Synthetic Data Generation Based on RDB-CycleGAN for Industrial Object Detection
Abstract
:1. Introduction
- We propose a synthetic data generation framework for industrial object detection tasks, enabling the effortless creation of a larger volume of industrial part data using a small number of real industrial part images and CAD models.
- To enhance the quality of generated images in achieving the transformation task from CAD models to real images, we have replaced the original feature extraction module with an RDB (Residual Dense Block) module. Additionally, we have introduced an SSIM (Structural Similarity Index Measure) loss function to strengthen the network constraints of the generator. The real images obtained through the RDB-CycleGAN network contribute to augmenting our dataset.
- Experiments show that the synthetic data obtained through our method has a significant competitive advantage, effectively augmenting industrial part data and partially bridging the gap between synthetic and real data.
2. Related Work
2.1. Overview of Object Detection
2.2. Synthetic Data Generation
2.3. The CycleGAN-Based Image Translation Networks
3. Proposed Method
3.1. Model Architecture
Algorithm 1: RDB-CycleGAN image translation algorithm |
Input: image domain , image domain , model training epoch , , Output: 1. for each epoch in (1,) do 2. for each data in dataset do |
3. Generate domain image fake_x and domain image fake_y; 4. Set the gradient of the generated networks and to 0; 5. Calculate the gradient of the generated network and ; 6. Update the weight parameters of the generated networks and ; 7. Set the gradient of and to 0 for the discriminant network; 8. Calculate the gradient of the discriminant network and ; 9. Update the weight parameters of and discriminant networks; 10. end for 11. if iters % sava_model_freq == 0 12. Save the latest model 13. end if 14. end for |
3.2. Network Structure
3.3. Loss Function
4. Experiments and Discussion
4.1. Experimental Detail
4.2. Experiment Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Malburg, L.; Rieder, M.-P.; Seiger, R.; Klein, P.; Bergmann, R. Object detection for smart factory processes by machine learning. Procedia Comput. Sci. 2021, 184, 581–588. [Google Scholar] [CrossRef]
- Zhu, X.; Maki, A.; Hanson, L. Unsupervised domain adaptive object detection for assembly quality inspection. Procedia CIRP 2022, 112, 477–482. [Google Scholar] [CrossRef]
- Liang, B.; Wang, Y.; Chen, Z.; Liu, J.; Lin, J. Object detection and robotic sorting system in complex industrial environment. In Proceedings of the 2017 Chinese Automation Congress (CAC), Jinan, China, 20–22 October 2017; IEEE: Piscataway, NJ, USA, 2017; pp. 7277–7281. [Google Scholar]
- Apostolopoulos, I.D.; Tzani, M.A. Industrial object and defect recognition utilizing multilevel feature extraction from industrial scenes with Deep Learning approach. J. Ambient. Intell. Humaniz. Comput. 2022, 14, 10263–10276. [Google Scholar] [CrossRef]
- Kaur, J.; Singh, W. Tools, techniques, datasets and application areas for object detection in an image: A review. Multimedia Tools Appl. 2022, 81, 38297–38351. [Google Scholar] [CrossRef] [PubMed]
- Illarionova, S.; Nesteruk, S.; Shadrin, D.; Ignatiev, V.; Pukalchik, M.; Oseledets, I. Object-based augmentation for building semantic segmentation: Ventura and santa rosa case study. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 1659–1668. [Google Scholar]
- Ghiasi, G.; Cui, Y.; Srinivas, A.; Qian, R.; Lin, T.Y.; Cubuk, E.D.; Le, Q.V.; Zoph, B. Simple copy-paste is a strong data augmentation method for instance segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 2918–2928. [Google Scholar]
- Kowalczuk, Z.; Glinko, J. Training of deep learning models using synthetic datasets. In International Conference on Diagnostics of Processes and Systems; Springer International Publishing: Cham, Switzerland, 2022; pp. 141–152. [Google Scholar]
- Aswar, A.; Manjaramkar, A. Salient Object Detection for Synthetic Dataset. In Proceedings of the International Conference on ISMAC in Computational Vision and Bio-Engineering 2018 (ISMAC-CVB), Palladam, India, 16–17 May 2019; Springer International Publishing: Cham, Switzerland, 2019; pp. 1405–1415. [Google Scholar]
- Rajpura, P.S.; Bojinov, H.; Hegde, R.S. Object detection using deep cnns trained on synthetic images. arXiv 2017, arXiv:1706.06782. [Google Scholar]
- Bhattacharjee, D.; Kim, S.; Vizier, G.; Salzmann, M. Dunit: Detection-based unsupervised image-to-image translation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 4787–4796. [Google Scholar]
- Tang, J.; Zhou, H.; Wang, T.; Jin, Z.; Wang, Y.; Wang, X. Cascaded foreign object detection in manufacturing processes using convolutional neural networks and synthetic data generation methodology. J. Intell. Manuf. 2022, 34, 2925–2941. [Google Scholar] [CrossRef]
- Nowruzi, F.E.; Kapoor, P.; Kolhatkar, D.; Hassanat, F.A.; Laganiere, R.; Rebut, J. How much real data do we actually need: Analyzing object detection per-formance using synthetic and real data. arXiv 2019, arXiv:1907.07061. [Google Scholar]
- Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B.; Warde-Farley, D.; Ozair, S.; Courville, A.; Bengio, Y. Generative adversarial nets. In Proceedings of the Advances in Neural Information Processing Systems, Montreal, QC, Canada, 8–13 December 2014; Volume 27. [Google Scholar]
- Jin, Q.; Ma, Y.; Fan, F.; Huang, J.; Mei, X.; Ma, J. Adversarial autoencoder network for hyperspectral unmixing. IEEE Trans. Neural Netw. Learn. Syst. 2021, 34, 4555–4569. [Google Scholar] [CrossRef]
- Vega-Márquez, B.; Rubio-Escudero, C.; Riquelme, J.C.; Nepomuceno-Chamorro, I. Creation of synthetic data with conditional generative adversarial networks. In Proceedings of the 14th International Conference on Soft Computing Models in Industrial and Environmental Applications (SOCO 2019), Seville, Spain, 13–15 May 2019; Proceedings 14. Springer International Publishing: Cham, Switzerland, 2020; pp. 231–240. [Google Scholar]
- Zheng, Z.; Bin, Y.; Lv, X.; Wu, Y.; Yang, Y.; Shen, H.T. Asynchronous generative adversarial network for asymmetric unpaired image-to-image translation. IEEE Trans. Multimedia 2022, 25, 2474–2487. [Google Scholar] [CrossRef]
- Zhang, X.; Fan, C.; Xiao, Z.; Zhao, L.; Chen, H.; Chang, X. Random reconstructed unpaired image-to-image translation. IEEE Trans. Ind. Inform. 2022, 19, 3144–3154. [Google Scholar] [CrossRef]
- Shen, Z.; Huang, M.; Shi, J.; Liu, Z.; Maheshwari, H.; Zheng, Y.; Xue, X.; Savvides, M.; Huang, T.S. CDTD: A large-scale cross-domain benchmark for instance-level image-to-image translation and domain adaptive object detection. Int. J. Comput. Vis. 2020, 129, 761–780. [Google Scholar] [CrossRef]
- Isola, P.; Zhu, J.Y.; Zhou, T.; Efros, A.A. Image-to-image translation with conditional adversarial networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 1125–1134. [Google Scholar]
- Sultana, M.; Ahmed, T.; Chakraborty, P.; Khatun, M.; Hasan, M.R.; Uddin, M.S. Object detection using template and HOG feature matching. Int. J. Adv. Comput. Sci. Appl. 2020, 11, 233–238. [Google Scholar] [CrossRef]
- Girshick, R. Fast r-cnn. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1440–1448. [Google Scholar]
- Redmon, J.; Divvala, S.; Girshick, R.; Farhadi, A. You only look once: Unified, real-time object detection. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 779–788. [Google Scholar]
- Menke, M.; Wenzel, T.; Schwung, A. Improving gan-based domain adaptation for object detection. In Proceedings of the 2022 IEEE 25th International Conference on Intelligent Transportation Systems (ITSC), Macau, China, 8–12 October 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3880–3885. [Google Scholar]
- Lin, C.T.; Huang, S.W.; Wu, Y.Y.; Lai, S.H. GAN-based day-to-night image style transfer for nighttime vehicle detection. IEEE Trans. Intell. Transp. Syst. 2020, 22, 951–963. [Google Scholar] [CrossRef]
- Kiefer, B.; Ott, D.; Zell, A. Leveraging synthetic data in object detection on unmanned aerial vehicles. In Proceedings of the 2022 26th International Conference on Pattern Recognition (ICPR), Montreal, QC, Canada, 21–25 August 2022; IEEE: Piscataway, NJ, USA, 2022; pp. 3564–3571. [Google Scholar]
- Paulin, G.; Ivasic-Kos, M. Review and analysis of synthetic dataset generation methods and techniques for application in computer vision. Artif. Intell. Rev. 2023, 56, 9221–9265. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, D.; Liu, J.; Jiang, Z. A novel MAS-GAN-based data synthesis method for object surface defect detection. Neurocomputing 2022, 499, 106–114. [Google Scholar] [CrossRef]
- Mishra, S.; Panda, R.; Phoo, C.P.; Chen, C.F.R.; Karlinsky, L.; Saenko, K.; Saligrama, V.; Feris, R.S. Task2sim: Towards effective pre-training and transfer from synthetic data. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 9194–9204. [Google Scholar]
- Yang, X.; Fan, X.; Wang, J.; Lee, K. Image translation based synthetic data generation for industrial object detection and pose estimation. IEEE Robot. Autom. Lett. 2022, 7, 7201–7208. [Google Scholar] [CrossRef]
- Arents, J.; Lesser, B.; Bizuns, A.; Kadikis, R.; Buls, E.; Greitans, M. Synthetic Data of Randomly Piled, Similar Objects for Deep Learning-Based Object Detection. In International Conference on Image Analysis and Processing; Springer International Publishing: Cham, Switzerland, 2022; pp. 706–717. [Google Scholar]
- Rojtberg, P.; Pöllabauer, T.; Kuijper, A. Style-transfer GANs for bridging the domain gap in synthetic pose estimator training. In Proceedings of the 2020 IEEE International Conference on Artificial Intelligence and Virtual Reality (AIVR), Utrecht, The Netherlands, 14–18 December 2020; IEEE: Piscataway, NJ, USA, 2020; pp. 188–195. [Google Scholar]
- Liu, W.; Luo, B.; Liu, J. Synthetic data augmentation using multiscale attention CycleGAN for aircraft detection in remote sensing images. IEEE Geosci. Remote Sens. Lett. 2021, 19, 1–5. [Google Scholar] [CrossRef]
- Zhu, J.Y.; Park, T.; Isola, P.; Efros, A.A. Unpaired image-to-image translation using cycle-consistent adversarial networks. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2223–2232. [Google Scholar]
- Mohajerani, S.; Asad, R.; Abhishek, K.; Sharma, N.; van Duynhoven, A.; Saeedi, P. Cloudmaskgan: A content-aware unpaired image-to-image translation algorithm for remote sensing imagery. In Proceedings of the 2019 IEEE International Conference on Image Processing (ICIP), Taipei, Taiwan, 22–25 September 2019; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar]
- Tang, H.; Bai, S.; Sebe, N. Dual attention gans for semantic image synthesis. In Proceedings of the 28th ACM International Conference on Multimedia, Seattle, WA, USA, 12–16 October 2020. [Google Scholar]
- He, J.; Wang, C.; Jiang, D.; Li, Z.; Liu, Y.; Zhang, T. CycleGAN with an improved loss function for cell detection using partly labeled images. IEEE J. Biomed. Health Inform. 2020, 24, 2473–2480. [Google Scholar] [CrossRef]
- He, J.; Wang, C.; Jiang, D.; Li, Z.; Liu, Y.; Zhang, T. Identity-aware CycleGAN for face photo-sketch synthesis and recognition. Pattern Recognit. 2020, 102, 107249. [Google Scholar]
- Huang, S.; Jin, X.; Jiang, Q.; Li, J.; Lee, S.-J.; Wang, P.; Yao, S. A fully-automatic image colorization scheme using improved CycleGAN with skip connections. Multimed. Tools Appl. 2021, 80, 26465–26492. [Google Scholar] [CrossRef]
- Kim, G.; Park, J.; Lee, K.; Lee, J.; Min, J.; Lee, B.; Han, D.K.; Ko, H. Unsupervised real-world super resolution with cycle generative adversarial network and domain discriminator. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, Seattle, WA, USA, 14–19 June 2020; pp. 456–457. [Google Scholar]
- Zhang, F.; Gao, H.; Lai, Y. Detail-preserving cyclegan-adain framework for image-to-ink painting translation. IEEE Access 2020, 8, 132002–132011. [Google Scholar] [CrossRef]
- Yi, Z.; Zhang, H.; Tan, P.; Gong, M. Dualgan: Unsupervised dual learning for image-to-image translation. In Proceedings of the IEEE International Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2849–2857. [Google Scholar]
- Yang, S.; Jiang, L.; Liu, Z.; Loy, C.C. Unsupervised image-to-image translation with generative prior. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, New Orleans, LA, USA, 18–24 June 2022; pp. 18332–18341. [Google Scholar]
- Choi, Y.; Uh, Y.; Yoo, J.; Ha, J.W. Stargan v2: Diverse image synthesis for multiple domains. In Proceedings of the IEEE/CVF Conference On Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 8188–8197. [Google Scholar]
Method | SSIM | FID | PSNR/dB |
---|---|---|---|
DualGAN | 0.527 | 147.49 | 26.47 |
CycleGAN | 0.643 | 130.68 | 28.15 |
GP-UNIT | 0.619 | 138.27 | 28.69 |
StarGAN-v2 | 0.655 | 133.73 | 27.95 |
Ours | 0.684 | 124.64 | 29.74 |
Dataset | Screw | Ubolt | Bolt | mAP@0.5 |
---|---|---|---|---|
200 Real Images | 0.803 | 0.783 | 0.758 | 0.781 |
200 Syn Images | 0.782 | 0.811 | 0.714 | 0.769 |
200 Real + 200 CAD | 0.823 | 0.804 | 0.736 | 0.787 |
200 Real + 200 Syn | 0.849 | 0.836 | 0.795 | 0.807 |
200 Real + 400 CAD | 0.836 | 0.817 | 0.782 | 0.811 |
200 Real + 400 Syn | 0.877 | 0.869 | 0.857 | 0.867 |
200 Real + 600 CAD | 0.843 | 0.824 | 0.806 | 0.824 |
200 Real + 600 Syn | 0.910 | 0.878 | 0.862 | 0.883 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, J.; Xiao, F.; Jin, Q.; Zhao, G.; Lou, P. Synthetic Data Generation Based on RDB-CycleGAN for Industrial Object Detection. Mathematics 2023, 11, 4588. https://doi.org/10.3390/math11224588
Hu J, Xiao F, Jin Q, Zhao G, Lou P. Synthetic Data Generation Based on RDB-CycleGAN for Industrial Object Detection. Mathematics. 2023; 11(22):4588. https://doi.org/10.3390/math11224588
Chicago/Turabian StyleHu, Jiwei, Feng Xiao, Qiwen Jin, Guangpeng Zhao, and Ping Lou. 2023. "Synthetic Data Generation Based on RDB-CycleGAN for Industrial Object Detection" Mathematics 11, no. 22: 4588. https://doi.org/10.3390/math11224588
APA StyleHu, J., Xiao, F., Jin, Q., Zhao, G., & Lou, P. (2023). Synthetic Data Generation Based on RDB-CycleGAN for Industrial Object Detection. Mathematics, 11(22), 4588. https://doi.org/10.3390/math11224588