in a disc. Numer. Math. 1995, 70, 501–506. [Google Scholar] [CrossRef]
- Tse, K.L.; Chasnov, J.R. A Fourier-Hermite pseudospectral method for penetrative convection. J. Comput. Phys. 1998, 142, 489–505. [Google Scholar] [CrossRef]
- Dijkstra, D. Doubling the degree of precision without doubling the grid when solving a differential equation with a pseudo-spectral collocation method. J. Sci. Comput. 2002, 17, 513–527. [Google Scholar] [CrossRef]
- Edoh, K.D.; Russell, R.D.; Sun, W. Computation of invariant tori by orthogonal collocation. Appl. Numer. Math. 2000, 32, 273–289. [Google Scholar] [CrossRef]
- Gheri, G.; Marzulli, P. Collocation for initial value problems based on Hermite interpolation. Calcolo 1986, 23, 115–130. [Google Scholar] [CrossRef]
- Luo, H.; Xia, Y.; Li, S.; Nourgaliev, R.; Cai, C. A Hermite WENO reconstruction-based discontinuous Galerkin method for the Euler equations on tetrahedral grids. J. Comput. Phys. 2012, 231, 5489–5503. [Google Scholar] [CrossRef]
- Zhao, Z.; Chen, Y.; Qiu, J. A hybrid Hermite WENO scheme for hyperbolic conservation laws. J. Comput. Phys. 2020, 405, 109175. [Google Scholar] [CrossRef] [Green Version]
- Dyksen, W.R. The Hermite Cubic Collocation Approximation to the EigenValues and the Eigenfuntions of the Laplace Operator; Technical Reports; Deptartment of Computer Science: Cambridge, MA, USA, 1998; Volume 1393. [Google Scholar]
- Soliman, M.A. Studies on the method of orthogonal collocation IV. Laguerre and Hermite orthogonal collocation method. J. King Saud Univ. Eng. Sci. 2000, 12, 1–13. [Google Scholar] [CrossRef]
- Ma, H.; Sun, W.; Tang, T. Hermite spectral methods with a time-dependent scaling for parabolic equations in unbounded domains. SIAM J. Numer. Anal. 2005, 43, 58–75. [Google Scholar] [CrossRef] [Green Version]
- Fok, J.; Guo, B.; Tang, T. Combined Hermite spectral-finite difference method for the Fokker-Planck equation. Math. Comput. 2002, 71, 1497–1528. [Google Scholar] [CrossRef] [Green Version]
- Luo, X.; Yau, S.T. Hermite spectral method to 1-D forward Kolmogorov equation and its application to nonlinear filtering problems. IEEE Trans. Autom. Cont. 2013, 58, 2495–2507. [Google Scholar] [CrossRef] [Green Version]
- Tang, T. The Hermite spectral method for Gaussian-type functions. SIAM J. Sci. Comput. 1993, 14, 594–606. [Google Scholar] [CrossRef] [Green Version]
- Adžić, N. Modified Hermite polynomials in the spectral approximation for boundary layer problems. Bull. Aust. Math. Soc. 1992, 45, 267–276. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.; Shen, J.; Xu, C.L. Spectral and pseudospectral approximations using Hermite functions: Application to the Dirac equation. Adv. Comput. Math. 2003, 19, 35–55. [Google Scholar] [CrossRef]
- Guo, B.Y.; Xu, C.L. Hermite pseudospectral method for nonlinear partial differential equations. ESAIM Math. Model. Numer. Anal. 2000, 34, 859–872. [Google Scholar] [CrossRef] [Green Version]
- Guo, B.Y. Error estimation of Hermite spectral method for nonlinear partial differential equations. Math. Comput. 1999, 68, 1067–1078. [Google Scholar] [CrossRef] [Green Version]
- Xiang, X.M.; Wang, Z.Q. Generalized Hermite spectral method and its applications to problems in unbounded domains. SIAM J. Numer. Anal. 2010, 48, 1231–1253. [Google Scholar] [CrossRef]
- Iqbal, S.; Alkhalaf, S.; Al-Marashi, A.A. Galerkin’s finite element formulation using Hermite polynomials for the solution of a system of third-order obstacle problems. Sci. Int. 2014, 26, 1887–1890. [Google Scholar]
- Gusev, A.; Vinitsky, S.; Chuluunbaatar, O.; Chuluunbaatar, G.; Gerdt, V.; Derbov, V.; Góźdź, A.; Krassovitskiy, P. Interpolation Hermite Polynomials for Finite Element Method. EPJ Web Conf. 2018, 173, 03009. [Google Scholar] [CrossRef] [Green Version]
- Yarasca, J.; Mantari, J.L.; Arciniega, R.A. Hermite-Lagrangian finite element formulation to study functionally graded sandwich beams. Compos. Struct. 2016, 140, 567–581. [Google Scholar] [CrossRef]
- Chang, J.Y.; Chen, R.Y.; Tsai, C.C. Hermite method of approximate particular solutions for solving time-dependent convection-diffusion-reaction problems. Mathematics 2022, 10, 188. [Google Scholar] [CrossRef]
- Karamollahi, N.; Heydari, M.; Loghmani, G.B. Approximate solution of nonlinear Fredholm integral equations of the second kind using a class of Hermite interpolation polynomials. Math. Comput. Simul. 2021, 187, 414–432. [Google Scholar] [CrossRef]
- Maleknejad, K.; Yousefi, M. Numerical solution of the integral equation of the second kind by using wavelet bases of Hermite cubic splines. Appl. Math. Comput. 2006, 183, 134–141. [Google Scholar] [CrossRef]
- Pandey, S.; Bharadwaj, S.; Santia, M.; Hodek, M.; Albrecht, J.D.; Ram-Mohan, L.R. Cavity electrodynamics with Hermite interpolation: Role of symmetry and degeneracies. J. Appl. Phys. 2018, 124, 213106. [Google Scholar] [CrossRef]
- La, R.A.; Power, H. A double boundary collocation Hermitian approach for the solution of steady state convection-diffusion problems. Comput. Math. Appl. 2008, 55, 1950–1960. [Google Scholar]
- Black, K.; Geddes, J.B. Spectral Hermite approximations for the actively mode-locked laser. J. Sci. Comput. 2001, 16, 81–120. [Google Scholar] [CrossRef]
- Orsini, P.; Power, H.; Lees, M. The Hermite radial basis function control volume method for multi-zones problems: A non-overlapping domain decomposition algorithm. Comput. Meth. Appl. Mech. Eng. 2011, 200, 477–493. [Google Scholar] [CrossRef]
- Adžić, N. Recurrence relations for the Hermite solution of an ordinary differential equation with polynomial coefficients. Univ. Novom Sadu. Zb. Rad.-Prir.-Mat. Fak. Ser. Mat. 1992, 22, 167–177. [Google Scholar]
- Mathelin, L.; Hussaini, M.Y.; Zang, T.A. Stochastic approaches to uncertainty quantification in CFD simulations. Numer. Algorithms 2005, 38, 209–236. [Google Scholar] [CrossRef]
- Peirce, A. A Hermite cubic collocation scheme for plane strain hydraulic fractures. Comput. Meth. Appl. Mech. Eng. 2010, 199, 1949–1962. [Google Scholar] [CrossRef]
- Ganaie, I.A.; Arora, S.; Kukreja, V.K. Cubic Hermite collocation solution of Kuramoto-Sivashinsky equation. Int. J. Comput. Math. 2016, 93, 223–235. [Google Scholar] [CrossRef]
- Ganaie, I.A.; Arora, S.; Kukreja, V.K. Cubic Hermite collocation method for solving boundary value problems with Dirichlet, Neumann, and Robin conditions. Int. J. Eng. Math. 2014, 2014, 365209. [Google Scholar] [CrossRef] [Green Version]
- Ganaie, I.A.; Kukreja, V.K. A novel numerical scheme of cubic Hermite spline collocation method for solving Burgers’ equation. In Proceedings of the 11th International Conference of Numerical Analysis and Applied Mathematics (ICNAAM 2013), Rhodes, Greece, 21–27 September 2013; American Institute of Physics: College Park, MD, USA; Volume 1558, pp. 1196–1199. [Google Scholar]
- Ganaie, I.A.; Arora, S.; Kukreja, V.K. Modelling and simulation of a packed bed of pulp fibers using mixed collocation method. Int. J. Diff. Equ. 2013, 2013, 875298. [Google Scholar] [CrossRef] [Green Version]
- Rabbath, C.A.; Corriveau, D. A comparison of piecewise cubic Hermite interpolating polynomials, cubic splines and piecewise linear functions for the approximation of projectile aerodynamics. Def. Tech. 2019, 15, 741–757. [Google Scholar] [CrossRef]
- Pullan, A.J.; Bradley, C.P. A coupled cubic Hermite finite element/boundary element procedure for electrocardiographic problems. Comput. Mech. 1996, 18, 356–368. [Google Scholar] [CrossRef]
- Shallal, M.A.; Taqi, A.H.; Jumaa, B.F.; Rezazadeh, H.; Inc, M. Numerical solutions to the 1D Burgers’ equation by a cubic Hermite finite element method. Indian J. Phys. 2022, 96, 3831–3836. [Google Scholar] [CrossRef]
- Kutluay, S.; Yaǧmurlu, N.M.; Karakaş, A.S. An effective numerical approach based on cubic Hermite B-spline collocation method for solving the 1D heat conduction equation. New Trends Math. Sci. 2022, 10, 20–31. [Google Scholar] [CrossRef]
- Arora, S.; Kaur, I.; Kumar, H.; Kukreja, V.K. A robust technique of cubic Hermite collocation for solution of two phase non linear model. J. King Saud Univ. Eng. Sci. 2017, 29, 159–165. [Google Scholar] [CrossRef]
- Rekatsinas, C.S.; Saravanos, D.A. A Hermite spline layerwise time domain spectral finite element for guided wave prediction in laminated composite and sandwich plates. J. Vib. Acoust. 2017, 139, 031009. [Google Scholar] [CrossRef]
- Subburayan, V.; Mahendran, R. Asymptotic numerical method for third-order singularly perturbed convection diffusion delay differential equations. Comput. Appl. Math. 2020, 39, 194. [Google Scholar] [CrossRef]
- Wu, L.; Wang, H.; Pinder, G.F. A nonconventional Eulerian-Lagrangian single-node collocation method with Hermite polynomials for unsteady-state advection-diffusion equations. Numer. Methods Partial. Differ. Equations 2003, 19, 271–283. [Google Scholar] [CrossRef]
- Zhao, T.; Wu, Y. Hermite Cubic spline collocation method for nonlinear fractional differential equations with variable-order. Symmetry 2021, 13, 872. [Google Scholar] [CrossRef]
- Xu, D. Observability inequalities for Hermite Bi-cubic orthogonal spline collocation methods of 2-D integro-differential equations in the square domains. Appl. Math. Optim. 2021, 84, 1341–1372. [Google Scholar] [CrossRef]
- Xu, D. Observability inequality for piecewise Hermite cubic orthogonal spline collocation semi-discretization of the wave-Petrovsky system with memory. Zamm Appl. Math. Mech. Zeitsch. Für Angewan. Math. Mech. 2020, 100, e201900265. [Google Scholar] [CrossRef]
- Ashpazzadeh, E.; Chu, Y.M.; Hashemi, M.S.; Moharrami, M.; Inc, M. Hermite multiwavelets representation for the sparse solution of nonlinear Abel’s integral equation. Appl. Math. Comput. 2022, 427, 127171. [Google Scholar] [CrossRef]
- Luo, X.; Du, Q. An unconditionally stable fourth-order method for telegraph equation based on Hermite interpolation. Appl. Math. Comput. 2013, 219, 8237–8246. [Google Scholar] [CrossRef]
- Vincent, K.P.; Gonzales, M.J.; Gillette, A.K.; Villongco, C.T.; Pezzuto, S.; Omens, J.H.; McCulloch, A.D. High-order finite element methods for cardiac monodomain simulations. Front. Phys. 2015, 6, 217. [Google Scholar] [CrossRef] [Green Version]
- Bin Jebreen, H.; Dassios, I. A biorthogonal Hermite cubic spline Galerkin method for solving fractional Riccati equation. Mathematics 2022, 10, 1461. [Google Scholar] [CrossRef]
- Chihaluca, T.D. Cubic Hermite finite element method for nonlinear Black-Scholes equation governing European options. Intermaths 2021, 2, 23–38. [Google Scholar] [CrossRef]
- Chien, C.S.; Shih, Y.T. A cubic Hermite finite element-continuation method for numerical solutions of the von Kármán equations. Appl. Math. Comput. 2009, 209, 356–368. [Google Scholar] [CrossRef]
- Mohammadzadeh, R.; Lakestani, M.; Dehghan, M. Collocation method for the numerical solutions of Lane-Emden type equations using cubic Hermite spline functions. Math. Meth. Appl. Sci. 2014, 37, 1303–1717. [Google Scholar] [CrossRef]
- Feng, R. High order cubic-polynomial interpolation schemes on triangular meshes. Commun. Comput. Phys. 2012, 12, 1588–1602. [Google Scholar] [CrossRef]
- Narikiyo, K.; Takata, H. A formal linearization method by the cubic Hermite interpolation and its applications. In Proceedings of the 1996 IEEE IECON, 22nd International Conference on Industrial Electronics, Control, and Instrumentation, Taipei, Taiwan, 9 August 1996; IEEE: Piscataway, NJ, USA, 1996; Volume 3, pp. 1329–1334. [Google Scholar]
- Narikiyo, K.; Takata, H. A formal linearization for time-variant nonlinear systems by the cubic Hermite interpolation and its applications. In Proceedings of the ICARCV 2004 8th Control, Automation, Robotics and Vision Conference, Kunming, China, 6–9 December 2004; IEEE: Piscataway, NJ, USA, 2004; Volume 3, pp. 2238–2243. [Google Scholar]
- Gonzales, M.J.; Sturgeon, G.; Krishnamurthy, A.; Hake, J.; Jonas, R.; Stark, P.; McCulloch, A.D. A three-dimensional finite element model of human atrial anatomy: New methods for cubic Hermite meshes with extraordinary vertices. Med. Image Anal. 2013, 17, 525–537. [Google Scholar] [CrossRef] [Green Version]
- Han, X.; Yang, J. A two-step method for interpolating interval data based on cubic Hermite polynomial models. Appl. Math. Model. 2020, 81, 356–371. [Google Scholar] [CrossRef]
- Makarov, R.N.; Shkarupa, E.V. Stochastic algorithms with Hermite cubic spline interpolation for global estimation of solutions of boundary value problems. SIAM J. Sci. Comput. 2008, 30, 169–188. [Google Scholar] [CrossRef]
- Ajeddar, M.; Lamnii, A. Trigonometric Hermite interpolation method for Fredholm linear integral equations. J. Appl. Anal. 2023. In press. [Google Scholar] [CrossRef]
- Lu, S.; Wang, Y.; Wu, Y. Novel high-precision simulation technology for high-dynamics signal simulators based on piecewise Hermite cubic interpolation. IEEE Trans. Aerosp. Electron. Syst. 2018, 54, 2304–2317. [Google Scholar] [CrossRef]
- Finěk, V. Adaptive scheme for Black-Scholes equation using Hermite cubic spline wavelets. AIP Conf. Proc. LLC 2018, 2048, 030004. [Google Scholar] [CrossRef]
- Yousaf, A.; Abdeljawad, T.; Yaseen, M.; Abbas, M. Novel cubic trigonometric B-spline approach based on the Hermite formula for solving the convection-diffusion equation. Math. Prob. Eng. 2020, 2020, 8908964. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Gao, Y. Hermite cubic collocation method for optimal control of two-integrator systems. J. Tsinghus Univ. 2004, 44, 678–680. [Google Scholar]
- Ozaki, T.; Toyoda, M. Accurate finite element method for atomic calculations based on density functional theory and Hartree-Fock method. Comput. Phys. Commun. 2011, 182, 1245–1252. [Google Scholar] [CrossRef]
- Abdullah, M.; Yaseen, M.; De la Sen, M. An efficient collocation method based on Hermite formula and cubic B-splines for numerical solution of the Burgers’ equation. Math. Comput. Simul. 2022, 197, 166–184. [Google Scholar] [CrossRef]
- Abdullah, M.; Yaseen, M.; De la Sen, M. Numerical simulation of the coupled viscous Burgers equation using the Hermite formula and cubic B-spline basis functions. Phys. Scr. 2020, 95, 115216. [Google Scholar] [CrossRef]
- Almeida, R.M.; Chihaluca, T.D.; Duque, J.C. The finite element method with cubic Hermite basis for nonlinear Black-Scholes equation governing American options. In Proceedings of the 2nd International Conference on Computational Finance, Lisbon, Portugal, 4–8 September 2017. [Google Scholar]
- Iqbal, S.; Siddique, I. Galerkin’s finite element method for solving special forth-order boundary-value problem. Sci. Int. 2012, 24, 333–336. [Google Scholar]
- Iqbal, S.; Mirza, A.M.; Tirmizi, I.A. Galerkin’s finite element formulation of the second-order boundary-value problems. Int. J. Comput. Math. 2010, 87, 2032–2042. [Google Scholar] [CrossRef]
- Ata, K.; Sahin, M. An integral equation approach for the solution of the Stokes flow with Hermite surfaces. Eng. Anal. Bound. Elem. 2018, 96, 14–22. [Google Scholar] [CrossRef]
- Jaffar, A.; Thamrin, N.M.; Ali, M.S.A.M.; Misnan, M.F.; Yassin, A.I.M.; Zan, N.M. Spatial interpolation method comparison for physico-chemical parameters of river water in Klang River using MATLAB. Bull. Electr. Eng. Inform. 2022, 11, 2368–2377. [Google Scholar] [CrossRef]
- Kumar, H.; Arora, S.; Nagaich, R.K. Solution of non linear singular perturbation equation. Appl. Math. Sci. 2013, 7, 5397–5408. [Google Scholar]
- Cho, D.W.; Na, S.J.; Lee, M.Y. Expectation of bead shape using non-linear multiple regression and piecewise cubic Hermite interpolation in FCA fillet pipe welding. J. Weld. Join. 2009, 27, 42–48. [Google Scholar]
- Li, R.; Lu, Y.; Wang, Y.; Xu, H. Hermite spectral method for multi-species Boltzmann equation. arXiv 2022, arXiv:2203.03839. [Google Scholar] [CrossRef]
- Peng, N.; Wang, C.; An, J. An efficient finite-element method and error analysis for the fourth-order elliptic equation in a circular domain. Int. J. Comput. Math. 2021, 99, 1785–1802. [Google Scholar] [CrossRef]
- Adeyefa, E.O.; Omole, E.O.; Shokri, A.; Yao, S.W. Hermite fitted block integrator for solving second-order anisotropic elliptic type PDEs. Fractal Fract. 2022, 6, 497. [Google Scholar] [CrossRef]
- Mittal, A.K.; Ganaie, I.A.; Kukreja, V.K.; Parumasur, N.; Singh, P. Solution of diffusion-dispersion models using a computationally efficient technique of orthogonal collocation on finite elements with cubic Hermite as basis. Comput. Chem. Eng. 2013, 58, 203–210. [Google Scholar] [CrossRef]
- Ricciardi, K.L.; Brill, S.H. Optimal Hermite collocation applied to a one-dimensional convection-diffusion equation using an adaptive hybrid optimization algorithm. Int. J. Numer. Meth. Heat Flu. Flow 2009, 19, 874–893. [Google Scholar] [CrossRef]
- Arora, S.; Kaur, I. Applications of quintic Hermite collocation with time discretization to singularly perturbed problems. Appl. Math. Comput. 2018, 316, 409–421. [Google Scholar] [CrossRef]
- Arora, S.; Jain, R.; Kukreja, V.K. Solution of Benjamin-Bona-Mahony-Burgers equation using collocation method with quintic Hermite splines. Appl. Numer. Math. 2020, 154, 1–16. [Google Scholar] [CrossRef]
- Arora, S.; Jain, R.; Kukreja, V.K. A robust Hermite spline collocation technique to study generalized Burgers-Huxley equation, generalized Burgers-Fisher equation and modified Burgers’ equation. J. Ocean. Eng. Sci. 2022. In press. [Google Scholar] [CrossRef]
- Arora, S.; Potůček, F.; Kaur, I. Simulation of washing of packed bed of porous particles using quintic Hermite splines. J. King Saud Univ. Eng. Sci. 2019, 31, 114–121. [Google Scholar] [CrossRef]
- Kaur, S.P.; Mittal, A.K.; Kukreja, V.K.; Kaundal, A.; Parumasur, N.; Singh, P. Analysis of a linear and non-linear model for diffusion—Dispersion phenomena of pulp washing by using quintic Hermite interpolation polynomials. Afrika Mat. 2021, 32, 997–1019. [Google Scholar] [CrossRef]
- Kolsti, K.F.; Kunz, D.L. A time-marching collocation method based on quintic Hermite polynomials and adjustable acceleration and jerk constraints. Int. J. Numer. Meth. Eng. 2014, 99, 547–565. [Google Scholar] [CrossRef]
- Marasi, H.R.; Derakhshan, M.H. Numerical simulation of time variable fractional order mobile-immobile advection—Dispersion model based on an efficient hybrid numerical method with stability and convergence analysis. Math. Comput. Simul. 2023, 205, 368–389. [Google Scholar] [CrossRef]
- Zhou, Z.; Wu, X. Simulation of blow-up solutions to the generalized KdV equations by moving collocation methods. Bound. Val. Probl. 2016, 2016, 48. [Google Scholar] [CrossRef] [Green Version]
- Quintero, J.A.; Vallée, C.; Gazeau, J.P.; Seguin, P. Covariant formulation for the optimal control of jointed arm robots: An alternative to Pontryagin’s principle. arXiv 2013, arXiv:1305.6517v1. [Google Scholar] [CrossRef]
- Kvitsinsky, A.A.; Hu, C.Y. Solution of three-dimensional Faddeev equations for three-body Coulomb bound states. Few-Body Syst. 1992, 12, 7–19. [Google Scholar] [CrossRef]
- Zhao, J.Q.; Zeng, P.; Pan, B.; Lei, L.P.; Du, H.F.; He, W.B.; Liu, Y.; Xu, Y.J. Improved Hermite finite element smoothing method for full-field strain measurement over arbitrary region of interest in digital image correlation. Opt. Lasers Eng. 2012, 50, 1662–1671. [Google Scholar] [CrossRef]
- Sestini, A.; Landolfi, L.; Manni, C. On the approximation order of a space data-dependent PH quintic Hermite interpolation scheme. Comput. Aided Geo Des. 2013, 30, 148–158. [Google Scholar] [CrossRef]
- Farouki, R.T.; Giannelli, C.; Manni, C.; Sestini, A. Identification of spatial PH quintic Hermite interpolants with near-optimal shape measures. Comput. Aided Geo Des. 2008, 25, 274–297. [Google Scholar] [CrossRef]
- Singh, P.; Parumasur, N.; Bansilal, C. Orthogonal collocation on finite elements using quintic Hermite basis. Aust. J. Math. Anal. Appl. 2021, 18, 1–12. [Google Scholar]
- Brill, S.H. Analytical solution of Hermite collocation discretization of self-adjoint ordinary differential equations. Int. J. Diff. Equ. Appl. 2002, 6, 1–18. [Google Scholar]
- Mkhize, Z.; Parumasur, N.; Singh, P. Heptic Hermite Collocation on Finite Elements. Front. Ind. Appl. Math. 2023, 410, 553–566. [Google Scholar]
- Kumari, A.; Kukreja, V.K. Solution of dual boundary layer singular perturbation problem by septic Hermite collocation technique. Int. J. Appl. Comput. Math. 2022, 8, 226. [Google Scholar] [CrossRef]
- Kumari, A.; Kukreja, V.K. Robust septic Hermite collocation technique for singularly perturbed generalized Hodgkin–Huxley equation. Int. J. Comput. Math. 2022, 99, 909–923. [Google Scholar] [CrossRef]
- Kumari, A.; Kukreja, V.K. Septic Hermite collocation method for the numerical solution of Benjamin-Bona-Mahony-Burgers equation. J. Diff. Equ. Appl. 2021, 27, 1193–1217. [Google Scholar] [CrossRef]
- Kumari, A.; Kukreja, V.K. Shishkin mesh based septic Hermite interpolation algorithm for time-dependent singularly perturbed convection–diffusion models. J. Math. Chem. 2022, 60, 2029–2053. [Google Scholar] [CrossRef]
- Kumari, A.; Kukreja, V.K. Sixth order Hermite collocation method for analysis of MRLW equation. J. Oce. Eng. Sci. 2022. In press. [Google Scholar] [CrossRef]
- Kumari, A.; Shallu, S.; Kukreja, V.K. Study of self-adjoint singularly perturbed BVP by septic Hermite collocation method. In European Consortium Mathematics Industry; Springer: Cham, Switzerland, 2022; Volume 39, pp. 517–526. [Google Scholar]
p | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
---|---|---|---|---|---|---|---|
Cubic | V | V/12 | V/2 | - | - | - | - |
Quintic | V | V/1920 | V/120 | V/10 | V/2 | - | - |
Septic | 3V | V/493,920 | V/1680 | V/84 | 3V/28 | V/2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumari, A.; Kukreja, V.K. Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations. Mathematics 2023, 11, 3157. https://doi.org/10.3390/math11143157
Kumari A, Kukreja VK. Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations. Mathematics. 2023; 11(14):3157. https://doi.org/10.3390/math11143157
Chicago/Turabian StyleKumari, Archna, and Vijay K. Kukreja. 2023. "Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations" Mathematics 11, no. 14: 3157. https://doi.org/10.3390/math11143157
APA StyleKumari, A., & Kukreja, V. K. (2023). Survey of Hermite Interpolating Polynomials for the Solution of Differential Equations. Mathematics, 11(14), 3157. https://doi.org/10.3390/math11143157