Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold
Abstract
:1. Introduction
2. Preliminaries
2.1. Vertical and Complete Lifts
2.2. LP-Sasakian Manifolds
3. QSNMC
4. Complete Lifts from an LP-Sasakian Manifold to Its Tangent Bundle
5. Complete Lifts of QSNMC of an LP-Sasakian Manifold in the Tangent Bundle
6. Curvature Tensor of LP-Sasakian Manifolds Endowed with QSNMC to Tangent Bundle
7. Symmetric and Skew-Symmetric Condition of the Ricci Tensor of in an LP-Sasakian Manifold Endowed with a QSNMC to Tangent Bundle
8. Skew-Symmetric Properties of the Projective Ricci Tensor in an LP-Sasakian Manifold Endowed with QSNMC in the Tangent Bundle
9. Lifts of Einstein Manifold Endowed with QSNMC in an LP-Sasakian Manifold to the Tangent Bundle
10. Example
11. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Yano, K.; Ishihara, S. Tangent and Cotangent Bundles: Differential Geometry; Marcel Dekker, Inc.: New York, NY, USA, 1973. [Google Scholar]
- Yano, K.; Kobayashi, S. Prolongations of tensor fields and connections to tangent bundles I general theory. J. Math. Soc. Jpn. 1966, 18, 194–210. [Google Scholar] [CrossRef]
- Tani, M. Prolongations of hypersurfaces to tangent bundles. Kodai Math. Semin. Rep. 1969, 21, 85–96. [Google Scholar] [CrossRef]
- Pandey, P.; Chaturvedi, B.B. On a Käehler manifold equipped with lift of quarter symmetric non-metric connection. Facta Univ. Ser. Math. Inform. 2019, 33, 539–546. [Google Scholar]
- Khan, M.N.I. Tangent bundle endowed with quarter-symmetric non-metric connection on an almost Hermitian manifold. Facta Univ. Ser. Math. Inform. 2020, 35, 167–178. [Google Scholar] [CrossRef]
- Khan, M.N.I. Novel theorems for the frame bundle endowed with metallic structures on an almost contact metric manifold. Chaos Solitons Fractals 2021, 146, 110872. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Choudhary, M.A.; Chaubey, S.K. Alternative equations for horizontal lifts of the metallic structures from manifold onto tangent bundle. J. Math. 2022, 2022, 5037620. [Google Scholar] [CrossRef]
- Khan, M.N.I.; De, U.C. Liftings of metallic structures to tangent bundles of order r. AIMS Math. 2022, 7, 7888–7897. [Google Scholar] [CrossRef]
- Khan, M.N.I.; De, U.C. Lifts of metallic structure on a cross-section. Filomat 2022, 36, 6369–6373. [Google Scholar] [CrossRef]
- De, U.C.; Khan, M.N.I. Kenmotsu manifolds endowed with the semi-symmetric non-metric φ-connection to its tangent bundle. Novi Sad J. Math. 2022. [Google Scholar] [CrossRef]
- Khan, M.N.I. Lift of semi-symmetric non-metric connection on a Kähler manifold. Afr. Mat. 2016, 27, 345–352. [Google Scholar] [CrossRef]
- Khan, M.N.I. Tangent bundles endowed with semi-symmetric non-metric connection on a Riemannian manifold. Facta Univ. Ser. Math. Inform. 2021, 1, 855–878. [Google Scholar]
- Khan, M.N.I. Complete lifts of a semi-symmetric metric p-connection on a Riemannian manifold to its tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 909–916. [Google Scholar]
- Khan, M.N.I. Submanifolds of a Riemannian manifold endowed with a new type of semi-symmetric non-metric connection in the tangent bundle. Int. J. Math. Comput. Sci. 2022, 17, 265–275. [Google Scholar]
- Khan, M.N.I. Liftings from a para-sasakian manifold to its tangent bundles. Filomat 2023, 37, 6727–6740. [Google Scholar]
- Khan, M.N.I.; De, U.C.; Velimirovic, L.S. Lifts of a quarter-symmetric metric connection from a Sasakian manifold to its tangent bundle. Mathematics 2023, 11, 53. [Google Scholar] [CrossRef]
- Khan, M.N.I.; Jun, J. Quarter-symmetric metric connection on tangent bundles. Far East J. Math. Sci. 2017, 101, 2219–2229. [Google Scholar] [CrossRef]
- Kumar, R.; Colney, L.; Khan, M.N.I. Lifts of a semi-symmetric non-metric connection (SSNMC) from Statistical Manifolds to the tangent bundle. Results Nonlinear Anal. 2023, 6, 50–65. [Google Scholar]
- Khan, M.N.I.; Mofarreh, F.; Haseeb, A. Tangent bundles of P-Sasakian manifolds endowed with a quarter-symmetric metric connection. Symmetry 2023, 15, 753. [Google Scholar] [CrossRef]
- Golab, S. On semi-symmetric and quarter-symmetric linear connections. Tensor N. S. 1975, 29, 249–254. [Google Scholar]
- Yano, K.; Imai, T. Quarter-symmetric metric connections and their curvature tensors. Tensor N. S. 1982, 38, 13–18. [Google Scholar]
- Rastogi, S.C. On quarter-symmetric metric connection. C. R. Acad. Sci. Bulg. 1978, 31, 811–814. [Google Scholar]
- Rastogi, S.C. On quarter-symmetric metric connection. Tensor N. S. 1987, 44, 133–141. [Google Scholar]
- Mishra, R.S.; Pandey, S.N. On quarter symmetric metric F-connections. Tensor N. S. 1980, 34, 1–7. [Google Scholar]
- Mukhopadhyay, S.; Roy, A.K.; Barua, B. Some properties of a quarter-symmetric metric connection on a Riemannian manifold. Soochow J. Math. 1991, 17, 205–211. [Google Scholar]
- Biswas, S.C.; De, U.C. Quarter-symmetric metric connection in an SP-Sasakian manifold. Commun. Fac. Sci. Univ. Ank. Ser. A1 Math. Stat. 1997, 46, 49–56. [Google Scholar]
- Sengupta, J.; Biswas, B. Quarter-symmetric non-metric connection on a Sasakian manifold. Bull. Cal. Math. Soc. 2003, 95, 169–176. [Google Scholar]
- Singh, R.N.; Pandey, M.K. On a type of quarter-symmetric non-metric connection in a Kenmotsu manifold. Bull. Cal. Math. Soc. 2007, 99, 433–444. [Google Scholar]
- Prakash, A.; Narain, D. On a quarter symmetric non-metric connection in an Lorentzian para-Sasakian manifolds. Int. Electron. J. Geom. 2011, 4, 129–137. [Google Scholar]
- Friedman, A.; Schouten, J.A. Uber die Geometrie der halbsymmetrischen Ubertragungen. Math. Zeitschr. 1924, 21, 211–223. [Google Scholar] [CrossRef]
- Matsumoto, K. On Lorentzian paracontact manifolds. Bull. Yamagata Univ. Natur. Sci 1989, 12, 151–156. [Google Scholar]
- De, U.C.; Matsumoto, K.; Shaikh, A.A. On Lorentzian para-Sasakian manifolds. Rend. Del Semin. Mat. Messina 1999, 3, 149–158. [Google Scholar]
- Matsumoto, K.; Mihai, I. On a certain transformation in an Lorentzian para-Sasakian manifold. Tensor N. S. 1988, 47, 189–197. [Google Scholar]
- Chaki, M.C.; Saha, S.K. On pseudo projective Ricci-symmetric manifolds. Bulg. Phys. 1994, 24, 1–7. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kumar, R.; Colney, L.; Shenawy, S.; Bin Turki, N. Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics 2023, 11, 4163. https://doi.org/10.3390/math11194163
Kumar R, Colney L, Shenawy S, Bin Turki N. Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics. 2023; 11(19):4163. https://doi.org/10.3390/math11194163
Chicago/Turabian StyleKumar, Rajesh, Lalnunenga Colney, Samesh Shenawy, and Nasser Bin Turki. 2023. "Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold" Mathematics 11, no. 19: 4163. https://doi.org/10.3390/math11194163
APA StyleKumar, R., Colney, L., Shenawy, S., & Bin Turki, N. (2023). Tangent Bundles Endowed with Quarter-Symmetric Non-Metric Connection (QSNMC) in a Lorentzian Para-Sasakian Manifold. Mathematics, 11(19), 4163. https://doi.org/10.3390/math11194163