An Exponential Autoregressive Time Series Model for Complex Data
Abstract
:1. Introduction
- A semiparametric model with fuzzy smooth functions and crisp parameters [32]
- A semiparametric model for observations reported by fuzzy numbers [33]
- A nonparametric additive model for fuzzy time series data [34]
- A quantile-based model for time series data reported by triangular fuzzy numbers [35]
- A nonlinear model for time series data reported by fuzzy numbers [36]
2. Basics of Fuzzy Numbers
3. The Exponential Autoregressive Time Series Model for Fuzzy Data
3.1. The Model
- (1)
- with non-negative values and , and
- (2)
- is a fuzzy error term.
- (1)
- , ,
- (2)
- , ,
- (3)
- , .
- (1)
- , where , , and ,
- (2)
- , where , , and ,
- (3)
- , where , , and .
3.2. Performance Measures
4. Comparative Analysis
- (1)
- ,
- (2)
- , and
- (3)
- and .
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer: New York, NY, USA, 2009. [Google Scholar]
- Shumway, R.H.; Stoffer, D.S. Time Series Analysis and Its Applications; Springer: London, UK, 2017. [Google Scholar]
- Woodward, W.A.; Gray, H.L.; Elliott, A.C. Applied Time Series Analysis; CRC Press: Boca Raton, FL, USA, 2012. [Google Scholar]
- Palma, W. Time Series Analysis; Wiley: Hoboken, NJ, USA, 2016. [Google Scholar]
- Song, Q.; Chissom, B.S. Fuzzy time series and its models. Fuzzy Sets Syst. 1993, 54, 269–277. [Google Scholar] [CrossRef]
- Uslu, V.R.; Bas, E.; Yolcu, U.; Egrioglu, E. A fuzzy time series approach based on weights determined by the number of recurrences of fuzzy relations. Swarm Evol. Comput. 2014, 15, 19–26. [Google Scholar] [CrossRef]
- Bulut, E. Modeling seasonality using the fuzzy integrated logical forecasting (FILF) approach. Exp. Syst. Appl. 2014, 41, 1806–1812. [Google Scholar] [CrossRef]
- Chen, M.Y.; Chen, B.T. Online fuzzy time series analysis based on entropy discretization and a fast Fourier transform. Appl. Soft Comput. 2014, 14, 156–166. [Google Scholar] [CrossRef]
- Singh, P.; Borah, B. Forecasting stock index price based on M-factors fuzzy time series and particle swarm optimization. Int. J. Approx. Reason. 2014, 55, 812–833. [Google Scholar] [CrossRef]
- Chen, S.M.; Chen, S.W. Fuzzy forecasting based on two-factors second-order fuzzy-trend logical relationship groups and the probabilities of trends of fuzzy logical relationships. IEEE Trans. Cyber. 2015, 45, 405–417. [Google Scholar]
- Cheng, S.H.; Chen, S.M.; Jian, W.S. Fuzzy time series forecasting based on fuzzy logical relationships and similarity measures. Inf. Sci. 2016, 327, 272–287. [Google Scholar] [CrossRef]
- Sadaei, H.J.; Enayatifar, R.; Abdullah, A.H.; Gani, A. Short-term load forecasting using a hybrid model with a refined exponentially weighted fuzzy time series and an improved harmony search. Int. J. Electr. Power Energy Syst. 2014, 62, 118–129. [Google Scholar]
- Ye, F.; Zhang, L.; Zhang, D.; Fujita, H.; Gong, Z. A novel forecasting method based on multi-order fuzzy time series and technical analysis. Inf. Sci. 2016, 367–368, 41–57. [Google Scholar] [CrossRef]
- Efendi, R.; Ismail, Z.; Deris, M.M. A new linguistic out-sample approach of fuzzy time series for daily forecasting of Malaysian electricity load demand. Appl. Soft Comput. 2015, 28, 422–430. [Google Scholar] [CrossRef]
- Talarposhtia, F.M.; Hossein, J.S.; Rasul, E.; Guimaraesc, F.G.; Mahmud, M.; Eslami, T. Stock market forecasting by using a hybrid model of exponential fuzzy time series. Int. J. Approx. Reason. 2016, 70, 79–98. [Google Scholar] [CrossRef]
- Wang, W.; Liu, X. Fuzzy forecasting based on automatic clustering and axiomatic fuzzy set classification. Inf. Sci. 2015, 294, 78–94. [Google Scholar] [CrossRef]
- Sadaei, H.J.; Enayatifar, R.; Lee, M.H.; Mahmud, M. A hybrid model based on differential fuzzy logic relationships and imperialist competitive algorithm for stock market forecasting. Appl. Soft Comput. 2016, 40, 132–149. [Google Scholar] [CrossRef]
- Aladag, C.H.; Yolcu, U.; Egrioglu, E. A high order fuzzy time series forecasting model based on adaptive expectation and artificial neural network. Math. Comput. Simul. 2010, 81, 875–882. [Google Scholar] [CrossRef]
- Chen, M.Y. A high-order fuzzy time series forecasting model for internet stock trading. Future Gener. Comput. Syst. 2014, 37, 461–467. [Google Scholar] [CrossRef]
- Egrioglu, E.; Aladag, C.H.; Yolcu, U. Fuzzy time series forecasting with a novel hybrid approach combining fuzzy c-means and neural networks. Exp. Syst. Appl. 2013, 40, 854–857. [Google Scholar] [CrossRef]
- Yolcu, O.C.; Yolcu, U.; Egrioglu, E.; Aladag, C.H. High order fuzzy time series forecasting method based on an intersection operation. Appl. Math. Model. 2016, 40, 8750–8765. [Google Scholar] [CrossRef]
- Singh, P.; Borah, B. High-order fuzzy-neuro expert system for daily temperature forecasting. Knowl. Based Syst. 2013, 46, 12–21. [Google Scholar] [CrossRef]
- Yolcu, O.C.; Lam, H.K. A combined robust fuzzy time series method for prediction of time series. Neurocomputing 2017, 247, 87–101. [Google Scholar] [CrossRef]
- Yolcu, O.C.; Alpaslan, F. Prediction of TAIEX based on hybrid fuzzy time series model with single optimization process. Appl. Soft Comput. 2018, 66, 18–33. [Google Scholar] [CrossRef]
- Aladag, C.H. Using multiplicative neuron model to establish fuzzy logic relationships. Exp. Syst. Appl. 2013, 40, 850–853. [Google Scholar] [CrossRef]
- Gaxiola, F.; Melin, P.; Valdez, F.; Castillo, O. Interval type-2 fuzzy weight adjustment for back propagation neural networks with application in time series prediction. Inf. Sci. 2014, 260, 1–14. [Google Scholar]
- Wei, L.Y. A hybrid ANFIS model based on empirical mode decomposition for stock time series forecasting. Appl. Soft Comput. 2016, 42, 368–376. [Google Scholar]
- Duru, O.; Bulut, E. A nonlinear clustering method for fuzzy time series: Histogram damping partition under the optimized cluster paradox. Appl. Soft Comput. 2014, 24, 742–748. [Google Scholar]
- Sadaei, H.J.; Enayatifar, R.; Guimaraes, F.G.; Mahmud, M.; Alzamil, Z.A. Combining ARFIMA models and fuzzy time series for the forecast of long memory time series. Neurocomputing 2016, 175, 782–796. [Google Scholar] [CrossRef]
- Torbat, S.; Khashei, M.; Bijari, M. A hybrid probabilistic fuzzy ARMA model for consumption forecasting in commodity markets. Econ. Anal. Policy. 2018, 58, 22–31. [Google Scholar] [CrossRef]
- Kocak, C. ARMA(p,q)-type high order fuzzy time series forecast method based on fuzzy logic relations. Appl. Soft Comput. 2017, 58, 92–103. [Google Scholar]
- Hesamian, G.; Akbari, M.G. A semi-parametric model for time series based on fuzzy data. IEEE Trans. Fuzzy Syst. 2018, 26, 2953–2966. [Google Scholar] [CrossRef]
- Zarei, R.; Akbari, M.G.; Chachi, J. Modeling autoregressive fuzzy time series data based on semi-parametric methods. Soft Comput. 2020, 24, 7295–7304. [Google Scholar]
- Hesamian, G.; Torkian, F.; Yarmohammadi, M. A fuzzy nonparametric time series model based on fuzzy data. Iran. J. Fuzzy Syst. 2022, 19, 61–72. [Google Scholar]
- Hesamian, G.; Akbari, M.G. A fuzzy quantile method for AR time series model based on triangular fuzzy random variables. Comp. Appl. Math. 2022, 41, 123. [Google Scholar]
- Hesamian, G.; Johannssen, A.; Chukhrova, N. A Three-Stage Nonparametric Kernel-Based Time Series Model Based on Fuzzy Data. Mathematics 2023, 11, 2800. [Google Scholar]
- Chukhrova, N.; Johannssen, A. Fuzzy regression analysis: Systematic review and bibliography. Appl. Soft Comput. 2019, 84, 105708. [Google Scholar]
- Huffaker, R.; Bittelli, M.; Rosa, R. Nonlinear Time Series Analysis with R; Oxford University Press: London, UK, 2017. [Google Scholar]
- Tsay, R.; Chen, R. Nonlinear Time Series Analysis; John Wiley: New York, NY, USA, 2018. [Google Scholar]
- Kantz, H.; Schreiber, T. Nonlinear Time Series Analysis; Cambridge University Press: New York, NY, USA, 1997. [Google Scholar]
- Tong, H. Non-Linear Time Series: A Dynamical Systems Approach; Volume 6 of Oxford Statistical Science Series; Oxford University Press: Oxford, UK, 1990. [Google Scholar]
- Granger, C.W.J.; Terasvirta, T. Modelling Nonlinear Economic Relationships; Oxford University Press: Oxford, UK, 1993. [Google Scholar]
- Shi, Z.; Aoyama, H. Estimation of the exponential autoregressive time series model by using the genetic algorithm. J. Sound Vib. 1997, 205, 309–321. [Google Scholar] [CrossRef]
- Gurung, B. An application of exponential autoregressive (EXPAR) nonlinear time-series model. Int. J. Inf. Comput. Technol. 2013, 3, 261–266. [Google Scholar]
- Chen, G.Y.; Gan, M.; Chen, G.L. Generalized exponential autoregressive models for nonlinear time series: Stationarity, estimation and applications. Inf. Sci. 2018, 438, 46–57. [Google Scholar] [CrossRef]
- Xu, H.; Ding, F.; Yang, E. Modeling a nonlinear process using the exponential autoregressive time series model. Nonlin. Dyn. 2019, 95, 2079–2092. [Google Scholar]
- Tong, H.; Lim, K.S. Threshold autoregression, limit cycles and cyclical data. J. R. Stat. Soc. Ser. B 1980, 42, 245–268. [Google Scholar]
- Wang, C.; Liu, H.; Yao, J.; Davis, R.A.; Li, W.K. Self-excited threshold Poisson autoregression. J. Am. Stat. Assoc. 2014, 109, 776–787. [Google Scholar]
- Hesamian, G.; Akbari, M.G. Semi-parametric partially logistic regression model with exact inputs and intuitionistic fuzzy outputs. Appl. Soft Comput. 2017, 58, 517–526. [Google Scholar] [CrossRef]
- Akbari, M.G.; Hesamian, G. Elastic net oriented to fuzzy semiparametric regression model with fuzzy explanatory variables and fuzzy responses. IEEE Trans. Fuzzy Syst. 2019, 27, 2433–2442. [Google Scholar] [CrossRef]
- Hesamian, G.; Akbari, M.G. A fuzzy additive regression model with exact predictors and fuzzy responses. Appl. Soft Comput. 2020, 95, 106507. [Google Scholar]
- Hesamian, G.; Torkian, F.; Johannssen, A.; Chukhrova, N. A fuzzy nonparametric regression model based on an extended center and range method. J. Comput. Appl. Math. 2024, 436, 115377. [Google Scholar] [CrossRef]
- Koenker, R. Quantile Regression; Cambridge University Press: New York, NY, USA, 2005. [Google Scholar]
- Coppi, R.; D’Urso, P.; Giordani, P.; Santoro, A. Least squares estimation of a linear regression model with LR-fuzzy response. Comput. Stat. Data Anal. 2006, 51, 267–286. [Google Scholar] [CrossRef]
- Grzegorzewski, P. Testing statistical hypotheses with vague data. Fuzzy Sets Syst. 2000, 11, 501–510. [Google Scholar] [CrossRef]
- Buckley, J.J. Fuzzy Statistics, Studies in Fuzziness and Soft Computing; Springer: Berlin, Germany, 2006. [Google Scholar]
- Hesamian, G.; Akbari, M.G.; Zendehdel, J. Location and scale fuzzy random variables. Int. J. Syst. Sci. 2021, 51, 229–241. [Google Scholar] [CrossRef]
- Sugeno, M. An introductory survey of fuzzy control. Inf. Sci. 1985, 36, 59–83. [Google Scholar]
- Mills, T.C. Applied Time Series Analysis: A Practical Guide to Modelling and Forecasting; Academic Press: London, UK, 2019. [Google Scholar]
Time Series Model | ||||
---|---|---|---|---|
FSPTSM [32] (triweight kernel) | 7.08239 | 8.72642 | 2.80697 | 0.05886 |
FATSM [34] (Gaussian kernel) | 0.02293 | 0.96164 | 1.37226 | 0.24014 |
FQTSM [35] | 1.67571 | 14.08892 | 24.20360 | 0.02736 |
FNPTSM [36] (Gaussian kernel) | 0.08389 | 1.77124 | 1.97235 | 0.17779 |
FEATSM | 0.10642 | 1.73485 | 1.86657 | 0.19975 |
Time Series Model | ||||
---|---|---|---|---|
FSPTSM [32] (triweight kernel) | 0.00036 | 0.18721 | 0.67350 | 0.56740 |
FATSM [34] (Gaussian kernel) | 0.29135 | 3.28817 | 1.42827 | 0.09638 |
FQTSM [35] | 0.40631 | 6.93962 | 17.38250 | 0.05400 |
FNPTSM [36] (Gaussian kernel) | 0.07912 | 1.78195 | 1.81080 | 0.07517 |
FEATSM | 0.00013 | 0.08110 | 0.50606 | 0.61894 |
Time Series Model | ||||
---|---|---|---|---|
FSPTSM [32] (triweight kernel) | ||||
FATSM [34] (Gaussian kernel) | ||||
FQTSM [35] | ||||
FNPTSM [36] (Gaussian kernel) | ||||
FEATSM | 0.00022 | 0.13849 | 0.53851 | 0.63698 |
Time Series Model | ||||
---|---|---|---|---|
FSPTSM [32] (triweight kernel) | 0.01247 | 0.60654 | 1.13174 | 0.63892 |
FATSM [34] (Gaussian kernel) | 0.41809 | 4.11455 | 2.24831 | 0.06721 |
FQTSM [35] | 1.47109 | 8.35295 | 11.07223 | 0.11357 |
FNPTSM [36] (Gaussian kernel) | 0.36449 | 3.79034 | 1.91428 | 0.04388 |
FEATSM | 0.01036 | 0.06748 | 0.39301 | 0.69968 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hesamian, G.; Torkian, F.; Johannssen, A.; Chukhrova, N. An Exponential Autoregressive Time Series Model for Complex Data. Mathematics 2023, 11, 4022. https://doi.org/10.3390/math11194022
Hesamian G, Torkian F, Johannssen A, Chukhrova N. An Exponential Autoregressive Time Series Model for Complex Data. Mathematics. 2023; 11(19):4022. https://doi.org/10.3390/math11194022
Chicago/Turabian StyleHesamian, Gholamreza, Faezeh Torkian, Arne Johannssen, and Nataliya Chukhrova. 2023. "An Exponential Autoregressive Time Series Model for Complex Data" Mathematics 11, no. 19: 4022. https://doi.org/10.3390/math11194022
APA StyleHesamian, G., Torkian, F., Johannssen, A., & Chukhrova, N. (2023). An Exponential Autoregressive Time Series Model for Complex Data. Mathematics, 11(19), 4022. https://doi.org/10.3390/math11194022