Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times
Abstract
:1. Introduction
- •
- For the general case of the maximum tardiness and total weighted completion time minimizations, we provide the procedure of analyzing the lower bound of the total weighted completion time and maximum tardiness;
- •
- Furthermore, we give the heuristic, simulated annealing, branch-and-bound algorithms and conduct numerical experiments.
2. Problem Description
3. Solution Algorithms
3.1. Lower Bounds
3.1.1. For the Total Weighted Completion Time (i.e., )
3.1.2. For the Maximum Tardiness (i.e., )
3.2. Algorithms
Algorithm 1: Heuristic |
Algorithm 2: Simulated Annealing |
Algorithm 3: B&B |
3.3. Computational Experiments
3.3.1. Small-Sized Instances
3.3.2. Large-Sized Instances
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Biskup, D. Single-machine scheduling with learning considerations. Eur. J. Oper. Res. 1999, 115, 173–178. [Google Scholar]
- Biskup, D. A state-of-the-art review on scheduling with learning effects. Eur. J. Oper. Res. 2008, 188, 315–329. [Google Scholar]
- Cheng, T.-C.-E.; Lai, P.-J.; Wu, C.-C.; Lee, W.-C. Single-machine scheduling with sum-of-logarithm processing-times-based learning considerations. Inf. Sci. 2009, 179, 3127–3135. [Google Scholar]
- Cheng, T.-C.-E.; Kuo, W.-H.; Yang, D.-L. Scheduling with a position-weighted learning effect based on sum-of-logarithm-processing-times and job position. Inf. Sci. 2013, 221, 490–500. [Google Scholar]
- Lu, Y.-Y.; Li, G.; Wu, Y.-B.; Ji, P. Optimal due-date assignment problem with learning effect and resource-dependent processing times. Optim. Lett. 2014, 8, 113–127. [Google Scholar]
- Lu, Y.-Y.; Teng, F.; Feng, Z.-X. Scheduling jobs with truncated exponential sum of-logarithm-processing-times based and position-based learning effects. Asia Pac. J. Oper. Res. 2015, 32, 1550026. [Google Scholar]
- Azzouz, A.; Ennigrou, M.; Said, L.-B. Scheduling problems under learning effects: Classification and cartography. Int. J. Prod. Res. 2018, 56, 1642–1661. [Google Scholar]
- Geng, X.-N.; Wang, J.-B.; Bai, D. Common due date assignment scheduling for a no-wait flowshop with convex resource allocation and learning effect. Eng. Optim. 2019, 51, 1301–1323. [Google Scholar]
- Liang, X.-X.; Zhang, B.; Wang, J.-B.; Yin, N.; Huang, X. Study on flow shop scheduling with sum-of-logarithm-processing-times-based learning effects. J. Appl. Math. Comput. 2019, 6, 373–388. [Google Scholar]
- Wang, J.-B.; Zhang, L.-H.; Lv, Z.-G.; Lv, D.-Y.; Geng, X.-N.; Sun, X. Heuristic and exact algorithms for single-machine scheduling problems with general truncated learning effects. Comput. Appl. Math. 2022, 41, 417. [Google Scholar]
- Liu, W.-W.; Jiang, C. Due-date assignment scheduling involving job-dependent learning effects and convex resource allocation. Eng. Optim. 2020, 52, 74–89. [Google Scholar] [CrossRef]
- Muştu, S.; Eren, T. The single machine scheduling problem with setup times under an extension of the general learning and forgetting effects. Optim. Lett. 2021, 15, 1327–1343. [Google Scholar] [CrossRef]
- Lin, S.-S. A note on parallel-machine scheduling with controllable processing times and job-dependent learning effects. RAIRO Oper. Res. 2021, 558, 561–569. [Google Scholar] [CrossRef]
- Jiang, Z.; Chen, F.; Zhang, X. Single-machine scheduling problems with general truncated sum-of-actual-processing-time-based learning effect. J. Comb. Optim. 2021, 43, 116–139. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, F. Flow shop scheduling with general position weighted learning effects to minimise total weighted completion time. J. Oper. Res. Soc. 2021, 72, 2674–2689. [Google Scholar] [CrossRef]
- Zhao, S. Resource allocation flowshop scheduling with learning effect and slack due window assignment. J. Ind. Manag. Optim. 2021, 17, 2817–2835. [Google Scholar] [CrossRef]
- Zhao, S. Scheduling jobs with general truncated learning effects including proportional setup times. Comput. Appl. Math. 2022, 41, 146. [Google Scholar] [CrossRef]
- Yan, J.-X.; Ren, N.; Bei, H.-B.; Bao, H.; Wang, J.-B. Study on resource allocation scheduling problem with learning factors and group technology. J. Ind. Manag. Optim. 2023, 19, 3419–3435. [Google Scholar] [CrossRef]
- Koulamas, C.; Kyparisis, G.-J. Single-machine scheduling problems with past-sequence-dependent delivery times. Int. J. Prod. Econ. 2010, 126, 264–266. [Google Scholar] [CrossRef]
- Mateo, M.; Teghem, J.; Tuyttens, D. A bi-objective parallel machine problem with eligibility, release dates and delivery times of the jobs. Int. J. Prod. Res. 2018, 56, 1030–1053. [Google Scholar] [CrossRef]
- Wang, J.-B.; Xue, J.; Cui, B.; Gao, M. Single-machine scheduling problems with variable processing times and past-sequence-dependent delivery times. Asia Pac. J. Oper. Res. 2022, 39, 2150013. [Google Scholar] [CrossRef]
- Pan, L.; Sun, X.; Wang, J.-B.; Zhang, L.-H.; Lv, D.-Y. Due date assignment single-machine scheduling with delivery times, position-dependent weights and deteriorating jobs. J. Comb. Optim. 2023, 45, 100. [Google Scholar] [CrossRef]
- Rostami, M.; Nikravesh, S.; Shahin, M. Minimizing total weighted completion and batch delivery times with machine deterioration and learning effect: A case study from wax production. Oper. Res. 2020, 20, 1255–1287. [Google Scholar] [CrossRef]
- Qian, J.; Zhan, Y. The due date assignment scheduling problem with delivery times and truncated sum-of-processing-times-based learning effect. Mathematics 2021, 9, 3085–3098. [Google Scholar] [CrossRef]
- Qian, J.; Han, H. The due date assignment scheduling problem with the deteriorating jobs and delivery time. J. Appl. Math. Comput. 2022, 68, 2173–2186. [Google Scholar] [CrossRef]
- Toksari, M.-D.; Aydogan, E.-K.; Atalay, B.; Sari, S. Some scheduling problems with sum of logarithm processing times based learning effect and exponential past sequence dependent delivery times. J. Ind. Manag. Optim. 2022, 18, 1795–1807. [Google Scholar] [CrossRef]
- Wang, S.-H.; Lv, D.-Y.; Wang, J.-B. Research on position-dependent weights scheduling with delivery times and truncated sum-of-processing-times-based learning effect. J. Ind. Manag. Optim. 2023, 19, 2824–2837. [Google Scholar] [CrossRef]
- Ren, N.; Lv, D.-Y.; Wang, J.-B.; Wang, X.-Y. Solution algorithms for single-machine scheduling with learning effects and exponential past-sequence-dependent delivery times. J. Ind. Manag. Optim. 2023, 19, 8429–8450. [Google Scholar] [CrossRef]
- Lei, W.; Sun, L.; Ren, N.; Jia, X.; Wang, J.-B. Research on delivery times scheduling with sum of logarithm processing times-based learning effect. Asia Pac. J. Oper. Res. 2023, 2350014. [Google Scholar] [CrossRef]
- Graham, R.-L.; Lawler, E.-L.; Lenstra, J.-K.; Rinnooy Kan, A.-H.-G. Optimization and approximation in deterministic sequencing and scheduling: A survey. Ann. Oper. Res. 1979, 5, 287–326. [Google Scholar]
- Nawaz, M.; Enscore, E.-E.; Ham, I. A heuristic algorithm for the m-machine, n-job flow-shop sequencing problem. Omega 1983, 11, 91–95. [Google Scholar] [CrossRef]
- Sun, X.; Geng, X.-N.; Liu, T. Due-window assignment scheduling in the proportionate flow shop setting. Ann. Oper. Res. 2020, 292, 113–131. [Google Scholar] [CrossRef]
- Wang, J.-B.; Lv, D.-Y.; Xu, J.; Ji, P.; Li, F. Bicriterion scheduling with truncated learning effects and convex controllable processing times. Intl. Trans. in Op. Res. 2021, 28, 1573–1593. [Google Scholar] [CrossRef]
- Liang, X.-X.; Liu, M.; Feng, Y.-B.; Wang, J.-B.; Wen, L.-S. Solution algorithms for single-machine resource allocation scheduling with deteriorating jobs and group technology. Eng. Optim. 2020, 52, 1184–1197. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Zhang, X.; Cheng, S.-R.; Lin, J.-C.; Wu, Z.-L.; Lin, W.-C. A robust customer order scheduling problem along with scenario-dependent component processing times and due dates. J. Manuf. Syst. 2021, 58, 291–305. [Google Scholar] [CrossRef]
- Wu, C.-C.; Bai, D.; Chen, J.-H.; Lin, W.-C.; Xing, L.; Lin, J.-C.; Cheng, S.-R. Several variants of simulated annealing hyper-heuristic for a single-machine scheduling with two-scenario-based dependent processing times. Swarm Evol. Comput. 2021, 60, 100765. [Google Scholar] [CrossRef]
- Sun, X.; Liu, T.; Geng, X.-N.; Hu, Y.; Xu, J.-X. Optimization of scheduling problems with deterioration effects and an optional maintenance activity. J. Sched. 2023, 26, 251–266. [Google Scholar] [CrossRef]
- Lv, D.-Y.; Xue, J.; Wang, J.-B. Minmax common due-window assignment scheduling with deteriorating jobs. J. Oper. Res. Soc. China 2023. [Google Scholar] [CrossRef]
- Wang, J.-B.; Wang, Y.-C.; Wan, C.; Lv, D.-Y.; Zhang, L. Controllable processing time scheduling with total weighted completion time objective and deteriorating jobs. Asia Pac. J. Oper. Res. 2023. [Google Scholar] [CrossRef]
WSPT | NEH [SPT] | NEH [WSPT] | SA | B&B | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 0.0040 | 0.008 | 0.0076 | 0.010 | 0.0071 | 0.011 | 0.0532 | 0.059 | 0.2319 | 0.405 | ||
8 | −0.35 | 1.3 | 0.0041 | 0.006 | 0.0071 | 0.012 | 0.0062 | 0.010 | 0.0547 | 0.064 | 0.2317 | 0.333 |
1.5 | 0.0049 | 0.008 | 0.0060 | 0.010 | 0.0064 | 0.009 | 0.0558 | 0.070 | 0.1806 | 0.314 | ||
1.1 | 0.0042 | 0.007 | 0.0061 | 0.010 | 0.0056 | 0.008 | 0.0528 | 0.056 | 0.3060 | 0.432 | ||
8 | −0.3 | 1.3 | 0.0050 | 0.008 | 0.0066 | 0.014 | 0.0071 | 0.018 | 0.0527 | 0.058 | 0.2641 | 0.357 |
1.5 | 0.0046 | 0.008 | 0.0067 | 0.010 | 0.0072 | 0.009 | 0.0543 | 0.058 | 0.2041 | 0.367 | ||
1.1 | 0.0045 | 0.009 | 0.0079 | 0.015 | 0.0080 | 0.013 | 0.0517 | 0.057 | 0.3456 | 0.492 | ||
8 | −0.25 | 1.3 | 0.0055 | 0.007 | 0.0060 | 0.009 | 0.0056 | 0.009 | 0.0506 | 0.052 | 0.3302 | 0.443 |
1.5 | 0.0045 | 0.009 | 0.0066 | 0.012 | 0.0067 | 0.010 | 0.0526 | 0.056 | 0.2832 | 0.420 | ||
1.1 | 0.005 | 0.011 | 0.0076 | 0.015 | 0.0072 | 0.014 | 0.0658 | 0.069 | 3.6724 | 4.652 | ||
9 | −0.35 | 1.3 | 0.0040 | 0.007 | 0.0073 | 0.012 | 0.0067 | 0.010 | 0.0682 | 0.084 | 3.0988 | 4.049 |
1.5 | 0.0049 | 0.010 | 0.0074 | 0.009 | 0.0067 | 0.009 | 0.0669 | 0.077 | 2.7130 | 3.910 | ||
1.1 | 0.0039 | 0.007 | 0.0055 | 0.008 | 0.0072 | 0.010 | 0.0647 | 0.066 | 3.5200 | 4.563 | ||
9 | −0.3 | 1.3 | 0.0050 | 0.009 | 0.0062 | 0.010 | 0.0075 | 0.009 | 0.0650 | 0.067 | 3.6839 | 4.565 |
1.5 | 0.0063 | 0.008 | 0.0051 | 0.008 | 0.0052 | 0.010 | 0.0651 | 0.071 | 2.4250 | 4.557 | ||
1.1 | 0.0044 | 0.009 | 0.0067 | 0.010 | 0.0071 | 0.011 | 0.0679 | 0.084 | 3.8984 | 4.829 | ||
9 | −0.25 | 1.3 | 0.0046 | 0.009 | 0.0082 | 0.023 | 0.0064 | 0.009 | 0.0678 | 0.090 | 3.3172 | 4.225 |
1.5 | 0.0041 | 0.007 | 0.0059 | 0.010 | 0.0069 | 0.010 | 0.0668 | 0.071 | 2.0806 | 4.654 | ||
1.1 | 0.0039 | 0.009 | 0.0071 | 0.010 | 0.0080 | 0.019 | 0.0824 | 0.099 | 48.7101 | 58.454 | ||
10 | −0.35 | 1.3 | 0.0062 | 0.012 | 0.0085 | 0.022 | 0.0070 | 0.017 | 0.0818 | 0.094 | 40.8171 | 54.900 |
1.5 | 0.0048 | 0.010 | 0.0068 | 0.012 | 0.0066 | 0.012 | 0.0819 | 0.090 | 27.7426 | 45.406 | ||
1.1 | 0.0022 | 0.006 | 0.0061 | 0.018 | 0.0047 | 0.009 | 0.0958 | 0.139 | 52.8939 | 107.098 | ||
10 | −0.3 | 1.3 | 0.0032 | 0.010 | 0.0105 | 0.040 | 0.0058 | 0.011 | 0.1184 | 0.202 | 18.8109 | 48.119 |
1.5 | 0.0018 | 0.005 | 0.0035 | 0.006 | 0.0033 | 0.005 | 0.0860 | 0.090 | 57.9169 | 69.869 | ||
1.1 | 0.0032 | 0.008 | 0.0052 | 0.014 | 0.0091 | 0.045 | 0.1178 | 0.190 | 11.5889 | 49.168 | ||
10 | −0.25 | 1.3 | 0.0025 | 0.004 | 0.0035 | 0.008 | 0.0036 | 0.012 | 0.0950 | 0.113 | 42.5347 | 62.936 |
1.5 | 0.0031 | 0.008 | 0.0045 | 0.010 | 0.0056 | 0.013 | 0.0885 | 0.093 | 65.2307 | 151.610 | ||
1.1 | 0.0024 | 0.005 | 0.0032 | 0.005 | 0.0042 | 0.005 | 0.1115 | 0.133 | 727.0171 | 846.621 | ||
11 | −0.35 | 1.3 | 0.0022 | 0.004 | 0.0055 | 0.013 | 0.0045 | 0.013 | 0.1093 | 0.113 | 509.7685 | 927.570 |
1.5 | 0.0014 | 0.002 | 0.0030 | 0.005 | 0.0032 | 0.005 | 0.1112 | 0.120 | 564.4302 | 799.208 | ||
1.1 | 0.0015 | 0.003 | 0.0034 | 0.006 | 0.0034 | 0.007 | 0.1181 | 0.143 | 768.5305 | 886.115 | ||
11 | −0.3 | 1.3 | 0.0020 | 0.004 | 0.0071 | 0.033 | 0.0034 | 0.005 | 0.1148 | 0.123 | 525.4747 | 908.383 |
1.5 | 0.0026 | 0.010 | 0.0048 | 0.007 | 0.0033 | 0.005 | 0.1162 | 0.136 | 533.2328 | 748.700 | ||
1.1 | 0.0050 | 0.033 | 0.0049 | 0.019 | 0.0102 | 0.075 | 0.1164 | 0.137 | 784.9697 | 928.329 | ||
11 | −0.25 | 1.3 | 0.0026 | 0.004 | 0.0055 | 0.017 | 0.0054 | 0.020 | 0.1128 | 0.117 | 704.5131 | 883.534 |
1.5 | 0.0023 | 0.004 | 0.0034 | 0.006 | 0.0035 | 0.005 | 0.1153 | 0.166 | 502.6579 | 801.074 | ||
1.1 | 0.0018 | 0.005 | 0.0050 | 0.016 | 0.0050 | 0.014 | 0.1435 | 0.146 | 3600.0000 | 3600.000 | ||
12 | −0.35 | 1.3 | 0.0019 | 0.008 | 0.0040 | 0.005 | 0.0038 | 0.006 | 0.1450 | 0.158 | 3005.2937 | 3600.000 |
1.5 | 0.0026 | 0.010 | 0.0037 | 0.004 | 0.0043 | 0.006 | 0.1451 | 0.151 | 3600.0000 | 3600.000 | ||
1.1 | 0.0014 | 0.003 | 0.0045 | 0.012 | 0.0045 | 0.009 | 0.1310 | 0.134 | 3600.0000 | 3600.000 | ||
12 | −0.3 | 1.3 | 0.0021 | 0.004 | 0.0039 | 0.007 | 0.0040 | 0.005 | 0.1376 | 0.187 | 3600.0000 | 3600.000 |
1.5 | 0.0015 | 0.003 | 0.0042 | 0.006 | 0.0054 | 0.016 | 0.1289 | 0.145 | 3600.0000 | 3600.000 | ||
1.1 | 0.0018 | 0.003 | 0.0051 | 0.017 | 0.0048 | 0.019 | 0.1303 | 0.135 | 3600.0000 | 3600.000 | ||
12 | −0.25 | 1.3 | 0.0044 | 0.028 | 0.0036 | 0.006 | 0.0037 | 0.005 | 0.1315 | 0.143 | 3600.0000 | 3600.000 |
1.5 | 0.0016 | 0.004 | 0.0038 | 0.006 | 0.0037 | 0.006 | 0.1309 | 0.151 | 3600.0000 | 3600.000 |
WSPT | NEH [SPT] | NEH [WSPT] | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 1.153793 | 1.295931 | 1.008399 | 1.024746 | 1.011077 | 1.032914 | 1.001287 | 1.006465 | ||
8 | −0.35 | 1.3 | 1.134968 | 1.245271 | 1.001498 | 1.007663 | 1.006699 | 1.035161 | 1.001024 | 1.002747 |
1.5 | 1.112083 | 1.234499 | 1.005805 | 1.015160 | 1.006708 | 1.021868 | 1.000849 | 1.006536 | ||
1.1 | 1.109401 | 1.158144 | 1.005588 | 1.014658 | 1.009061 | 1.031351 | 1.001473 | 1.004281 | ||
8 | −0.3 | 1.3 | 1.123022 | 1.302447 | 1.006828 | 1.024521 | 1.015471 | 1.054399 | 1.000709 | 1.003919 |
1.5 | 1.122659 | 1.381033 | 1.004426 | 1.016365 | 1.008292 | 1.035747 | 1.000011 | 1.000780 | ||
1.1 | 1.116102 | 1.196116 | 1.007807 | 1.023802 | 1.003098 | 1.009004 | 1.000946 | 1.004389 | ||
8 | −0.25 | 1.3 | 1.133121 | 1.367961 | 1.003683 | 1.010209 | 1.001278 | 1.007803 | 1.000349 | 1.003281 |
1.5 | 1.136821 | 1.249175 | 1.004952 | 1.011526 | 1.017395 | 1.087800 | 1.000000 | 1.000000 | ||
1.1 | 1.156571 | 1.299052 | 1.004717 | 1.010790 | 1.010768 | 1.056839 | 1.002830 | 1.008667 | ||
9 | −0.35 | 1.3 | 1.145262 | 1.268797 | 1.005978 | 1.013920 | 1.012631 | 1.056035 | 1.001156 | 1.005027 |
1.5 | 1.152582 | 1.277769 | 1.001882 | 1.009849 | 1.006569 | 1.017948 | 1.000351 | 1.001436 | ||
1.1 | 1.130162 | 1.246478 | 1.010669 | 1.021749 | 1.009885 | 1.041701 | 1.002883 | 1.010331 | ||
9 | −0.3 | 1.3 | 1.094137 | 1.127839 | 1.003580 | 1.013867 | 1.005748 | 1.022403 | 1.001004 | 1.004694 |
1.5 | 1.128695 | 1.242345 | 1.003321 | 1.008475 | 1.012372 | 1.048688 | 1.000246 | 1.001292 | ||
1.1 | 1.137278 | 1.223085 | 1.003682 | 1.011862 | 1.008655 | 1.044267 | 1.002133 | 1.005024 | ||
9 | −0.25 | 1.3 | 1.158883 | 1.366356 | 1.005186 | 1.012680 | 1.002271 | 1.007475 | 1.001628 | 1.003969 |
1.5 | 1.139216 | 1.323293 | 1.004950 | 1.008945 | 1.010153 | 1.044249 | 1.000092 | 1.000236 | ||
1.1 | 1.114850 | 1.203954 | 1.001548 | 1.005676 | 1.010642 | 1.034419 | 1.004832 | 1.008004 | ||
10 | −0.35 | 1.3 | 1.124982 | 1.297028 | 1.003348 | 1.007410 | 1.002078 | 1.007135 | 1.000882 | 1.003733 |
1.5 | 1.161921 | 1.285757 | 1.003060 | 1.006878 | 1.007517 | 1.028547 | 1.000217 | 1.001583 | ||
1.1 | 1.134824 | 1.237106 | 1.002389 | 1.008488 | 1.004457 | 1.037028 | 1.000519 | 1.010865 | ||
10 | −0.3 | 1.3 | 1.160045 | 1.231845 | 1.000272 | 1.000578 | 1.005628 | 1.007707 | 1.002843 | 1.007881 |
1.5 | 1.153393 | 1.376685 | 1.002740 | 1.011537 | 1.006211 | 1.015333 | 1.004082 | 1.012140 | ||
1.1 | 1.165836 | 1.240345 | 1.006832 | 1.009313 | 1.000449 | 1.001523 | 1.000670 | 1.002829 | ||
10 | −0.25 | 1.3 | 1.167985 | 1.279389 | 1.005328 | 1.022303 | 1.005879 | 1.018318 | 1.003713 | 1.008853 |
1.5 | 1.174685 | 1.260239 | 1.005599 | 1.011322 | 1.010267 | 1.046237 | 1.004259 | 1.012722 | ||
1.1 | 1.181602 | 1.227735 | 1.004034 | 1.010475 | 1.012151 | 1.042239 | 1.010139 | 1.019491 | ||
11 | −0.35 | 1.3 | 1.124929 | 1.243339 | 1.003483 | 1.020451 | 1.004506 | 1.035540 | 1.001605 | 1.010377 |
1.5 | 1.168116 | 1.364536 | 1.002212 | 1.006295 | 1.004298 | 1.014586 | 1.000165 | 1.000907 | ||
1.1 | 1.137376 | 1.245895 | 1.001831 | 1.007394 | 1.002247 | 1.008825 | 1.006110 | 1.016095 | ||
11 | −0.3 | 1.3 | 1.171947 | 1.304076 | 1.009608 | 1.010689 | 1.000667 | 1.018131 | 1.009211 | 1.011384 |
1.5 | 1.181579 | 1.257707 | 1.001542 | 1.004800 | 1.007411 | 1.023322 | 1.000081 | 1.000682 | ||
1.1 | 1.120671 | 1.250543 | 1.002479 | 1.015090 | 1.003541 | 1.010141 | 1.005726 | 1.010955 | ||
11 | −0.25 | 1.3 | 1.102724 | 1.205647 | 1.000798 | 1.004841 | 1.007567 | 1.017888 | 1.002190 | 1.005589 |
1.5 | 1.147618 | 1.266045 | 1.001281 | 1.010437 | 1.004608 | 1.019019 | 1.003464 | 1.014524 | ||
1.1 | 1.143930 | 1.326818 | 1.007937 | 1.016891 | 1.001999 | 1.019799 | 1.002545 | 1.006871 | ||
12 | −0.35 | 1.3 | 1.203649 | 1.390974 | 1.002139 | 1.013408 | 1.004875 | 1.028680 | 1.001423 | 1.009115 |
1.5 | 1.141869 | 1.235865 | 1.000954 | 1.002979 | 1.000084 | 1.005370 | 1.008734 | 1.013572 | ||
1.1 | 1.118866 | 1.190562 | 1.001012 | 1.015384 | 1.000891 | 1.007737 | 1.002098 | 1.009420 | ||
12 | −0.3 | 1.3 | 1.121215 | 1.231603 | 1.000644 | 1.004012 | 1.000866 | 1.004081 | 1.000830 | 1.009272 |
1.5 | 1.142815 | 1.268542 | 1.001076 | 1.005068 | 1.004947 | 1.028670 | 1.001428 | 1.012770 | ||
1.1 | 1.123243 | 1.189385 | 1.001120 | 1.005239 | 1.001363 | 1.020022 | 1.000538 | 1.008453 | ||
12 | −0.25 | 1.3 | 1.135348 | 1.200315 | 1.002112 | 1.008383 | 1.001599 | 1.009211 | 1.000944 | 1.007106 |
1.5 | 1.137938 | 1.216416 | 1.000779 | 1.006002 | 1.005620 | 1.037257 | 1.000817 | 1.002448 |
EDD | NEH [SPT] | NEH [EDD] | SA | BNB | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 0.0065 | 0.010 | 0.0107 | 0.013 | 0.0111 | 0.016 | 0.1159 | 0.151 | 0.5271 | 0.607 | ||
8 | −0.35 | 1.3 | 0.0070 | 0.011 | 0.0095 | 0.018 | 0.0091 | 0.012 | 0.1119 | 0.134 | 0.5125 | 0.597 |
1.5 | 0.0080 | 0.016 | 0.0111 | 0.015 | 0.0105 | 0.016 | 0.1086 | 0.115 | 0.5024 | 0.592 | ||
1.1 | 0.0068 | 0.011 | 0.0091 | 0.013 | 0.0085 | 0.014 | 0.1086 | 0.151 | 0.5090 | 0.608 | ||
8 | −0.3 | 1.3 | 0.0076 | 0.012 | 0.0104 | 0.011 | 0.0091 | 0.012 | 0.1037 | 0.110 | 0.5068 | 0.576 |
1.5 | 0.0073 | 0.011 | 0.0100 | 0.014 | 0.0097 | 0.011 | 0.1063 | 0.117 | 0.4876 | 0.570 | ||
1.1 | 0.0080 | 0.012 | 0.0099 | 0.014 | 0.0123 | 0.030 | 0.1061 | 0.115 | 0.5373 | 0.708 | ||
8 | −0.25 | 1.3 | 0.0068 | 0.010 | 0.0087 | 0.013 | 0.0105 | 0.014 | 0.1058 | 0.122 | 0.4939 | 0.576 |
1.5 | 0.0073 | 0.010 | 0.0106 | 0.015 | 0.0112 | 0.016 | 0.1061 | 0.118 | 0.5199 | 0.574 | ||
1.1 | 0.0078 | 0.013 | 0.0098 | 0.014 | 0.0115 | 0.014 | 0.1417 | 0.153 | 5.2138 | 6.452 | ||
9 | −0.35 | 1.3 | 0.0081 | 0.014 | 0.0111 | 0.021 | 0.0101 | 0.021 | 0.1317 | 0.136 | 5.4292 | 6.197 |
1.5 | 0.0102 | 0.016 | 0.0122 | 0.014 | 0.0150 | 0.020 | 0.2946 | 1.608 | 5.7520 | 11.942 | ||
1.1 | 0.0065 | 0.011 | 0.0093 | 0.012 | 0.0111 | 0.015 | 0.1371 | 0.164 | 4.5770 | 5.930 | ||
9 | −0.3 | 1.3 | 0.0079 | 0.013 | 0.0107 | 0.015 | 0.0101 | 0.015 | 0.1340 | 0.163 | 4.8075 | 5.644 |
1.5 | 0.0072 | 0.010 | 0.0091 | 0.017 | 0.0109 | 0.021 | 0.1355 | 0.154 | 4.8945 | 5.893 | ||
1.1 | 0.0075 | 0.011 | 0.0108 | 0.014 | 0.0102 | 0.017 | 0.1335 | 0.148 | 4.8332 | 5.732 | ||
9 | −0.25 | 1.3 | 0.0078 | 0.014 | 0.0091 | 0.011 | 0.0091 | 0.013 | 0.1327 | 0.137 | 4.9119 | 6.089 |
1.5 | 0.0069 | 0.010 | 0.0104 | 0.015 | 0.0095 | 0.012 | 0.1361 | 0.160 | 4.9378 | 6.307 | ||
1.1 | 0.0068 | 0.010 | 0.0113 | 0.017 | 0.0103 | 0.014 | 0.1833 | 0.239 | 51.4277 | 67.427 | ||
10 | −0.35 | 1.3 | 0.0084 | 0.013 | 0.0151 | 0.060 | 0.0101 | 0.013 | 0.1707 | 0.188 | 52.3317 | 69.006 |
1.5 | 0.0086 | 0.018 | 0.0104 | 0.014 | 0.0106 | 0.016 | 0.1718 | 0.184 | 48.0880 | 66.805 | ||
1.1 | 0.0063 | 0.015 | 0.0092 | 0.012 | 0.0102 | 0.012 | 0.1782 | 0.275 | 57.9763 | 67.831 | ||
10 | −0.3 | 1.3 | 0.0078 | 0.010 | 0.0098 | 0.013 | 0.0099 | 0.014 | 0.1685 | 0.198 | 59.1357 | 72.411 |
1.5 | 0.0069 | 0.010 | 0.0100 | 0.018 | 0.0097 | 0.013 | 0.1650 | 0.174 | 52.4632 | 65.451 | ||
1.1 | 0.0051 | 0.008 | 0.0059 | 0.011 | 0.0063 | 0.012 | 0.1867 | 0.246 | 63.5020 | 89.227 | ||
10 | −0.25 | 1.3 | 0.0033 | 0.005 | 0.0040 | 0.006 | 0.0041 | 0.008 | 0.1900 | 0.287 | 56.5084 | 69.985 |
1.5 | 0.0035 | 0.005 | 0.0047 | 0.008 | 0.0046 | 0.007 | 0.1827 | 0.208 | 56.4558 | 78.742 | ||
1.1 | 0.0073 | 0.028 | 0.0091 | 0.032 | 0.0072 | 0.011 | 0.2651 | 0.363 | 712.5808 | 1031.763 | ||
11 | −0.35 | 1.3 | 0.0086 | 0.023 | 0.0151 | 0.062 | 0.0126 | 0.071 | 0.2811 | 0.404 | 757.4174 | 1038.250 |
1.5 | 0.0046 | 0.009 | 0.0054 | 0.009 | 0.0074 | 0.019 | 0.2737 | 0.337 | 854.5852 | 1014.339 | ||
1.1 | 0.0051 | 0.011 | 0.0085 | 0.024 | 0.0073 | 0.022 | 0.3045 | 0.520 | 725.1830 | 927.480 | ||
11 | −0.3 | 1.3 | 0.0056 | 0.017 | 0.0064 | 0.011 | 0.0063 | 0.018 | 0.2809 | 0.399 | 812.3170 | 1040.331 |
1.5 | 0.0063 | 0.009 | 0.0072 | 0.012 | 0.0062 | 0.015 | 0.2509 | 0.270 | 848.7941 | 1072.108 | ||
1.1 | 0.0049 | 0.011 | 0.0093 | 0.017 | 0.0064 | 0.011 | 0.2654 | 0.324 | 866.4369 | 1064.095 | ||
11 | −0.25 | 1.3 | 0.0044 | 0.007 | 0.0095 | 0.026 | 0.0077 | 0.014 | 0.2729 | 0.329 | 931.0045 | 1149.633 |
1.5 | 0.0074 | 0.026 | 0.0065 | 0.009 | 0.0063 | 0.010 | 0.2530 | 0.283 | 718.2544 | 1034.691 | ||
1.1 | 0.0026 | 0.005 | 0.0061 | 0.020 | 0.0055 | 0.018 | 0.2685 | 0.339 | 3600.0000 | 3600.000 | ||
12 | −0.35 | 1.3 | 0.0028 | 0.004 | 0.0035 | 0.005 | 0.0039 | 0.005 | 0.2632 | 0.270 | 3600.0000 | 3600.000 |
1.5 | 0.0027 | 0.006 | 0.0040 | 0.005 | 0.0038 | 0.005 | 0.2653 | 0.279 | 3600.0000 | 3600.000 | ||
1.1 | 0.0037 | 0.015 | 0.0049 | 0.014 | 0.0043 | 0.013 | 0.2763 | 0.321 | 3600.0000 | 3600.000 | ||
12 | −0.3 | 1.3 | 0.0026 | 0.007 | 0.0039 | 0.005 | 0.0046 | 0.006 | 0.2691 | 0.276 | 3600.0000 | 3600.000 |
1.5 | 0.0024 | 0.004 | 0.0035 | 0.005 | 0.0039 | 0.008 | 0.2680 | 0.280 | 3600.0000 | 3600.000 | ||
1.1 | 0.0102 | 0.077 | 0.0278 | 0.243 | 0.0232 | 0.194 | 0.2714 | 0.276 | 3600.0000 | 3600.000 | ||
12 | −0.25 | 1.3 | 0.0032 | 0.007 | 0.0055 | 0.010 | 0.0050 | 0.010 | 0.2758 | 0.292 | 3600.0000 | 3600.000 |
1.5 | 0.0026 | 0.004 | 0.0041 | 0.006 | 0.0043 | 0.006 | 0.2735 | 0.305 | 3600.0000 | 3600.000 |
EDD | NEH [SPT] | NEH [EDD] | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 1.391985 | 1.696948 | 1.000845 | 1.004362 | 1.000009 | 1.000088 | 1.000551 | 1.005426 | ||
8 | −0.35 | 1.3 | 1.502860 | 1.971499 | 1.001549 | 1.008998 | 1.005438 | 1.031705 | 1.001073 | 1.006287 |
1.5 | 1.524976 | 2.101402 | 1.000228 | 1.002283 | 1.000228 | 1.002283 | 1.001686 | 1.008312 | ||
1.1 | 1.378595 | 1.995094 | 1.000899 | 1.008995 | 1.000899 | 1.008995 | 1.002128 | 1.008982 | ||
8 | −0.3 | 1.3 | 1.380949 | 1.737122 | 1.001307 | 1.013072 | 1.000215 | 1.002152 | 1.001172 | 1.005177 |
1.5 | 1.402049 | 1.982816 | 1.001727 | 1.017275 | 1.003809 | 1.038085 | 1.002507 | 1.007036 | ||
1.1 | 1.389848 | 2.048553 | 1.002504 | 1.014560 | 1.000625 | 1.006252 | 1.001696 | 1.006978 | ||
8 | −0.25 | 1.3 | 1.447619 | 1.958566 | 1.002759 | 1.027594 | 1.002759 | 1.027594 | 1.000408 | 1.004078 |
1.5 | 1.579351 | 2.161202 | 1.000750 | 1.007502 | 1.000750 | 1.007502 | 1.001027 | 1.006463 | ||
1.1 | 1.442345 | 1.961234 | 1.003413 | 1.022266 | 1.005356 | 1.026331 | 1.005508 | 1.013646 | ||
9 | −0.35 | 1.3 | 1.516955 | 1.998692 | 1.001710 | 1.008447 | 1.005736 | 1.032017 | 1.007354 | 1.014214 |
1.5 | 1.722542 | 2.258243 | 1.001126 | 1.006600 | 1.001805 | 1.006790 | 1.006587 | 1.027363 | ||
1.1 | 1.551717 | 2.120692 | 1.001856 | 1.010495 | 1.001856 | 1.010495 | 1.007568 | 1.016909 | ||
9 | −0.3 | 1.3 | 1.469008 | 1.708295 | 1.000396 | 1.003960 | 1.000396 | 1.003960 | 1.006551 | 1.016286 |
1.5 | 1.709125 | 2.456867 | 1.001634 | 1.011738 | 1.001174 | 1.011738 | 1.007813 | 1.019808 | ||
1.1 | 1.411960 | 1.802741 | 1.000342 | 1.003417 | 1.001503 | 1.015028 | 1.004869 | 1.013625 | ||
9 | −0.25 | 1.3 | 1.416398 | 1.746858 | 1.001777 | 1.011064 | 1.001784 | 1.011064 | 1.006863 | 1.013219 |
1.5 | 1.623309 | 2.017430 | 1.002379 | 1.011785 | 1.002195 | 1.011785 | 1.005921 | 1.013746 | ||
1.1 | 1.455887 | 1.745446 | 1.000234 | 1.002340 | 1.000234 | 1.002340 | 1.010044 | 1.037316 | ||
10 | −0.35 | 1.3 | 1.565331 | 1.997918 | 1.000464 | 1.004640 | 1.000464 | 1.004640 | 1.015864 | 1.034781 |
1.5 | 1.584080 | 2.141175 | 1.000465 | 1.004646 | 1.000465 | 1.004646 | 1.005883 | 1.017630 | ||
1.1 | 1.238595 | 1.425475 | 1.006448 | 1.031679 | 1.001288 | 1.007398 | 1.009499 | 1.021841 | ||
10 | −0.3 | 1.3 | 1.288117 | 1.514335 | 1.001713 | 1.014802 | 1.001382 | 1.008260 | 1.008825 | 1.016427 |
1.5 | 1.486307 | 1.779684 | 1.003633 | 1.016038 | 1.001586 | 1.008210 | 1.018826 | 1.036123 | ||
1.1 | 1.396746 | 1.919641 | 1.004264 | 1.031699 | 1.001000 | 1.007284 | 1.014586 | 1.024169 | ||
10 | −0.25 | 1.3 | 1.526785 | 1.951016 | 1.001354 | 1.007907 | 1.000878 | 1.005637 | 1.011859 | 1.026652 |
1.5 | 1.619648 | 2.072637 | 1.000492 | 1.004921 | 1.002769 | 1.013436 | 1.006504 | 1.015283 | ||
1.1 | 1.340860 | 1.588910 | 1.001787 | 1.007769 | 1.000594 | 1.003627 | 1.022935 | 1.054960 | ||
11 | −0.35 | 1.3 | 1.570589 | 1.888829 | 1.000334 | 1.003338 | 1.000502 | 1.003338 | 1.019197 | 1.031687 |
1.5 | 1.620125 | 2.283564 | 1.003848 | 1.019394 | 1.004453 | 1.019394 | 1.021817 | 1.039559 | ||
1.1 | 1.424601 | 1.687650 | 1.001473 | 1.008906 | 1.001271 | 1.008906 | 1.019632 | 1.037068 | ||
11 | −0.3 | 1.3 | 1.535443 | 1.987049 | 1.001130 | 1.011304 | 1.001722 | 1.009317 | 1.020158 | 1.037680 |
1.5 | 1.527245 | 2.180450 | 1.000000 | 1.000000 | 1.000000 | 1.000000 | 1.010958 | 1.018582 | ||
1.1 | 1.341775 | 1.644813 | 1.000000 | 1.000000 | 1.001438 | 1.008571 | 1.022547 | 1.041254 | ||
11 | −0.25 | 1.3 | 1.401902 | 1.993975 | 1.001235 | 1.003687 | 1.001106 | 1.003687 | 1.014975 | 1.032908 |
1.5 | 1.540078 | 2.475227 | 1.001551 | 1.015513 | 1.001551 | 1.015513 | 1.015537 | 1.046111 | ||
1.1 | 1.478510 | 1.904917 | 1.000188 | 1.016961 | 1.007880 | 1.024763 | 1.023930 | 1.048241 | ||
12 | −0.35 | 1.3 | 1.460320 | 1.752007 | 1.002501 | 1.038033 | 1.003738 | 1.073533 | 1.020798 | 1.038565 |
1.5 | 1.413032 | 1.731996 | 1.001328 | 1.004962 | 1.004484 | 1.017246 | 1.023011 | 1.042456 | ||
1.1 | 1.329080 | 1.592992 | 1.001255 | 1.004114 | 1.005515 | 1.008019 | 1.025919 | 1.045782 | ||
12 | −0.3 | 1.3 | 1.435380 | 1.729377 | 1.000660 | 1.010773 | 1.000497 | 1.015057 | 1.022584 | 1.036376 |
1.5 | 1.588068 | 1.918008 | 1.000840 | 1.012516 | 1.001242 | 1.012516 | 1.031792 | 1.062825 | ||
1.1 | 1.413564 | 1.823790 | 1.009342 | 1.010195 | 1.009475 | 1.010195 | 1.020642 | 1.035687 | ||
12 | −0.25 | 1.3 | 1.425990 | 1.825923 | 1.004648 | 1.006965 | 1.008004 | 1.010111 | 1.029889 | 1.067646 |
1.5 | 1.481751 | 1.861310 | 1.007327 | 1.035780 | 1.001397 | 1.002828 | 1.019218 | 1.044245 |
WSPT | NEH [SPT] | NEH [WSPT] | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 0.0043 | 0.015 | 32.1174 | 36.554 | 32.8210 | 39.555 | 42.0538 | 47.751 | ||
100 | −0.35 | 1.3 | 0.0019 | 0.005 | 30.5495 | 30.942 | 30.5970 | 30.919 | 40.4003 | 40.781 |
1.5 | 0.0022 | 0.005 | 30.5546 | 31.161 | 30.7483 | 31.702 | 41.4554 | 46.573 | ||
1.1 | 0.0037 | 0.008 | 32.8921 | 38.296 | 32.4227 | 37.241 | 43.3568 | 49.491 | ||
100 | −0.3 | 1.3 | 0.0016 | 0.003 | 31.1891 | 31.456 | 31.1909 | 31.595 | 40.4172 | 40.966 |
1.5 | 0.0021 | 0.004 | 31.2537 | 32.466 | 31.7434 | 34.458 | 41.1115 | 45.163 | ||
1.1 | 0.0027 | 0.006 | 33.2766 | 37.293 | 33.3414 | 36.736 | 38.9160 | 47.744 | ||
100 | −0.25 | 1.3 | 0.0015 | 0.002 | 32.3208 | 34.450 | 32.1044 | 33.168 | 39.6546 | 42.437 |
1.5 | 0.0020 | 0.003 | 32.1615 | 33.796 | 32.1032 | 33.145 | 39.6327 | 41.574 | ||
1.1 | 0.0075 | 0.040 | 100.8299 | 102.498 | 104.1485 | 126.708 | 89.5918 | 100.188 | ||
125 | −0.35 | 1.3 | 0.0029 | 0.005 | 101.1583 | 102.822 | 101.5433 | 106.839 | 88.4149 | 91.589 |
1.5 | 0.0050 | 0.010 | 101.5997 | 102.911 | 102.0005 | 109.248 | 88.6029 | 90.131 | ||
1.1 | 0.0103 | 0.068 | 101.9015 | 108.984 | 101.6730 | 106.675 | 85.5008 | 87.885 | ||
125 | −0.3 | 1.3 | 0.0107 | 0.041 | 102.3991 | 108.330 | 101.7231 | 103.316 | 85.3295 | 86.877 |
1.5 | 0.0056 | 0.021 | 95.2835 | 102.307 | 93.7359 | 102.330 | 78.6950 | 86.964 | ||
1.1 | 0.0020 | 0.006 | 89.8276 | 98.492 | 90.7208 | 102.276 | 74.7486 | 77.613 | ||
125 | −0.25 | 1.3 | 0.0026 | 0.011 | 88.7815 | 89.728 | 89.2368 | 89.982 | 74.1769 | 75.801 |
1.5 | 0.0027 | 0.007 | 88.7236 | 89.636 | 89.1936 | 92.303 | 74.1995 | 78.704 | ||
1.1 | 0.0035 | 0.007 | 224.8844 | 234.479 | 225.7813 | 234.541 | 127.5309 | 128.795 | ||
150 | −0.35 | 1.3 | 0.0056 | 0.027 | 223.4674 | 226.843 | 223.4250 | 225.230 | 129.0307 | 132.514 |
1.5 | 0.0031 | 0.010 | 224.1562 | 226.971 | 223.1970 | 225.067 | 128.1263 | 134.168 | ||
1.1 | 0.0019 | 0.005 | 218.1563 | 226.579 | 218.2396 | 220.007 | 129.9573 | 131.464 | ||
150 | −0.3 | 1.3 | 0.0038 | 0.012 | 217.9165 | 223.287 | 217.1279 | 220.100 | 130.2998 | 133.138 |
1.5 | 0.0030 | 0.008 | 217.0470 | 222.205 | 216.1124 | 219.064 | 129.0232 | 131.122 | ||
1.1 | 0.0032 | 0.009 | 249.1793 | 268.382 | 247.3459 | 257.998 | 146.3248 | 152.955 | ||
150 | −0.25 | 1.3 | 0.0132 | 0.099 | 232.9484 | 254.353 | 233.4128 | 248.585 | 137.1951 | 147.897 |
1.5 | 0.0055 | 0.011 | 248.2794 | 254.415 | 247.3834 | 250.640 | 145.5044 | 147.773 | ||
1.1 | 0.0042 | 0.022 | 441.3598 | 481.858 | 438.2147 | 454.027 | 182.7255 | 184.840 | ||
175 | −0.35 | 1.3 | 0.0022 | 0.003 | 436.1500 | 438.778 | 436.5397 | 439.222 | 182.5295 | 183.987 |
1.5 | 0.0030 | 0.006 | 437.0817 | 443.313 | 435.2025 | 439.747 | 180.6198 | 185.014 | ||
1.1 | 0.0023 | 0.004 | 434.8344 | 469.997 | 432.3358 | 448.198 | 182.9713 | 185.022 | ||
175 | −0.3 | 1.3 | 0.0024 | 0.004 | 430.3138 | 432.819 | 430.5209 | 432.549 | 182.8286 | 184.508 |
1.5 | 0.0025 | 0.005 | 431.5106 | 437.022 | 430.5689 | 433.309 | 182.9001 | 184.248 | ||
1.1 | 0.0022 | 0.004 | 432.4441 | 454.244 | 431.5986 | 447.575 | 183.0795 | 184.984 | ||
175 | −0.25 | 1.3 | 0.0027 | 0.005 | 429.7236 | 432.266 | 429.8054 | 431.737 | 182.6727 | 184.558 |
1.5 | 0.0036 | 0.007 | 430.6976 | 436.018 | 429.7777 | 432.268 | 182.9039 | 184.164 | ||
1.1 | 0.0024 | 0.003 | 817.0101 | 880.226 | 812.6110 | 819.578 | 272.7165 | 274.651 | ||
200 | −0.35 | 1.3 | 0.0025 | 0.004 | 811.2221 | 813.743 | 810.9756 | 814.021 | 272.9047 | 274.930 |
1.5 | 0.0029 | 0.006 | 812.0180 | 818.339 | 813.2050 | 816.986 | 271.5289 | 274.671 | ||
1.1 | 0.0025 | 0.004 | 815.2231 | 871.821 | 811.5153 | 818.395 | 266.3699 | 268.005 | ||
200 | −0.3 | 1.3 | 0.0025 | 0.004 | 810.4137 | 813.732 | 809.9646 | 812.664 | 266.1901 | 268.020 |
1.5 | 0.0032 | 0.006 | 810.8555 | 816.802 | 812.0056 | 813.409 | 267.2094 | 271.522 | ||
1.1 | 0.0022 | 0.004 | 813.8868 | 856.458 | 811.3914 | 817.977 | 268.2697 | 269.884 | ||
200 | −0.25 | 1.3 | 0.0023 | 0.003 | 810.3899 | 812.691 | 809.8105 | 812.808 | 268.8522 | 271.181 |
1.5 | 0.0029 | 0.005 | 811.0429 | 818.118 | 811.8657 | 814.180 | 268.9761 | 271.981 |
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.036954 | 1.054012 | 1.021573 | 1.045366 | 1.000000 | 1.000000 | 1.003519 | 1.006554 | ||
100 | −0.35 | 1.3 | 1.044962 | 1.060569 | 1.025172 | 1.039109 | 1.000148 | 1.000941 | 1.000559 | 1.001195 |
1.5 | 1.050418 | 1.064382 | 1.025248 | 1.047217 | 1.000274 | 1.001805 | 1.000153 | 1.000294 | ||
1.1 | 1.035566 | 1.044404 | 1.013494 | 1.036464 | 1.000000 | 1.000000 | 1.001537 | 1.005140 | ||
100 | −0.3 | 1.3 | 1.036240 | 1.048568 | 1.016733 | 1.047571 | 1.000274 | 1.002152 | 1.000255 | 1.000593 |
1.5 | 1.055272 | 1.069122 | 1.036045 | 1.067625 | 1.000156 | 1.001559 | 1.001219 | 1.005149 | ||
1.1 | 1.034751 | 1.045295 | 1.018090 | 1.037085 | 1.000566 | 1.002543 | 1.000672 | 1.001724 | ||
100 | −0.25 | 1.3 | 1.046670 | 1.059142 | 1.031779 | 1.053538 | 1.000348 | 1.002361 | 1.000987 | 1.004724 |
1.5 | 1.046329 | 1.060851 | 1.019240 | 1.031961 | 1.000911 | 1.004362 | 1.000023 | 1.000117 | ||
1.1 | 1.041622 | 1.053573 | 1.017301 | 1.032824 | 1.000350 | 1.002534 | 1.000672 | 1.003258 | ||
125 | −0.35 | 1.3 | 1.044984 | 1.066139 | 1.031357 | 1.047600 | 1.000291 | 1.002869 | 1.001902 | 1.006682 |
1.5 | 1.051531 | 1.076385 | 1.027787 | 1.046987 | 1.000707 | 1.006116 | 1.000409 | 1.002287 | ||
1.1 | 1.037141 | 1.046269 | 1.022844 | 1.056697 | 1.000118 | 1.000793 | 1.000356 | 1.000674 | ||
125 | −0.3 | 1.3 | 1.046439 | 1.058477 | 1.028552 | 1.045449 | 1.000826 | 1.006412 | 1.000533 | 1.002495 |
1.5 | 1.047775 | 1.058128 | 1.022050 | 1.044407 | 1.000281 | 1.002506 | 1.000423 | 1.003361 | ||
1.1 | 1.036338 | 1.045623 | 1.018068 | 1.038139 | 1.000000 | 1.000000 | 1.006351 | 1.012230 | ||
125 | −0.25 | 1.3 | 1.039846 | 1.046813 | 1.022218 | 1.044372 | 1.000216 | 1.000818 | 1.000746 | 1.002067 |
1.5 | 1.047987 | 1.072990 | 1.029656 | 1.052340 | 1.000115 | 1.000528 | 1.000528 | 1.002905 | ||
1.1 | 1.038792 | 1.049708 | 1.024257 | 1.045010 | 1.000164 | 1.000917 | 1.001737 | 1.004585 | ||
150 | −0.35 | 1.3 | 1.043335 | 1.049759 | 1.018966 | 1.037425 | 1.000092 | 1.000556 | 1.000625 | 1.003164 |
1.5 | 1.046706 | 1.058638 | 1.033135 | 1.044877 | 1.000136 | 1.000677 | 1.000466 | 1.002139 | ||
1.1 | 1.035897 | 1.042391 | 1.015651 | 1.031913 | 1.000316 | 1.002022 | 1.001093 | 1.002656 | ||
150 | −0.3 | 1.3 | 1.043970 | 1.049197 | 1.021245 | 1.031130 | 1.000697 | 1.002385 | 1.000647 | 1.005178 |
1.5 | 1.051268 | 1.060151 | 1.028940 | 1.045466 | 1.000181 | 1.000784 | 1.001252 | 1.004006 | ||
1.1 | 1.039513 | 1.053879 | 1.021009 | 1.040601 | 1.000970 | 1.005116 | 1.000420 | 1.002948 | ||
150 | −0.25 | 1.3 | 1.044452 | 1.055217 | 1.017391 | 1.038033 | 1.000536 | 1.002863 | 1.000157 | 1.000436 |
1.5 | 1.053730 | 1.062573 | 1.030865 | 1.051478 | 1.001292 | 1.004868 | 1.000678 | 1.005139 | ||
1.1 | 1.036283 | 1.042407 | 1.019139 | 1.042097 | 1.000006 | 1.000058 | 1.001327 | 1.003982 | ||
175 | −0.35 | 1.3 | 1.045164 | 1.052823 | 1.024624 | 1.040228 | 1.000252 | 1.002495 | 1.000969 | 1.003571 |
1.5 | 1.053126 | 1.066924 | 1.029755 | 1.043504 | 1.000090 | 1.000899 | 1.000762 | 1.002772 | ||
1.1 | 1.039030 | 1.051165 | 1.017138 | 1.027578 | 1.000758 | 1.002126 | 1.000291 | 1.002757 | ||
175 | −0.3 | 1.3 | 1.040464 | 1.055880 | 1.021767 | 1.037030 | 1.000247 | 1.001310 | 1.000191 | 1.000556 |
1.5 | 1.050189 | 1.057683 | 1.021367 | 1.046832 | 1.000124 | 1.000840 | 1.001091 | 1.003998 | ||
1.1 | 1.034653 | 1.053831 | 1.014328 | 1.031598 | 1.000135 | 1.001346 | 1.005274 | 1.036593 | ||
175 | −0.25 | 1.3 | 1.040749 | 1.050106 | 1.017471 | 1.042529 | 1.000368 | 1.003061 | 1.001858 | 1.011035 |
1.5 | 1.047830 | 1.055207 | 1.029811 | 1.051316 | 1.000000 | 1.000000 | 1.001697 | 1.006083 | ||
1.1 | 1.035588 | 1.045371 | 1.015440 | 1.024891 | 1.000258 | 1.001673 | 1.003623 | 1.034281 | ||
200 | −0.35 | 1.3 | 1.042460 | 1.048864 | 1.023037 | 1.035818 | 1.000676 | 1.003039 | 1.000100 | 1.004084 |
1.5 | 1.050197 | 1.063436 | 1.018771 | 1.024690 | 1.000066 | 1.000481 | 1.000638 | 1.003463 | ||
1.1 | 1.036709 | 1.047059 | 1.025257 | 1.063084 | 1.000578 | 1.002239 | 1.000364 | 1.001912 | ||
200 | −0.3 | 1.3 | 1.043742 | 1.052294 | 1.025257 | 1.063084 | 1.000578 | 1.002239 | 1.000364 | 1.001912 |
1.5 | 1.046824 | 1.058465 | 1.024041 | 1.041735 | 1.000105 | 1.000623 | 1.000454 | 1.001806 | ||
1.1 | 1.037993 | 1.047319 | 1.019775 | 1.035887 | 1.000389 | 1.001368 | 1.001711 | 1.015238 | ||
200 | −0.25 | 1.3 | 1.044992 | 1.060204 | 1.023553 | 1.034875 | 1.000288 | 1.001973 | 1.001092 | 1.006503 |
1.5 | 1.046474 | 1.063612 | 1.024352 | 1.050963 | 1.000224 | 1.001590 | 1.000563 | 1.004302 |
EDD | NEH [SPT] | NEH [EDD] | SA | |||||||
---|---|---|---|---|---|---|---|---|---|---|
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
1.1 | 0.0049 | 0.014 | 35.7995 | 44.037 | 35.5141 | 40.394 | 104.9574 | 115.665 | ||
100 | −0.35 | 1.3 | 0.0055 | 0.017 | 34.1109 | 38.102 | 33.8245 | 36.840 | 100.1980 | 106.372 |
1.5 | 0.0045 | 0.015 | 31.6923 | 40.995 | 31.9844 | 36.162 | 94.0071 | 102.430 | ||
1.1 | 0.0038 | 0.009 | 36.5595 | 45.508 | 36.0100 | 38.865 | 80.8120 | 91.208 | ||
100 | −0.3 | 1.3 | 0.0044 | 0.008 | 35.1985 | 37.784 | 34.6108 | 36.195 | 77.5120 | 82.227 |
1.5 | 0.0030 | 0.006 | 32.9251 | 34.742 | 32.6552 | 33.407 | 74.2111 | 84.192 | ||
1.1 | 0.0038 | 0.010 | 41.4234 | 44.642 | 42.1242 | 49.681 | 95.7675 | 101.616 | ||
100 | −0.25 | 1.3 | 0.0032 | 0.007 | 40.1205 | 49.229 | 39.5503 | 44.546 | 90.0902 | 97.322 |
1.5 | 0.0030 | 0.006 | 37.0282 | 39.212 | 36.9542 | 37.794 | 85.1035 | 88.136 | ||
1.1 | 0.0026 | 0.006 | 93.6647 | 102.042 | 93.5877 | 105.691 | 147.3931 | 150.990 | ||
125 | −0.35 | 1.3 | 0.0032 | 0.008 | 92.1210 | 93.211 | 92.3207 | 94.025 | 148.1259 | 150.224 |
1.5 | 0.0038 | 0.008 | 104.4802 | 175.005 | 100.7225 | 157.957 | 155.1233 | 192.530 | ||
1.1 | 0.0055 | 0.027 | 95.3332 | 105.785 | 94.2544 | 100.591 | 148.5498 | 151.490 | ||
125 | −0.3 | 1.3 | 0.0029 | 0.008 | 93.5627 | 95.330 | 93.1668 | 95.606 | 149.6621 | 154.573 |
1.5 | 0.0051 | 0.025 | 98.2485 | 122.848 | 98.0707 | 132.257 | 168.3613 | 250.543 | ||
1.1 | 0.0061 | 0.034 | 105.3366 | 119.881 | 104.6303 | 114.299 | 139.4032 | 153.027 | ||
125 | −0.25 | 1.3 | 0.0022 | 0.004 | 91.5431 | 91.733 | 91.6551 | 92.096 | 123.6464 | 125.502 |
1.5 | 0.0022 | 0.004 | 91.6460 | 91.966 | 91.7085 | 92.295 | 123.2681 | 126.132 | ||
1.1 | 0.0036 | 0.007 | 227.4756 | 232.860 | 226.6170 | 230.864 | 256.2105 | 259.224 | ||
150 | −0.35 | 1.3 | 0.0034 | 0.006 | 226.9224 | 232.162 | 227.1699 | 231.748 | 258.5131 | 262.945 |
1.5 | 0.0032 | 0.007 | 208.1170 | 226.679 | 207.0839 | 229.431 | 234.2087 | 256.957 | ||
1.1 | 0.0155 | 0.110 | 260.2437 | 302.185 | 255.7124 | 258.976 | 285.8951 | 292.131 | ||
150 | −0.3 | 1.3 | 0.0041 | 0.010 | 245.1265 | 264.954 | 244.8100 | 264.567 | 275.2374 | 290.767 |
1.5 | 0.0038 | 0.008 | 229.3247 | 260.306 | 229.1621 | 256.510 | 256.7482 | 290.538 | ||
1.1 | 0.0049 | 0.007 | 260.6876 | 296.354 | 257.3179 | 261.548 | 286.6712 | 292.955 | ||
150 | −0.25 | 1.3 | 0.0037 | 0.007 | 245.3216 | 264.160 | 245.4663 | 265.695 | 275.6782 | 292.135 |
1.5 | 0.0035 | 0.007 | 231.7387 | 261.185 | 231.8750 | 269.221 | 257.4253 | 301.127 | ||
1.1 | 0.0054 | 0.013 | 469.1597 | 509.933 | 464.2641 | 468.257 | 381.6888 | 387.467 | ||
175 | −0.35 | 1.3 | 0.0029 | 0.006 | 464.7862 | 469.037 | 463.8316 | 467.706 | 384.6989 | 396.320 |
1.5 | 0.0031 | 0.007 | 463.6323 | 466.778 | 462.8959 | 466.322 | 381.9178 | 390.827 | ||
1.1 | 0.0161 | 0.130 | 467.6403 | 499.727 | 464.1768 | 466.146 | 380.0000 | 384.436 | ||
175 | −0.3 | 1.3 | 0.0041 | 0.008 | 460.5128 | 465.980 | 460.2540 | 464.600 | 377.3023 | 385.459 |
1.5 | 0.0029 | 0.005 | 461.7312 | 467.387 | 461.7700 | 465.680 | 380.1052 | 390.331 | ||
1.1 | 0.0155 | 0.127 | 511.7128 | 526.430 | 508.3289 | 511.821 | 410.6986 | 426.447 | ||
175 | −0.25 | 1.3 | 0.0041 | 0.011 | 508.6204 | 513.282 | 507.4111 | 515.918 | 409.4637 | 417.110 |
1.5 | 0.0042 | 0.008 | 494.1450 | 508.634 | 490.0148 | 509.834 | 394.7240 | 414.508 | ||
1.1 | 0.0040 | 0.009 | 1017.7486 | 1050.312 | 1011.2776 | 1016.040 | 540.0450 | 548.385 | ||
200 | −0.35 | 1.3 | 0.0031 | 0.005 | 1009.8994 | 1011.659 | 1011.4599 | 1015.956 | 539.8576 | 553.313 |
1.5 | 0.0027 | 0.004 | 971.8302 | 1031.903 | 969.4584 | 1013.336 | 510.1022 | 560.211 | ||
1.1 | 0.0024 | 0.005 | 850.0115 | 879.971 | 845.7156 | 852.730 | 534.0446 | 557.581 | ||
200 | −0.3 | 1.3 | 0.0029 | 0.004 | 846.1232 | 858.366 | 843.3768 | 854.918 | 534.2898 | 553.874 |
1.5 | 0.0078 | 0.048 | 852.9483 | 892.596 | 846.7610 | 856.320 | 535.3189 | 556.104 | ||
1.1 | 0.0026 | 0.004 | 842.6111 | 860.951 | 839.8413 | 847.021 | 535.3703 | 558.302 | ||
200 | −0.25 | 1.3 | 0.0051 | 0.013 | 838.4530 | 852.184 | 837.4318 | 849.783 | 532.8262 | 545.375 |
1.5 | 0.0036 | 0.005 | 837.8098 | 846.619 | 840.6965 | 872.608 | 532.3132 | 541.777 |
n | a | b | Mean | Max | Mean | Max | Mean | Max | Mean | Max |
---|---|---|---|---|---|---|---|---|---|---|
1.1 | 1.473754 | 1.653052 | 1.020897 | 1.061052 | 1.000121 | 1.001214 | 1.292191 | 1.364199 | ||
100 | −0.35 | 1.3 | 1.511293 | 1.679862 | 1.022395 | 1.057531 | 1.000346 | 1.003462 | 1.100052 | 1.123072 |
1.5 | 1.563430 | 1.800869 | 1.006935 | 1.020075 | 1.000023 | 1.000234 | 1.021721 | 1.030132 | ||
1.1 | 1.492235 | 1.643907 | 1.016645 | 1.053443 | 1.001942 | 1.016024 | 1.191750 | 1.234499 | ||
100 | −0.3 | 1.3 | 1.556259 | 1.795146 | 1.009639 | 1.030086 | 1.001161 | 1.011528 | 1.213167 | 1.407604 |
1.5 | 1.574323 | 1.670788 | 1.008739 | 1.063792 | 1.001855 | 1.010011 | 1.093213 | 1.144223 | ||
1.1 | 1.472540 | 1.532818 | 1.018223 | 1.073833 | 1.001380 | 1.013764 | 1.190574 | 1.207461 | ||
100 | −0.25 | 1.3 | 1.530074 | 1.691434 | 1.003921 | 1.016537 | 1.001270 | 1.003316 | 1.245192 | 1.351231 |
1.5 | 1.598949 | 1.774946 | 1.020953 | 1.038657 | 1.000000 | 1.000000 | 1.058741 | 1.087734 | ||
1.1 | 1.490413 | 1.552454 | 1.018157 | 1.073742 | 1.000227 | 1.001414 | 1.248805 | 1.312706 | ||
125 | −0.35 | 1.3 | 1.522274 | 1.559265 | 1.019339 | 1.065854 | 1.000249 | 1.002363 | 1.084719 | 1.361410 |
1.5 | 1.590207 | 1.752900 | 1.015250 | 1.035104 | 1.000069 | 1.000691 | 1.079213 | 1.209878 | ||
1.1 | 1.524563 | 1.621970 | 1.018973 | 1.043267 | 1.000000 | 1.000000 | 1.240576 | 1.289821 | ||
125 | −0.3 | 1.3 | 1.554150 | 1.650697 | 1.018699 | 1.049223 | 1.000000 | 1.000000 | 1.079476 | 1.305713 |
1.5 | 1.625665 | 1.743180 | 1.019719 | 1.050929 | 1.000074 | 1.000564 | 1.073347 | 1.176114 | ||
1.1 | 1.455516 | 1.545623 | 1.020136 | 1.068915 | 1.000000 | 1.000000 | 1.265651 | 1.315263 | ||
125 | −0.25 | 1.3 | 1.544356 | 1.717690 | 1.025510 | 1.057638 | 1.000335 | 1.003349 | 1.061383 | 1.074242 |
1.5 | 1.586829 | 1.712102 | 1.012191 | 1.058153 | 1.000078 | 1.000775 | 1.105849 | 1.301847 | ||
1.1 | 1.491936 | 1.566608 | 1.039236 | 1.073057 | 1.000000 | 1.000000 | 1.251022 | 1.371957 | ||
150 | −0.35 | 1.3 | 1.511540 | 1.598136 | 1.015010 | 1.049847 | 1.000000 | 1.000000 | 1.104730 | 1.361085 |
1.5 | 1.583574 | 1.668974 | 1.024485 | 1.065390 | 1.002250 | 1.017197 | 1.023661 | 1.051295 | ||
1.1 | 1.507705 | 1.564044 | 1.028743 | 1.067513 | 1.000122 | 1.001219 | 1.269116 | 1.375915 | ||
150 | −0.3 | 1.3 | 1.530170 | 1.664550 | 1.016270 | 1.041276 | 1.000000 | 1.000000 | 1.120929 | 1.319993 |
1.5 | 1.552592 | 1.651253 | 1.018249 | 1.036614 | 1.000104 | 1.000528 | 1.032040 | 1.107554 | ||
1.1 | 1.500467 | 1.550770 | 1.018323 | 1.049755 | 1.000736 | 1.004015 | 1.267174 | 1.387317 | ||
150 | −0.25 | 1.3 | 1.558558 | 1.623855 | 1.020049 | 1.045220 | 1.000000 | 1.000000 | 1.124601 | 1.349715 |
1.5 | 1.549457 | 1.647546 | 1.010298 | 1.045583 | 1.000103 | 1.000867 | 1.064911 | 1.353000 | ||
1.1 | 1.546401 | 1.632883 | 1.029337 | 1.056355 | 1.000000 | 1.000000 | 1.236135 | 1.386901 | ||
175 | −0.35 | 1.3 | 1.542372 | 1.594353 | 1.019601 | 1.065573 | 1.000000 | 1.000000 | 1.068689 | 1.182530 |
1.5 | 1.563982 | 1.634967 | 1.022558 | 1.042928 | 1.001225 | 1.010330 | 1.035085 | 1.128978 | ||
1.1 | 1.518948 | 1.644169 | 1.027663 | 1.061846 | 1.000000 | 1.000000 | 1.231353 | 1.389865 | ||
175 | −0.3 | 1.3 | 1.524679 | 1.583958 | 1.033369 | 1.057156 | 1.000000 | 1.000000 | 1.069979 | 1.205596 |
1.5 | 1.560340 | 1.651844 | 1.023858 | 1.081949 | 1.000004 | 1.000039 | 1.044736 | 1.188887 | ||
1.1 | 1.478379 | 1.563133 | 1.029333 | 1.055492 | 1.000004 | 1.000038 | 1.216890 | 1.307547 | ||
175 | −0.25 | 1.3 | 1.531086 | 1.635649 | 1.024749 | 1.060072 | 1.000000 | 1.000000 | 1.109001 | 1.351927 |
1.5 | 1.561837 | 1.630478 | 1.022139 | 1.051489 | 1.000127 | 1.001275 | 1.016039 | 1.056480 | ||
1.1 | 1.517268 | 1.581725 | 1.032981 | 1.058222 | 1.000000 | 1.000000 | 1.201538 | 1.385585 | ||
200 | −0.35 | 1.3 | 1.532300 | 1.625112 | 1.033554 | 1.076344 | 1.000000 | 1.000000 | 1.094805 | 1.378270 |
1.5 | 1.553501 | 1.607619 | 1.020570 | 1.058106 | 1.000000 | 1.000000 | 1.075708 | 1.428918 | ||
1.1 | 1.484898 | 1.596637 | 1.026437 | 1.061230 | 1.000000 | 1.000000 | 1.224258 | 1.382158 | ||
200 | −0.3 | 1.3 | 1.545884 | 1.646671 | 1.028041 | 1.064949 | 1.000949 | 1.009495 | 1.067740 | 1.201090 |
1.5 | 1.606757 | 1.721663 | 1.024916 | 1.059894 | 1.000406 | 1.002605 | 1.051122 | 1.307438 | ||
1.1 | 1.507418 | 1.608975 | 1.022933 | 1.066916 | 1.000538 | 1.005236 | 1.221224 | 1.373607 | ||
200 | −0.25 | 1.3 | 1.531956 | 1.650285 | 1.023385 | 1.057931 | 1.000000 | 1.000000 | 1.070749 | 1.203446 |
1.5 | 1.539974 | 1.732727 | 1.014916 | 1.066775 | 1.000115 | 1.001140 | 1.024880 | 1.077879 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, H.; Zhao, Y.; Ma, X.; Lu, Y.-Y.; Ren, N.; Wang, J.-B. Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times. Mathematics 2023, 11, 4135. https://doi.org/10.3390/math11194135
He H, Zhao Y, Ma X, Lu Y-Y, Ren N, Wang J-B. Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times. Mathematics. 2023; 11(19):4135. https://doi.org/10.3390/math11194135
Chicago/Turabian StyleHe, Hongyu, Yanzhi Zhao, Xiaojun Ma, Yuan-Yuan Lu, Na Ren, and Ji-Bo Wang. 2023. "Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times" Mathematics 11, no. 19: 4135. https://doi.org/10.3390/math11194135
APA StyleHe, H., Zhao, Y., Ma, X., Lu, Y. -Y., Ren, N., & Wang, J. -B. (2023). Study on Scheduling Problems with Learning Effects and Past Sequence Delivery Times. Mathematics, 11(19), 4135. https://doi.org/10.3390/math11194135