A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors
Abstract
:1. Introduction
2. Methodology
2.1. Parameter Estimator and Its Theoretical Properties
2.2. The Parametric Bootstrap Approach
3. Simulation Studies
Algorithm 1 Given samples and , |
Step 1. Obtain estimations and , then obtain the T-value in (10) and denote it ; Step 3. Using (13) to obtain the value of PB pivot variable . Let if , if ; Step 4. Repeat r times for Steps 2–3, keep the r values of R and marked as ; Step 5. Using (14), the p-value can be evaluated as . |
- (1)
- The Type I error rate of our proposed PB test is very close to , but the existing RT test is unstable. For the smaller sample size , the RT test seems to be very conservative, but the PB test can control Type I error rates within the significance level very well.
- (2)
- The magnitude of variance in individual effect has little effect on the performance of each test method (PB and RT).
- (3)
- When the sample sizes n and are fixed, the Type I error rates of both tests are robust to the variation in the standard deviations of measurement error.
- (1)
- When the sample is large (), both the PB and RT tests can control the Type I error rates.
- (2)
- When the sample sizes n and are fixed, the power increases as the d-value increases, as expected. In most scenarios, the powers of our proposed PB test are slightly higher than those of the RT test.
- (3)
- For the same standard deviation of measurement error , the estimated power increases as the sample size increases.
4. A Real Data Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Theoretical Proofs
References
- Baltagi, B.H. Econometric Analysis of Panel Data; John Wiley & Sons: New York, NY, USA, 2008. [Google Scholar]
- Lin, X.H.; Carroll, R.J. Nonparametric function estimation for clustered data when the predictor is measured without/with Error. J. Am. Stat. Assoc. 2000, 95, 520–534. [Google Scholar] [CrossRef]
- Carroll, R.J.; Ruppert, D.; Stefanski, L.A.; Crainiceanu, C.M. Measurement Error in Nonlinear Models: A Modern Perspective; Chapman & Hall/CRC: London, UK, 2006. [Google Scholar]
- Li, G.R.; Zhang, J.; Feng, S.Y. Modern Measurement Error Models; Science Press: Beijing, China, 2016. [Google Scholar]
- Dong, H.; Otsu, T.; Taylor, L. Estimation of varying coefficient models with measurement error. J. Econom. 2022, 230, 388–415. [Google Scholar] [CrossRef]
- Guo, L.R.; Song, W.X.; Shi, J.H. Estimating multivariate density and its derivatives for mixed measurement error data. J. Multivar. Anal. 2022, 191, 105005. [Google Scholar] [CrossRef]
- Montes-Rojas, G.; Sosa-Escudero, W. Robust tests for heteroskedasticity in the one-way error components model. J. Econom. 2011, 160, 300–310. [Google Scholar] [CrossRef]
- Zhao, H.B. Exact tests in panel data using generalized p-values. Commun. Stat.-Theory Methods 2008, 37, 18–36. [Google Scholar] [CrossRef]
- Fuller, W.A. Measurement Error Models; John Wiley & Sons: New York, NY, USA, 1987. [Google Scholar]
- Shi, J.H.; Zhang, Y.J.; Yu, P.; Song, W.X. SIMEX estimation in parametric modal regression with measurement error. Comput. Stat. Data Anal. 2021, 157, 107158. [Google Scholar] [CrossRef]
- Cui, H.J.; Ng, K.W.; Zhu, L.X. Estimation in mixed effects model with errors in variables. J. Multivar. Anal. 2004, 91, 53–73. [Google Scholar] [CrossRef]
- Xiao, Z.G.; Shao, J.; Palta, M. Instrumental variable and GMM estimation for panel data with measurement error. Stat. Sin. 2010, 20, 1725–1747. [Google Scholar]
- Yue, L.L.; Li, G.R.; Zhang, J.H. Statistical inference for the unbalanced two-way error component regression model with errors-in-variables. J. Korean Stat. Soc. 2017, 46, 593–607. [Google Scholar] [CrossRef]
- Yue, L.L.; Shi, J.H.; Li, G.R. Statistical inference for the two-way error component regression model with errors-in-variables. Sci. China Math. 2017, 47, 1077–1088. (In Chinese) [Google Scholar] [CrossRef]
- Esmaeli-Ayan, A.; Malekzadeh, A.; Hormozinejad, F. Inferences on the regression coefficients in panel data models: Parametric bootstrap approach. Math. Sci. 2020, 14, 67–73. [Google Scholar] [CrossRef]
- Yue, L.L.; Shi, J.H.; Song, W.X. A parametric bootstrap approach for two-way error component regression models. Commun. Stat.-Simul. Comput. 2017, 46, 3952–3961. [Google Scholar] [CrossRef]
- Huwang, L.C.; Huang, Y.H.S.; Wang, Y.H.T. Uniformly robust tests in errors-in-variables models. Ann. Inst. Stat. Math. 2009, 61, 789–810. [Google Scholar] [CrossRef]
- Efron, B.; Tibshirani, R.J. An Introduction to the Bootstrap; Chapman & Hall/CRC: London, UK, 1993. [Google Scholar]
- Krishnamoorthy, K.; Lu, F.; Mathew, T. A parametric bootstrap approach for ANOVA with unequal variances: Fixed and random models. Comput. Stat. Data Anal. 2007, 51, 5731–5742. [Google Scholar] [CrossRef]
- Xu, L.W.; Yang, F.Q.; Abula, A.; Qin, S. A parametric bootstrap approach for two-way ANOVA in presence of possible interactions with unequal variances. J. Multivar. Anal. 2013, 115, 172–180. [Google Scholar] [CrossRef]
- Xu, L.W. Parametric bootstrap inferences for the growth curve models with intraclass correlation structure. Commun. Stat.-Theory Methods 2017, 46, 3308–3320. [Google Scholar] [CrossRef]
- Ye, R.D.; Xu, L.J.; Luo, K.; Jiang, L. A parametric bootstrap approach for one-way classification model with skew-normal random effects. Appl. Math. J. Chin. Univ. 2019, 34, 423–435. [Google Scholar] [CrossRef]
- Sun, Z.Q.; Fisher, T.J. Testing for correlation between two time series using a parametric bootstrap. J. Appl. Stat. 2020, 48, 2042–2063. [Google Scholar] [CrossRef] [PubMed]
- Grunfeld, Y. The Determinants of Corporate Investment. Ph.D. Dissertation, University of Chicago, Chicago, IL, USA, 1958. [Google Scholar]
- Yang, Y.P.; Li, G.R.; Peng, H. Empirical likelihood of varying coefficient errors-in-variables models with longitudinal data. J. Multivar. Anal. 2014, 127, 1–18. [Google Scholar] [CrossRef]
n | |||||||||
---|---|---|---|---|---|---|---|---|---|
PB | RT | PB | RT | PB | RT | PB | RT | ||
10 | 0.25 | 0.0464 | 0.0104 | 0.0488 | 0.0140 | 0.0504 | 0.0188 | 0.0520 | 0.0392 |
0.5 | 0.0460 | 0.0086 | 0.0476 | 0.0108 | 0.0464 | 0.0162 | 0.0524 | 0.0338 | |
1.0 | 0.0472 | 0.0084 | 0.0488 | 0.0102 | 0.0460 | 0.0132 | 0.0524 | 0.0244 | |
2.0 | 0.0468 | 0.0084 | 0.0476 | 0.0098 | 0.0524 | 0.0120 | 0.0504 | 0.0198 | |
4.0 | 0.0468 | 0.0084 | 0.0472 | 0.0098 | 0.0516 | 0.0120 | 0.0480 | 0.0160 | |
8.0 | 0.0472 | 0.0080 | 0.0468 | 0.0092 | 0.0496 | 0.0108 | 0.0496 | 0.0150 | |
20 | 0.25 | 0.0464 | 0.0378 | 0.0476 | 0.0384 | 0.0484 | 0.0370 | 0.0488 | 0.0432 |
0.5 | 0.0460 | 0.0400 | 0.0492 | 0.0388 | 0.0488 | 0.0366 | 0.0480 | 0.0414 | |
1.0 | 0.0468 | 0.0374 | 0.0508 | 0.0390 | 0.0460 | 0.0386 | 0.0496 | 0.0364 | |
2.0 | 0.0472 | 0.0386 | 0.0496 | 0.0394 | 0.0484 | 0.0394 | 0.0492 | 0.0362 | |
4.0 | 0.0476 | 0.0386 | 0.0496 | 0.0386 | 0.0488 | 0.0386 | 0.0460 | 0.0356 | |
8.0 | 0.0476 | 0.0392 | 0.0488 | 0.0378 | 0.0496 | 0.0376 | 0.0472 | 0.0354 | |
30 | 0.25 | 0.0504 | 0.0384 | 0.0496 | 0.0388 | 0.0468 | 0.0374 | 0.0488 | 0.0442 |
0.5 | 0.0508 | 0.0388 | 0.0508 | 0.0388 | 0.0476 | 0.0386 | 0.0488 | 0.0446 | |
1.0 | 0.0504 | 0.0388 | 0.0512 | 0.0386 | 0.0488 | 0.0394 | 0.0480 | 0.0432 | |
2.0 | 0.0500 | 0.0388 | 0.0500 | 0.0390 | 0.0500 | 0.0392 | 0.0460 | 0.0434 | |
4.0 | 0.0500 | 0.0386 | 0.0496 | 0.0388 | 0.0504 | 0.0388 | 0.0464 | 0.0428 | |
8.0 | 0.0500 | 0.0386 | 0.0504 | 0.0392 | 0.0492 | 0.0396 | 0.0468 | 0.0414 | |
50 | 0.25 | 0.0496 | 0.0464 | 0.0476 | 0.0430 | 0.0492 | 0.0418 | 0.0500 | 0.0474 |
0.5 | 0.0488 | 0.0448 | 0.0500 | 0.0426 | 0.0468 | 0.0440 | 0.0492 | 0.0462 | |
1.0 | 0.0492 | 0.0446 | 0.0476 | 0.0438 | 0.0476 | 0.0444 | 0.0484 | 0.0448 | |
2.0 | 0.0492 | 0.0452 | 0.0488 | 0.0468 | 0.0492 | 0.0460 | 0.0500 | 0.0466 | |
4.0 | 0.0500 | 0.0466 | 0.0500 | 0.0472 | 0.0512 | 0.0470 | 0.0488 | 0.0474 | |
8.0 | 0.0504 | 0.0466 | 0.0512 | 0.0468 | 0.0508 | 0.0472 | 0.0488 | 0.0484 |
n | Methods | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
30 | PB | 0.0500 | 0.0548 | 0.0616 | 0.0708 | 0.0780 | 0.0892 | 0.1000 | 0.1092 | 0.1256 | |
RT | 0.0386 | 0.0418 | 0.0548 | 0.0618 | 0.0742 | 0.0858 | 0.1018 | 0.1216 | 0.1454 | ||
PB | 0.0496 | 0.0532 | 0.0628 | 0.0712 | 0.0800 | 0.0908 | 0.0988 | 0.1136 | 0.1248 | ||
RT | 0.0388 | 0.0418 | 0.0534 | 0.0630 | 0.0750 | 0.0862 | 0.1020 | 0.1202 | 0.1394 | ||
PB | 0.0504 | 0.0520 | 0.0624 | 0.0732 | 0.0824 | 0.0924 | 0.1020 | 0.1128 | 0.1268 | ||
RT | 0.0388 | 0.0410 | 0.0560 | 0.0628 | 0.0738 | 0.0864 | 0.1018 | 0.1176 | 0.1378 | ||
PB | 0.0464 | 0.0532 | 0.0652 | 0.0736 | 0.0848 | 0.0968 | 0.1112 | 0.1244 | 0.1424 | ||
RT | 0.0428 | 0.0456 | 0.0556 | 0.0644 | 0.0720 | 0.0824 | 0.0948 | 0.1126 | 0.1280 | ||
50 | PB | 0.0536 | 0.0540 | 0.0656 | 0.0760 | 0.0920 | 0.1124 | 0.1376 | 0.1656 | 0.1928 | |
RT | 0.0466 | 0.0466 | 0.0600 | 0.0718 | 0.0886 | 0.1102 | 0.1330 | 0.1664 | 0.2036 | ||
PB | 0.0524 | 0.0548 | 0.0696 | 0.0828 | 0.1008 | 0.1212 | 0.1460 | 0.1700 | 0.2028 | ||
RT | 0.0472 | 0.0482 | 0.0598 | 0.0720 | 0.0884 | 0.1072 | 0.1308 | 0.1634 | 0.1970 | ||
PB | 0.0512 | 0.0568 | 0.0756 | 0.0932 | 0.1056 | 0.1284 | 0.1552 | 0.1820 | 0.2096 | ||
RT | 0.0470 | 0.0492 | 0.0594 | 0.0736 | 0.0868 | 0.1040 | 0.1268 | 0.1548 | 0.1864 | ||
PB | 0.0532 | 0.0576 | 0.0804 | 0.0976 | 0.1156 | 0.1372 | 0.1652 | 0.1936 | 0.2284 | ||
RT | 0.0474 | 0.0498 | 0.0608 | 0.0706 | 0.0800 | 0.0954 | 0.1188 | 0.1424 | 0.1622 | ||
100 | PB | 0.0504 | 0.0512 | 0.0752 | 0.1020 | 0.1300 | 0.1740 | 0.2192 | 0.2768 | 0.3528 | |
RT | 0.0466 | 0.0472 | 0.0724 | 0.1032 | 0.1338 | 0.1754 | 0.2304 | 0.2916 | 0.3630 | ||
PB | 0.0504 | 0.0512 | 0.0848 | 0.1100 | 0.1452 | 0.1812 | 0.2360 | 0.2952 | 0.3732 | ||
RT | 0.0460 | 0.0484 | 0.0728 | 0.1014 | 0.1296 | 0.1704 | 0.2232 | 0.2848 | 0.3498 | ||
PB | 0.0464 | 0.0572 | 0.0948 | 0.1248 | 0.1544 | 0.2036 | 0.2564 | 0.3208 | 0.3912 | ||
RT | 0.0444 | 0.0478 | 0.0738 | 0.0960 | 0.1254 | 0.1604 | 0.2112 | 0.2700 | 0.3346 | ||
PB | 0.0488 | 0.0668 | 0.1108 | 0.1376 | 0.1800 | 0.2288 | 0.2836 | 0.3496 | 0.4120 | ||
RT | 0.0450 | 0.0474 | 0.0706 | 0.0862 | 0.1104 | 0.1432 | 0.1842 | 0.2352 | 0.2960 |
Methods | |||
---|---|---|---|
PB | 0.0494 | 0.2530 | 0.6050 |
RT | 0.0725 | 0.2311 | 0.5593 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yue, L.; Shi, J.; Luo, J.; Lin, J. A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors. Mathematics 2023, 11, 4165. https://doi.org/10.3390/math11194165
Yue L, Shi J, Luo J, Lin J. A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors. Mathematics. 2023; 11(19):4165. https://doi.org/10.3390/math11194165
Chicago/Turabian StyleYue, Lili, Jianhong Shi, Jingxuan Luo, and Jinguan Lin. 2023. "A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors" Mathematics 11, no. 19: 4165. https://doi.org/10.3390/math11194165
APA StyleYue, L., Shi, J., Luo, J., & Lin, J. (2023). A Parametric Bootstrap Approach for a One-Way Error Component Regression Model with Measurement Errors. Mathematics, 11(19), 4165. https://doi.org/10.3390/math11194165