SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization
Abstract
:1. Introduction
- (1)
- All eigenvalues of the error covariance matrices are automatically computed at each step of the filtering algorithm and can be used for automatic analysis and/or reduction of the original model;
- (2)
- The information matrices (inverse of the covariance matrices) are easily computed by inverting the diagonal factors in the SVD decomposition, which creates an elegant way to construct information-type algorithms and mixed-type filters with automatic switching from the covariance filtering mode to the information filtering mode.
2. Methodology
2.1. Conventional Kalman-Type Filtering Algorithm for Discrete-Time Stochastic Systems with Multiplicative and Additive Noises
Algorithm 1: Conventional Kalman-type filtering algorithm (KF). |
Initialization. Calculate . Set initial values , . For
do I. Time Update step. Find a priori covariance estimation error matrix and a priori estimate of the state vector as follows: II. Measurement Update step. Using the a priori estimates and , find their a posteriori values and as follows: End. |
2.2. The Problem of Parameter Identification
3. Main Results
The New SVD-Based Kalman-Type Filtering Algorithm for Discrete-Time Stochastic Systems with Multiplicative and Additive Noises
Algorithm 2: SVD-based Kalman-type filtering algorithm (SVD-KF). |
Initialization. Apply SVD factorization for the initial matrices and . Set the initial values: , and . For
do I. Time Update step. I.1. Apply SVD factorization for the process noise covariance matrix . I.2. Build the pre-arrays and apply the SVD factorization in order to obtain the SVD factors , and as follows
I.3. Given , compute a priori estimate by (5). II. Measurement Update step. II.1. Apply SVD factorization for the measurements noise covariance matrix . II.2. In order to obtain the SVD factors and , apply the SVD factorization to the next left hand side pre-arrays: II.3. Find the feedback gain as follows: II.4. In order to obtain the SVD factors , apply the SVD factorization to the next left hand side pre-array: II.5. Find a posteriori estimate as follows: End. |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
SVD | Singular value decomposition |
KF | Kalman filter |
TU | Time update |
MU | Measurement update |
MPE | Minimum prediction error |
GA | Genetic algorithm |
SA | Simulated annealing |
RMSE | Root mean square error |
MAPE | Mean absolute percentage error |
References
- Grewal, M.S.; Andrews, A.P. Kalman Filtering: Theory and Practice Using MATLAB, 4th ed.; John Wiley & Sons, Inc.: New York, NY, USA, 2015. [Google Scholar]
- Tsyganov, A.V.; Tsyganova, J.V.; Kureneva, T.N. UD-based Linear Filtering for Discrete-Time Systems with Multiplicative and Additive Noises. In Proceedings of the 19th European Control Conference, Saint Petersburg, Russia, 12–15 May 2020; pp. 1389–1394. [Google Scholar]
- Caines, P. Linear Stochastic Systems; John Wiley & Sons, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Hromkovič, J. Algorithmics for Hard Problems. Introduction to Combinatorial Optimization, Randomization, Approximation, and Heuristics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2004. [Google Scholar]
- Golub, G.H.; Van Loan, C.F. Matrix Computations; Johns Hopkins University Press: Baltimore, MD, USA, 1983. [Google Scholar]
- Tsyganova, Y.V.; Kulikova, M.V. On modern array algorithms for optimal discrete filtering. Vestnik YuUrGU. Ser. Mat. Model. Progr. 2018, 11, 5–30. (In Russian) [Google Scholar] [CrossRef]
- Kulikova, M.V.; Tsyganova, J.V.; Kulikov, G.Y. SVD-based state and parameter estimation approach for generalized Kalman filtering with application to GARCH-in-Mean estimation. J. Comput. Appl. Math. 2021, 387, 112487. [Google Scholar] [CrossRef]
- Oshman, Y.; Bar-Itzhack, I.Y. Square root filtering via covariance and information eigenfactors. Automatica 1986, 22, 599–604. [Google Scholar] [CrossRef]
- Oshman, Y. Square root information filtering using the covariance spectral decomposition. In Proceedings of the 27th IEEE Conference on Decision and Control, Austin, TX, USA, 7–9 December 1988; pp. 382–387. [Google Scholar]
- Oshman, Y. Maximum likelihood state and parameter estimation via derivatives of the V-Lambda filter. J. Guid. Control. Dyn. 1992, 15, 717–726. [Google Scholar] [CrossRef]
- Wang, L.; Libert, G.; Manneback, P. Kalman filter algorithm based on Singular Value Decomposition. In Proceedings of the 31st Conference on Decision and Control, Westin La Paloma, Tucson, AZ, USA, 16–18 December 1992; pp. 1224–1229. [Google Scholar]
- Zhang, Y.; Dai, G.; Zhang, H.; Li, Q. A SVD-based extended Kalman filter and applications to aircraft flight state and parameter estimation. In Proceedings of the 1994 American Control Conference—ACC’94, Baltimore, MD, USA, 29 June–1 July 1994; pp. 1809–1813. [Google Scholar]
- Kulikova, M.V.; Tsyganova, J.V. Improved discrete-time Kalman filtering within singular value decomposition. IET Control. Theory Appl. 2017, 11, 2412–2418. [Google Scholar] [CrossRef]
- Tsyganova, J.V.; Kulikova, M.V. SVD-based Kalman filter derivative computation. IEEE Trans. Autom. Control. 2017, 62, 4869–4875. [Google Scholar] [CrossRef]
- Alessandrini, M.; Biagetti, G.; Crippa, P.; Falaschetti, L.; Manoni, L.; Turchetti, C. Singular Value Decomposition in Embedded Systems Based on ARM Cortex-M Architecture. Electronics 2021, 10, 34. [Google Scholar] [CrossRef]
- Wu, Y.; Zhang, Q.; Shen, Z. Kalman filtering with multiplicative and additive noises. In Proceedings of the 12th World Congress on Intelligent Control and Automation (WCICA 2016), Guilin, China, 12–15 June 2016; pp. 483–487. [Google Scholar]
- Åström, K.-J. Maximum Likelihood and Prediction Error Methods. Automatica 1980, 16, 551–574. [Google Scholar] [CrossRef]
- Semushin, I.V.; Tsyganova, J.V. Adaptation in Stochastic Dynamic Systems—Survey and New Results IV: Seeking Minimum of API in Parameters of Data. Int. J. Commun. Netw. Syst. Sci. 2013, 6, 513–518. [Google Scholar] [CrossRef]
- Björck, Å. Numerical Methods in Matrix Computations, Series: Texts in Applied Mathematics; Springer International Publishing: Berlin/Heidelberg, Germany, 2014. [Google Scholar]
- Bar-Shalom, Y.; Li, X.-R.; Kirubarajan, T. Estimation with Applications to Tracking and Navigation; John Wiley & Sons, Inc.: New York, NY, USA, 2001. [Google Scholar]
- Chen, D.; Yu, Y.; Xu, L.; Liu, X. Kalman Filtering for Discrete Stochastic Systems with Multiplicative Noises and Random Two-Step Sensor Delays. Discret. Dyn. Nat. Soc. 2015, 2015, 809734. [Google Scholar] [CrossRef]
GA | SA | ||
---|---|---|---|
Parameter | Value | Parameter | Value |
TimeLimit | 60 | TimeLimit | 60 |
Generations | Inf | MaxIter | Inf |
StallGenLimit | 20 | StallIterLimit | 100 |
PopulationSize | 10 | ReannealInterval | 100 |
PopInitRange | [0; 1] | MaxFunEvals | Inf |
MutationFcn | @mutationadaptfeasible |
KF | SVD-KF | |||
---|---|---|---|---|
GA | SA | GA | SA | |
0.820 | 0.373 | 3.442 | 1.434 | |
0.866 | 0.354 | 3.526 | 1.362 | |
0.972 | 0.343 | 4.118 | 1.333 | |
Average | 0.886 | 0.357 | 3.695 | 1.376 |
GA | SA | |||||
---|---|---|---|---|---|---|
Mean | RMSE | MAPE | Mean | RMSE | MAPE | |
0.099164 | 0.011193 | 8.177905 | 0.098430 | 0.012116 | 8.874215 | |
0.099261 | 0.005376 | 4.403328 | 0.097789 | 0.007293 | 5.773781 | |
0.099885 | 0.001185 | 0.959292 | 0.097491 | 0.005608 | 3.443892 |
GA | SA | |||||
---|---|---|---|---|---|---|
Mean | RMSE | MAPE | Mean | RMSE | MAPE | |
0.099131 | 0.011085 | 8.164202 | 0.098504 | 0.012049 | 8.949169 | |
0.099259 | 0.005375 | 4.404718 | 0.098127 | 0.006944 | 5.551390 | |
0.099882 | 0.001186 | 0.962216 | 0.096972 | 0.006581 | 4.470887 |
KF | SVD-KF | |||
---|---|---|---|---|
GA | SA | GA | SA | |
0.684 | 0.421 | 2.933 | 1.595 | |
0.765 | 0.454 | 2.814 | 1.653 | |
5.752 | – | 6.613 | 3.607 | |
5.560 | – | 6.928 | 3.873 |
GA | SA | |||||
---|---|---|---|---|---|---|
Mean | RMSE | MAPE | Mean | RMSE | MAPE | |
0.201826 | 0.030241 | 12.175545 | 0.202339 | 0.030573 | 12.246241 | |
0.196880 | 0.028717 | 11.372277 | 0.197731 | 0.028353 | 11.220115 | |
0.126608 | 0.220648 | 92.177307 | – | – | – | |
0.319231 | 0.407681 | 162.665399 | – | – | – |
GA | SA | |||||
---|---|---|---|---|---|---|
Mean | RMSE | MAPE | Mean | RMSE | MAPE | |
0.201787 | 0.030282 | 12.221007 | 0.201656 | 0.030390 | 12.089709 | |
0.196823 | 0.028029 | 11.152689 | 0.197950 | 0.028576 | 11.303757 | |
0.203242 | 0.031032 | 12.662414 | 0.203419 | 0.031660 | 13.103576 | |
0.201195 | 0.027771 | 11.557529 | 0.200827 | 0.028267 | 11.554388 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tsyganov, A.; Tsyganova, Y. SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization. Mathematics 2023, 11, 4292. https://doi.org/10.3390/math11204292
Tsyganov A, Tsyganova Y. SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization. Mathematics. 2023; 11(20):4292. https://doi.org/10.3390/math11204292
Chicago/Turabian StyleTsyganov, Andrey, and Yulia Tsyganova. 2023. "SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization" Mathematics 11, no. 20: 4292. https://doi.org/10.3390/math11204292
APA StyleTsyganov, A., & Tsyganova, Y. (2023). SVD-Based Identification of Parameters of the Discrete-Time Stochastic Systems Models with Multiplicative and Additive Noises Using Metaheuristic Optimization. Mathematics, 11(20), 4292. https://doi.org/10.3390/math11204292