A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway
Abstract
:1. Introduction
- (1)
- We propose, for the first time, an effective quantified mechanism and explanation for motion direction selectivity with a complete mammalian retinal structure. This provides a reasonable and feasible reference and guidance for further research on cellular functionality and neural computation in neuroscience.
- (2)
- By modeling the various components, we present a biologically complete DSGC direction-selective pathway model in the field of bionics. Utilizing this model in conjunction with a simple spiking computation mechanism, we introduce and implement an artificial visual system for motion direction detection.
- (3)
- Through extensive testing, we validate the effectiveness, efficiency, noise resistance, and generalization performance of the model and analyze other characteristics of AVS.
2. The Artificial Visual System
2.1. Dendritic Neural Model
2.1.1. Synaptic Layer
2.1.2. Dendritic Layer
2.1.3. Membrane Layer
2.1.4. Soma Layer
2.2. Local Motion Direction Detection Neurons
2.2.1. Photoreceptor Cells
2.2.2. Bipolar Cells
2.2.3. Horizontal Cells
2.2.4. Amacrine Cells
2.2.5. Direction-Selective Ganglion Cells
2.3. Global Scanning
2.4. Global Motion Direction Detection Neurons
2.5. The Mechanism of the Artificial Visual System
3. Experiments
3.1. Effectiveness Test
3.2. Efficiency Test
3.3. Generalizability Test
3.3.1. Static Noise Test
3.3.2. Dynamic Noise Test
3.3.3. Anti-Noise Plot Analysis
3.4. Summary of Comparison between AVS and CNNs
3.5. Discussions
3.5.1. Expanding Detection in Multiple Directions
3.5.2. Application Expansion of Global Motion Direction
3.5.3. Development into a Learning Model
3.5.4. Orientation, Velocity, and Universal Framework in Three-Dimensional Scenes
3.5.5. Foundation for the Development Future Novel Neural Network Algorithms
3.5.6. Advantages and Potential Challenges in Future Development
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Baden, T.; Euler, T.; Berens, P. Understanding the retinal basis of vision across species. Nat. Rev. Neurosci. 2020, 21, 5–20. [Google Scholar] [CrossRef] [PubMed]
- Vlasits, A.L.; Euler, T.; Franke, K. Function first: Classifying cell types and circuits of the retina. Curr. Opin. Neurobiol. 2019, 56, 8–15. [Google Scholar] [CrossRef] [PubMed]
- Vaney, D.I.; Sivyer, B.; Taylor, W.R. Direction selectivity in the retina: Symmetry and asymmetry in structure and function. Nat. Rev. Neurosci. 2012, 13, 194–208. [Google Scholar] [CrossRef] [PubMed]
- Rasmussen, R.; Yonehara, K. Contributions of retinal direction selectivity to central visual processing. Curr. Biol. 2020, 30, R897–R903. [Google Scholar] [CrossRef]
- Kerschensteiner, D. Feature detection by retinal ganglion cells. Annu. Rev. Vis. Sci. 2022, 8, 135–169. [Google Scholar] [CrossRef] [PubMed]
- Barlow, H.B.; Hill, R.M. Selective sensitivity to direction of movement in ganglion cells of the rabbit retina. Science 1963, 139, 412–414. [Google Scholar] [CrossRef] [PubMed]
- Hoon, M.; Okawa, H.; Della Santina, L.; Wong, R.O. Functional architecture of the retina: Development and disease. Prog. Retin. Eye Res. 2014, 42, 44–84. [Google Scholar] [CrossRef]
- Mauss, A.S.; Vlasits, A.; Borst, A.; Feller, M. Visual circuits for direction selectivity. Annu. Rev. Neurosci. 2017, 40, 211–230. [Google Scholar] [CrossRef]
- Hassenstein, B.; Reichardt, W. Systemtheoretische analyse der zeit-, reihenfolgen-und vorzeichenauswertung bei der bewegungsperzeption des rüsselkäfers chlorophanus. Z. Naturforschung B 1956, 11, 513–524. [Google Scholar] [CrossRef]
- Barlow, H.; Levick, W.R. The mechanism of directionally selective units in rabbit’s retina. J. Physiol. 1965, 178, 477. [Google Scholar] [CrossRef]
- Burns, M.E.; Baylor, D.A. Activation, deactivation, and adaptation in vertebrate photoreceptor cells. Annu. Rev. Neurosci. 2001, 24, 779–805. [Google Scholar] [CrossRef]
- Chapot, C.A.; Euler, T.; Schubert, T. How do horizontal cells ‘talk’to cone photoreceptors? Different levels of complexity at the cone–horizontal cell synapse. J. Physiol. 2017, 595, 5495–5506. [Google Scholar] [CrossRef] [PubMed]
- Euler, T.; Haverkamp, S.; Schubert, T.; Baden, T. Retinal bipolar cells: Elementary building blocks of vision. Nat. Rev. Neurosci. 2014, 15, 507–519. [Google Scholar] [CrossRef] [PubMed]
- Masland, R.H. The tasks of amacrine cells. Vis. Neurosci. 2012, 29, 3–9. [Google Scholar] [CrossRef] [PubMed]
- Taylor, W.; Smith, R. The role of starburst amacrine cells in visual signal processing. Vis. Neurosci. 2012, 29, 73–81. [Google Scholar] [CrossRef]
- Sanes, J.R.; Masland, R.H. The types of retinal ganglion cells: Current status and implications for neuronal classification. Annu. Rev. Neurosci. 2015, 38, 221–246. [Google Scholar] [CrossRef]
- Cruz-Martín, A.; El-Danaf, R.N.; Osakada, F.; Sriram, B.; Dhande, O.S.; Nguyen, P.L.; Callaway, E.M.; Ghosh, A.; Huberman, A.D. A dedicated circuit links direction-selective retinal ganglion cells to the primary visual cortex. Nature 2014, 507, 358–361. [Google Scholar] [CrossRef]
- Han, M.; Todo, Y.; Tang, Z. Mechanism of motion direction detection based on barlow’s retina inhibitory scheme in direction-selective ganglion cells. Electronics 2021, 10, 1663. [Google Scholar] [CrossRef]
- Tao, S.; Todo, Y.; Tang, Z.; Li, B.; Zhang, Z.; Inoue, R. A novel artificial visual system for motion direction detection in grayscale images. Mathematics 2022, 10, 2975. [Google Scholar] [CrossRef]
- Gallego, A. Horizontal and amacrine cells in the mammal’s retina. Vis. Res. 1971, 11, 33-IN24. [Google Scholar] [CrossRef]
- Yoshida, K.; Watanabe, D.; Ishikane, H.; Tachibana, M.; Pastan, I.; Nakanishi, S. A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 2001, 30, 771–780. [Google Scholar] [CrossRef]
- Todo, Y.; Tamura, H.; Yamashita, K.; Tang, Z. Unsupervised learnable neuron model with nonlinear interaction on dendrites. Neural Netw. 2014, 60, 96–103. [Google Scholar] [CrossRef]
- Todo, Y.; Tang, Z.; Todo, H.; Ji, J.; Yamashita, K. Neurons with multiplicative interactions of nonlinear synapses. Int. J. Neural Syst. 2019, 29, 1950012. [Google Scholar] [CrossRef]
- Lindsay, G.W. Convolutional neural networks as a model of the visual system: Past, present, and future. J. Cogn. Neurosci. 2021, 33, 2017–2031. [Google Scholar] [CrossRef]
- Gupta, J.; Pathak, S.; Kumar, G. Deep learning (CNN) and transfer learning: A review. J. Phys. Conf. Ser. 2022, 2273, 12029. [Google Scholar] [CrossRef]
- LeCun, Y.; Bottou, L.; Bengio, Y.; Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 1998, 86, 2278–2324. [Google Scholar] [CrossRef]
- Tan, M.; Le, Q. Efficientnet: Rethinking model scaling for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Long Beach, CA, USA, 10–15 June 2019; pp. 6105–6114. [Google Scholar]
- Taylor, W.R.; He, S.; Levick, W.R.; Vaney, D.I. Dendritic computation of direction selectivity by retinal ganglion cells. Science 2000, 289, 2347–2350. [Google Scholar] [CrossRef]
- Jain, V.; Murphy-Baum, B.L.; deRosenroll, G.; Sethuramanujam, S.; Delsey, M.; Delaney, K.R.; Awatramani, G.B. The functional organization of excitation and inhibition in the dendrites of mouse direction-selective ganglion cells. Elife 2020, 9, e52949. [Google Scholar] [CrossRef]
- Mills, S.L.; Massey, S.C. Differential properties of two gap junctional pathways made by AII amacrine cells. Nature 1995, 377, 734–737. [Google Scholar] [CrossRef]
- Forsyth, D.A.; Mundy, J.L.; di Gesú, V.; Cipolla, R.; LeCun, Y.; Haffner, P.; Bottou, L.; Bengio, Y. Object recognition with gradient-based learning. In Shape, Contour and Grouping in Computer Vision; Springer: Berlin/Heidelberg, Germany, 1999; pp. 319–345. [Google Scholar]
- Ma, D.Y. Summary of Research on Application of Deep Learning in Image Recognition. Highlights Sci. Eng. Technol. 2022, 1, 72–77. [Google Scholar] [CrossRef]
- Dhillon, A.; Verma, G.K. Convolutional neural network: A review of models, methodologies and applications to object detection. Prog. Artif. Intell. 2020, 9, 85–112. [Google Scholar]
- Kingma, D.P.; Ba, J. Adam: A method for stochastic optimization. arXiv 2014, arXiv:1412.6980. [Google Scholar]
- Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan, D.; Goodfellow, I.; Fergus, R. Intriguing properties of neural networks. arXiv 2013, arXiv:1312.6199. [Google Scholar]
- Nguyen, A.; Yosinski, J.; Clune, J. Deep neural networks are easily fooled: High confidence predictions for unrecognizable images. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 427–436. [Google Scholar]
- Holtmaat, A.; Svoboda, K. Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 2009, 10, 647–658. [Google Scholar]
- Legenstein, R.; Maass, W. Branch-specific plasticity enables self-organization of nonlinear computation in single neurons. J. Neurosci. 2011, 31, 10787–10802. [Google Scholar] [CrossRef]
- Ohki, K.; Chung, S.; Ch’ng, Y.H.; Kara, P.; Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 2005, 433, 597–603. [Google Scholar]
Object Scale | Motion Direction | U | UR | R | LR | D | LL | L | UL | Total |
---|---|---|---|---|---|---|---|---|---|---|
1 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
2 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
4 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
8 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
16 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
32 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
64 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
128 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
256 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
512 | No. of samples | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 |
Correct No. | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 12,500 | 100,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | |
Total | No. of samples | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 1,000,000 |
Correct No. | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 125,000 | 1,000,000 | |
Accuracy | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% | 100% |
Object Scale | AVS | LeNet-5 | EfficientNetB0 |
---|---|---|---|
1 | 100% | 12.5% | 99.92% |
2 | 100% | 12.5% | 99.95% |
4 | 100% | 12.5% | 99.77% |
8 | 100% | 12.5% | 99.77% |
16 | 100% | 12.5% | 99.88% |
32 | 100% | 12.5% | 100% |
64 | 100% | 12.5% | 99.98% |
128 | 100% | 12.5% | 99.98% |
256 | 100% | 12.5% | 100% |
512 | 100% | 12.5% | 100% |
Mean | 100% | 12.5% | 99.925% |
Noise Type | 10% | 20% | 30% | ||||||
---|---|---|---|---|---|---|---|---|---|
Proportion | AVS | LeNet-5 | EfficientNetB0 | AVS | LeNet-5 | EfficientNetB0 | AVS | LeNet-5 | EfficientNetB0 |
1-pixel | 53.6% | 12.50% | 13.50% | 36.5% | 12.50% | 13.17% | 26.3% | 12.50% | 12.83% |
2-pixel | 76% | 12.50% | 14.20% | 57.55% | 12.50% | 13.23% | 40.2% | 12.50% | 13.13% |
4-pixel | 93.5% | 12.50% | 14.40% | 79.15% | 12.50% | 13.48% | 62.05% | 12.50% | 12.97% |
8-pixel | 99.05% | 12.50% | 15.82% | 93.35% | 12.50% | 13.92% | 81.9% | 12.50% | 12.87% |
16-pixel | 100% | 12.50% | 16.25% | 98.85% | 12.50% | 14.75% | 95.05% | 12.50% | 13.43% |
32-pixel | 100% | 12.50% | 18.20% | 99.95% | 12.50% | 15.05% | 99.45% | 12.50% | 14.03% |
64-pixel | 100% | 12.50% | 21.72% | 100% | 12.50% | 16.90% | 99.95% | 12.50% | 14.63% |
128-pixel | 100% | 12.50% | 26.48% | 100% | 12.50% | 20.32% | 100% | 12.50% | 16.75% |
256-pixel | 100% | 12.50% | 38.37% | 100% | 12.50% | 26.48% | 100% | 12.50% | 20.58% |
512-pixel | 100% | 12.50% | 69.73% | 100% | 12.50% | 44.73% | 100% | 12.50% | 32.57% |
Mean | 92.215% | 12.50% | 24.87% | 86.535% | 12.50% | 19.20% | 80.49% | 12.50% | 16.38% |
Noise Type | 10% | 20% | 30% | ||||||
---|---|---|---|---|---|---|---|---|---|
Proportion | AVS | LeNet-5 | EfficientNetB0 | AVS | LeNet-5 | EfficientNetB0 | AVS | LeNet-5 | EfficientNetB0 |
1-pixel | 16.25% | 12.50% | 13.68% | 14.1% | 12.50% | 12.98% | 13.5% | 12.50% | 12.25% |
2-pixel | 23.4% | 12.50% | 12.88% | 15.7% | 12.50% | 13.70% | 14.5% | 12.50% | 12.65% |
4-pixel | 29.15% | 12.50% | 13.17% | 19.4% | 12.50% | 12.83% | 17.05% | 12.50% | 12.60% |
8-pixel | 50% | 12.50% | 14.42% | 28% | 12.50% | 13.70% | 20.3% | 12.50% | 12.62% |
16-pixel | 75.2% | 12.50% | 15.65% | 44% | 12.50% | 14.43% | 28.05% | 12.50% | 13.62% |
32-pixel | 96.05% | 12.50% | 17.15% | 67.2% | 12.50% | 15.02% | 46.15% | 12.50% | 13.80% |
64-pixel | 99.75% | 12.50% | 18.40% | 90.8% | 12.50% | 15.63% | 68% | 12.50% | 14.63% |
128-pixel | 100% | 12.50% | 23.63% | 99.35% | 12.50% | 19.50% | 91.3% | 12.50% | 16.57% |
256-pixel | 100% | 12.50% | 33.90% | 100% | 12.50% | 24.17% | 98.95% | 12.50% | 20.32% |
512-pixel | 100% | 12.50% | 62.02% | 100% | 12.50% | 41.43% | 100% | 12.50% | 30.60% |
Mean | 68.98% | 12.50% | 22.49% | 57.855% | 12.50% | 18.34% | 49.78% | 12.50% | 15.97% |
Model | Accuracy | Learning | Hardware | Nature | |||||
---|---|---|---|---|---|---|---|---|---|
Parameters | Time Cost | Parameters | Layers | Implementation | Reasoning | Bio-Soundness | Noise Immunity | ||
AVS | Very high | 0 | No cost | 0 | 3 | Simple | Reasonable | High | High |
LeNet-5 | High | 48,120 | High | 48,120 | 7 | Complex | Black box | Low | Very low |
EfficientNetB0 | High | 3,599,908 | Very high | 3,599,908 | 18 | Very complex | Black box | Low | Very low |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tao, S.; Zhang, X.; Hua, Y.; Tang, Z.; Todo, Y. A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway. Mathematics 2023, 11, 3732. https://doi.org/10.3390/math11173732
Tao S, Zhang X, Hua Y, Tang Z, Todo Y. A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway. Mathematics. 2023; 11(17):3732. https://doi.org/10.3390/math11173732
Chicago/Turabian StyleTao, Sichen, Xiliang Zhang, Yuxiao Hua, Zheng Tang, and Yuki Todo. 2023. "A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway" Mathematics 11, no. 17: 3732. https://doi.org/10.3390/math11173732
APA StyleTao, S., Zhang, X., Hua, Y., Tang, Z., & Todo, Y. (2023). A Novel Artificial Visual System for Motion Direction Detection with Completely Modeled Retinal Direction-Selective Pathway. Mathematics, 11(17), 3732. https://doi.org/10.3390/math11173732