Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks
Abstract
:1. Introduction
1.1. Energy Consumption Model
1.2. Trajectory Optimization Method
1.3. Overview of the Proposed Method
2. Materials and Methods
2.1. UAV Energy Consumption Model
2.1.1. Dynamic Model of a Quadrotor UAV
2.1.2. Thrust Coefficient and Torque Coefficient
Parameter | Value | Parameter | Value |
---|---|---|---|
mass | kg | gravity | N/kg |
rotor radius | m | rotor location | m |
lift slope | rotor disk area | m2 | |
fuselage equivalent flat plate area | m2 | air density | kg/m3 |
collective pitch angle | rad | profile drag coefficient | |
incremental correction factor | rotor solid | ||
viscous damping coefficient | Nms/rad | voltage constant | Vs/rad |
motor resistance | Ω | moment of inertia x | kgm2 |
moment of inertia y | kgm2 | moment of inertia z | kgm2 |
2.1.3. BLDC Motor Dynamic Model
2.1.4. Energy Consumption Calculation
2.2. Communication Model for Mobile IoT Networks
2.3. Trajectory Planning
2.3.1. Optimization Problem
2.3.2. Disk Cover Clustering
Algorithm 1: Disk Cover Problem based on GAK-means Algorithm. |
|
2.3.3. Clustered Disk Connection
2.3.4. Three-Dimensional Dubins Curve Connection
Algorithm 2: FCC Trajectory Planning Algorithm. |
|
3. Results
3.1. Benchmark TSP Approach
3.2. Zigzag Approach
3.3. The Proposed Approach
3.4. Comparison and Discussion
4. Conclusions
- An intelligently designed clustering algorithm is introduced to cluster IoT devices with optimal coverage radii, enhancing the energy efficiency of both the UAV and the IoT network.
- A methodology for designing trajectories with optimized energy consumption and completion time using circular paths and 3D Dubins curves in UAV-assisted communication networks is derived, providing physically achievable trajectory planning for UAVs.
- The proposed methodology significantly reduces the overall communication time and conserves more energy compared to other classical benchmark schemes.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
BLDC | Brushless direct current |
CoG | Center of gravity |
FCC | Fly–circle–communicate |
GA | Genetic Algorithm |
IoT | Internet of Things |
LoS | Line-of-sight |
NLoS | Non-line-of-sight |
TSP | Traveling salesman problem |
UAV | Unmanned aerial vehicle |
WSN | Wireless sensor network |
References
- Boursianis, A.D.; Papadopoulou, M.S.; Diamantoulakis, P.; Liopa-Tsakalidi, A.; Barouchas, P.; Salahas, G.; Karagiannidis, G.; Wan, S.; Goudos, S.K. Internet of things (IoT) and agricultural unmanned aerial vehicles (UAVs) in smart farming: A comprehensive review. Internet Things 2022, 18, 100187. [Google Scholar] [CrossRef]
- Sony, S.; Laventure, S.; Sadhu, A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control. Health Monit. 2019, 26, e2321. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Nam, Y.H.; Debbah, M. A tutorial on UAVs for wireless networks: Applications, challenges, and open problems. IEEE Commun. Surv. Tutor. 2019, 21, 2334–2360. [Google Scholar] [CrossRef]
- Zhao, N.; Lu, W.; Sheng, M.; Chen, Y.; Tang, J.; Yu, F.R.; Wong, K.K. UAV-assisted emergency networks in disasters. IEEE Wirel. Commun. 2019, 26, 45–51. [Google Scholar] [CrossRef]
- Ahmed, S.; Chowdhury, M.Z.; Jang, Y.M. Energy-efficient UAV relaying communications to serve ground nodes. IEEE Commun. Lett. 2020, 24, 849–852. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y. Aerial–ground cost tradeoff for multi-UAV-enabled data collection in wireless sensor networks. IEEE Trans. Commun. 2019, 68, 1937–1950. [Google Scholar] [CrossRef]
- Du, R.; Gkatzikis, L.; Fischione, C.; Xiao, M. Energy efficient sensor activation for water distribution networks based on compressive sensing. IEEE J. Sel. Areas Commun. 2015, 33, 2997–3010. [Google Scholar] [CrossRef]
- Ouyang, F.; Cheng, H.; Lan, Y.; Zhang, Y.; Yin, X.; Hu, J.; Peng, X.; Wang, G.; Chen, S. Automatic delivery and recovery system of Wireless Sensor Networks (WSN) nodes based on UAV for agricultural applications. Comput. Electron. Agric. 2019, 162, 31–43. [Google Scholar] [CrossRef]
- Baek, H.; Lim, J. Design of future UAV-relay tactical data link for reliable UAV control and situational awareness. IEEE Commun. Mag. 2018, 56, 144–150. [Google Scholar] [CrossRef]
- Bouabdallah, S.; Noth, A.; Siegwart, R. PID vs LQ control techniques applied to an indoor micro quadrotor. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No. 04CH37566), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2451–2456. [Google Scholar]
- Bouabdallah, S.; Siegwart, R. Backstepping and sliding-mode techniques applied to an indoor micro quadrotor. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 2247–2252. [Google Scholar]
- Mahony, R.; Kumar, V.; Corke, P. Multirotor aerial vehicles: Modeling, estimation, and control of quadrotor. IEEE Robot. Autom. Mag. 2012, 19, 20–32. [Google Scholar] [CrossRef]
- Lee, T.; Leok, M.; McClamroch, N.H. Geometric tracking control of a quadrotor UAV on SE (3). In Proceedings of the 49th IEEE conference on decision and control (CDC), Atlanta, GA, USA, 15–17 December 2010; pp. 5420–5425. [Google Scholar]
- Goodarzi, F.; Lee, D.; Lee, T. Geometric nonlinear PID control of a quadrotor UAV on SE (3). In Proceedings of the 2013 European Control Conference (ECC), Zurich, Switzerland, 17–19 July 2013; pp. 3845–3850. [Google Scholar]
- Quan, Q.; Fu, R.; Li, M.; Wei, D.; Gao, Y.; Cai, K.Y. Practical distributed control for VTOL UAVs to pass a virtual tube. IEEE Trans. Intell. Veh. 2021, 7, 342–353. [Google Scholar] [CrossRef]
- Zhu, C.; Chen, J.; Zhang, H. Attitude control for quadrotors under unknown disturbances using triple-step method and nonlinear integral sliding mode. IEEE Trans. Ind. Electron. 2022, 70, 5004–5012. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, R.; Lim, T.J. Wireless communications with unmanned aerial vehicles: Opportunities and challenges. IEEE Commun. Mag. 2016, 54, 36–42. [Google Scholar] [CrossRef]
- Zhan, C.; Zeng, Y.; Zhang, R. Energy-efficient data collection in UAV enabled wireless sensor network. IEEE Wirel. Commun. Lett. 2017, 7, 328–331. [Google Scholar] [CrossRef]
- Abeywickrama, H.V.; Jayawickrama, B.A.; He, Y.; Dutkiewicz, E. Empirical power consumption model for uavs. In Proceedings of the 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Chicago, IL, USA, 27–30 August 2018; pp. 1–5. [Google Scholar]
- Di Franco, C.; Buttazzo, G. Energy-aware coverage path planning of UAVs. In Proceedings of the 2015 IEEE International Conference on Autonomous Robot Systems and Competitions, Vila Real, Portugal, 8–10 April 2015; pp. 111–117. [Google Scholar]
- Bramwell, A.R.S.; Balmford, D.; Done, G. Bramwell’s Helicopter Dynamics; Elsevier: Amsterdam, The Netherlands, 2001. [Google Scholar]
- Filippone, A. Flight Performance of Fixed and Rotary Wing Aircraft; Elsevier: Amsterdam, The Netherlands, 2006. [Google Scholar]
- Zeng, Y.; Xu, J.; Zhang, R. Energy minimization for wireless communication with rotary-wing UAV. IEEE Trans. Wirel. Commun. 2019, 18, 2329–2345. [Google Scholar] [CrossRef]
- Powers, C.; Mellinger, D.; Kushleyev, A.; Kothmann, B.; Kumar, V. Influence of aerodynamics and proximity effects in quadrotor flight. In Experimental Robotics: The 13th International Symposium on Experimental Robotics; Springer: Berlin/Heidelberg, Germany, 2013; pp. 289–302. [Google Scholar]
- Fay, G. Derivation of the Aerodynamic Forces for the Mesicopter Simulation; Standord University: Stanford, CA, USA, 2001. [Google Scholar]
- Hoffmann, G.; Huang, H.; Waslander, S.; Tomlin, C. Quadrotor helicopter flight dynamics and control: Theory and experiment. In Proceedings of the AIAA Guidance, Navigation and Control Conference and Exhibit, Hilton Head, SC, USA, 20–23 August 2007; p. 6461. [Google Scholar]
- Jia, G.; Li, C.; Li, M. Energy-Efficient Trajectory Planning for Smart Sensing in IoT Networks Using Quadrotor UAVs. Sensors 2022, 22, 8729. [Google Scholar] [CrossRef] [PubMed]
- Yang, D.; Wu, Q.; Zeng, Y.; Zhang, R. Energy tradeoff in ground-to-UAV communication via trajectory design. IEEE Trans. Veh. Technol. 2018, 67, 6721–6726. [Google Scholar] [CrossRef]
- Ning, Z.; Yang, Y.; Wang, X.; Guo, L.; Gao, X.; Guo, S.; Wang, G. Dynamic computation offloading and server deployment for UAV-enabled multi-access edge computing. IEEE Trans. Mob. Comput. 2021, 22, 2628–2644. [Google Scholar] [CrossRef]
- Zeng, Y.; Xu, X.; Zhang, R. Trajectory design for completion time minimization in UAV-enabled multicasting. IEEE Trans. Wirel. Commun. 2018, 17, 2233–2246. [Google Scholar] [CrossRef]
- Tran, D.H.; Vu, T.X.; Chatzinotas, S.; ShahbazPanahi, S.; Ottersten, B. Coarse trajectory design for energy minimization in UAV-enabled. IEEE Trans. Veh. Technol. 2020, 69, 9483–9496. [Google Scholar] [CrossRef]
- Lyu, J.; Zeng, Y.; Zhang, R.; Lim, T.J. Placement optimization of UAV-mounted mobile base stations. IEEE Commun. Lett. 2016, 21, 604–607. [Google Scholar] [CrossRef]
- Galkin, B.; Kibilda, J.; DaSilva, L.A. Deployment of UAV-mounted access points according to spatial user locations in two-tier cellular networks. In Proceedings of the 2016 Wireless Days (WD), Toulouse, France, 23–25 March 2016; pp. 1–6. [Google Scholar]
- Li, F.; He, C.; Li, X.; Peng, J.; Yang, K. Geometric Analysis-Based 3D Anti-Block UAV Deployment for mmWave Communications. IEEE Commun. Lett. 2022, 26, 2799–2803. [Google Scholar] [CrossRef]
- Qu, H.; Zhang, W.; Zhao, J.; Luan, Z.; Chang, C. Rapid deployment of UAVs based on bandwidth resources in emergency scenarios. In Proceedings of the 2020 Information Communication Technologies Conference (ICTC), Nanjing, China, 29–31 May 2020; pp. 86–90. [Google Scholar]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Unmanned aerial vehicle with underlaid device-to-device communications: Performance and tradeoffs. IEEE Trans. Wirel. Commun. 2016, 15, 3949–3963. [Google Scholar] [CrossRef]
- Mozaffari, M.; Saad, W.; Bennis, M.; Debbah, M. Efficient deployment of multiple unmanned aerial vehicles for optimal wireless coverage. IEEE Commun. Lett. 2016, 20, 1647–1650. [Google Scholar] [CrossRef]
- Al-Hourani, A.; Kandeepan, S.; Lardner, S. Optimal LAP altitude for maximum coverage. IEEE Wirel. Commun. Lett. 2014, 3, 569–572. [Google Scholar] [CrossRef]
- Jia, G.; Ding, B.; Li, M. Mathematical Derivation and Simulational Verification for Aggressive Quadrotor Perching Control. In Proceedings of the 2021 China Automation Congress (CAC), Beijing, China, 22–24 October 2021; pp. 5319–5324. [Google Scholar]
- Zhu, B.; Bedeer, E.; Nguyen, H.H.; Barton, R.; Henry, J. UAV trajectory planning in wireless sensor networks for energy consumption minimization by deep reinforcement learning. IEEE Trans. Veh. Technol. 2021, 70, 9540–9554. [Google Scholar] [CrossRef]
- Stuart, S. DC Motors, Speed Controls, Servo Systems: An Engineering Handbook; Elsevier: Amsterdam, The Netherlands, 2013. [Google Scholar]
- Bor-Yaliniz, R.I.; El-Keyi, A.; Yanikomeroglu, H. Efficient 3-D placement of an aerial base station in next generation cellular networks. In Proceedings of the 2016 IEEE International Conference on Communications (ICC), Kuala Lumpur, Malaysia, 22–27 May 2016; pp. 1–5. [Google Scholar]
- Laporte, G. The traveling salesman problem: An overview of exact and approximate algorithms. Eur. J. Oper. Res. 1992, 59, 231–247. [Google Scholar] [CrossRef]
- Potvin, J.Y. Genetic algorithms for the traveling salesman problem. Ann. Oper. Res. 1996, 63, 337–370. [Google Scholar] [CrossRef]
- Aarts, E.H.; Korst, J.H.; van Laarhoven, P.J. A quantitative analysis of the simulated annealing algorithm: A case study for the traveling salesman problem. J. Stat. Phys. 1988, 50, 187–206. [Google Scholar] [CrossRef]
- Shkel, A.M.; Lumelsky, V. Classification of the Dubins set. Robot. Auton. Syst. 2001, 34, 179–202. [Google Scholar] [CrossRef]
- Song, Q.; Jin, S.; Zheng, F.C. Completion time and energy consumption minimization for UAV-enabled multicasting. IEEE Wirel. Commun. Lett. 2019, 8, 821–824. [Google Scholar] [CrossRef]
Environment | Parameters |
---|---|
Suburban | |
Urban | |
Dense urban | |
Superdense urban |
IoT Numbers | 20 (2 Mb per IoT) | 35 (1 Mb per IoT) | 50 (0.5 Mb per IoT) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
area [m2] | 5002 | 10002 | 15002 | 5002 | 10002 | 15002 | 5002 | 10002 | 15002 | |
TSP | time [s] | 4415 | 4477 | 4553 | 7681 | 7778 | 7873 | 2815 | 2447 | 3058 |
energy [kJ] | 4067 | 4146 | 4243 | 7060 | 7183 | 7304 | 2613 | 2323 | 2992 | |
Zigzag | time [s] | 2591 | 8951 | 13,191 | 1295 | 4475 | 8482 | 648 | 1423 | 4241 |
energy [kJ] | 3303 | 11,412 | 16,819 | 1651 | 5706 | 10,812 | 826 | 1826 | 5408 | |
Proposed | time [s] | 875 | 2020 | 3048 | 479 | 1128 | 2258 | 441 | 1217 | 1398 |
energy [kJ] | 1116 | 2576 | 3887 | 611 | 1439 | 2880 | 562 | 1551 | 1782 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Jia, G.; Li, X.; Qiu, H. Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks. Mathematics 2023, 11, 4399. https://doi.org/10.3390/math11204399
Li M, Jia G, Li X, Qiu H. Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks. Mathematics. 2023; 11(20):4399. https://doi.org/10.3390/math11204399
Chicago/Turabian StyleLi, Mengtang, Guoku Jia, Xun Li, and Hao Qiu. 2023. "Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks" Mathematics 11, no. 20: 4399. https://doi.org/10.3390/math11204399
APA StyleLi, M., Jia, G., Li, X., & Qiu, H. (2023). Efficient Trajectory Planning for Optimizing Energy Consumption and Completion Time in UAV-Assisted IoT Networks. Mathematics, 11(20), 4399. https://doi.org/10.3390/math11204399