Fixed-Point Approximation of Operators Satisfying (RCSC)—Condition in CAT(0) Spaces
Abstract
:1. Introduction
2. Preliminaries
3. Convergence Results for Mapping with (RCSC) Condition
- (I)
- We prove that .
- (II)
- contains exactly one point.
4. Numerical Example
- (i)
- T satisfies (RCSC) condition.
- (ii)
- T does not satisfy condition (C).
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Banach, S. Sur les operations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 1922, 3, 133–181. [Google Scholar] [CrossRef]
- Browder, F.E. Nonexpansive nonlinear operators in a Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef] [PubMed]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.P.; O’Regon, D.; Sahu, D.R. Iterative construction of fixed points of nearly asymtotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Thakur, B.S.; Thakur, D.; Postolache, M. New iteration scheme for numerical reckoning fixed points of nonexpansive mappings. J. Inequal. Appl. 2014, 2014, 328. [Google Scholar] [CrossRef]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Saleem, N.; Iqbal, I.; Iqbal, B.; Radenovíc, S. Coincidence and fixed points of multivalued F-contractions in generalized metric space with application. J. Fixed Point Theory Appl. 2020, 22, 81. [Google Scholar] [CrossRef]
- Saleem, N.; Vujaković, J.; Baloch, W.U.; Radenović, S. Coincidence point results for multivalued Suzuki type mappings using θ-contraction in b-metric spaces. Mathematics 2019, 7, 1017. [Google Scholar] [CrossRef]
- Saleem, N.; Agwu, I.K.; Ishtiaq, U.; Radenović, S. Strong Convergence Theorems for a Finite Family of Enriched Strictly Pseudocontractive mappings and ϕT-Enriched Lipschitizian mappings Using a New Modified Mixed-Type Ishikawa Iteration Scheme with Error. Symmetry 2022, 5, 1032. [Google Scholar] [CrossRef]
- Bashir, S.; Saleem, N.; Aydi, H.; Husnine, S.M.; Rwaily, A.A. Developments of some new results that weaken certain conditions of fractional type differential equations. Adv. Differ. Equ. 2021, 1, 359. [Google Scholar] [CrossRef]
- Okeke, G.A.; Abbas, M.; de la Sen, M. Fixed point theorems for convex minimization problems in complex valued CAT(0) spaces. Nonlinear Funct. Anal. Appl. 2020, 25, 671–696. [Google Scholar]
- Umudu, J.C.; Adewale, O.K. Fixed point results in uniform spaces via simulation functions. Int. J. Math. Sci. Optim. Theory App. 2021, 7, 56–64. [Google Scholar] [CrossRef]
- Khatoon, S.; Cholamjiak, W.; Uddin, I. Modified shrinking projection methods in CAT(0) space. Proc. Est. Acad. Sci. 2022, 71, 275–288. [Google Scholar] [CrossRef]
- Khatoon, S.; Cholamjiak, W.; Uddin, I. A modified proximal point algorithm involving nearly asymptotically quasi-nonexpansive mappings. J. Inequal. Appl. 2021, 2021, 83. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- Basarir, M.; Sahin, A. On the strong and Δ-convergence of S–iteration process for generalized nonexpansive mappings on CAT(0) spaces. Thai J. Math. 2014, 12, 549–559. [Google Scholar]
- Nanjaras, B.; Panyanak, B.; Phuengrattana, W. Fixed point theorems and convergence theorems for Suzuki-generalized nonexpansive mappings in CAT(0) spaces. Nonlinear Anal. Hyb. Syst. 2020, 4, 25–31. [Google Scholar] [CrossRef]
- Karapinar, E. Remarks on Suzuki (C)-condition. In Dynamical System and Methods; Springer: New York, NY, USA, 2012. [Google Scholar]
- Ullah, K.; Arshad, M. Numerical reckoning fixed point for Suzuki’s generalized non-expansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Panyanak, B. On Δ-convergence theorems in CAT(0) spaces. Comput. Math. Appl. 2008, 56, 2572–2579. [Google Scholar] [CrossRef]
- Lawaong, W.; Panyanak, B. Approximating fixed points of nonexpansive nonself mappings in CAT(0) spaces. Fixed Point Theory Appl. 2010, 2010, 367274. [Google Scholar] [CrossRef]
- Dhompongsa, S.; Kirk, W.A.; Panyanak, B. Nonexpansive set-valued mappings in metric and Banach spaces. J. Nonlinear Convex Anal. 2007, 8, 35–45. [Google Scholar]
- Kirk, W.A.; Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal. TMA 2008, 68, 3689–3696. [Google Scholar] [CrossRef]
- Lim, T.C. Remarks on some fixed point theorems. Proc. Am. Math. Soc. 1976, 60, 179–182. [Google Scholar] [CrossRef]
- Opial, Z. Weak and strong convergence of the sequence of successive approximations for non-expansive mappings. Bull. Am. Math. Soc. 1967, 73, 591–597. [Google Scholar] [CrossRef]
- Senter, H.F.; Dotson, W.G. Approximating fixed points of nonexpansive mappings. Proc. Am. Math. Soc. 1974, 44, 375–380. [Google Scholar] [CrossRef]
- Takahashi, T. A convexity in metric spaces and nonexpansive mappings. Kodai Math. Semin. Rep. 1970, 22, 142–149. [Google Scholar] [CrossRef]
k | M | Thakur | Abbas | S | Noor | Ishikawa |
---|---|---|---|---|---|---|
1 | 6 | 6 | 6 | 6 | 6 | 6 |
2 | 5.1625 | 5.1931 | 5.2456 | 5.3863 | 5.4851 | 5.5363 |
3 | 5.0264 | 5.0373 | 5.0603 | 5.1492 | 5.2353 | 5.2876 |
4 | 5.0043 | 5.0072 | 5.0148 | 5.0576 | 5.1141 | 4.0236 |
5 | 5.0007 | 5.0014 | 5.0036 | 5.0223 | 5.0554 | 5.1542 |
6 | 5.0001 | 5.0003 | 5.0009 | 5.0086 | 5.0269 | 5.0827 |
7 | 5.0000 | 5.0001 | 5.0002 | 5.0033 | 5.0130 | 5.0443 |
8 | 5.0000 | 5.0000 | 5.0001 | 5.0013 | 5.0063 | 5.0238 |
9 | 5.0000 | 5.0000 | 5.0000 | 5.0005 | 5.0031 | 5.0128 |
10 | 5.0000 | 5.0000 | 5.0000 | 5.0002 | 5.0015 | 5.0068 |
11 | 5.0000 | 5.0000 | 5.0000 | 5.0001 | 5.0007 | 5.0037 |
12 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0003 | 5.0020 |
13 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0002 | 5.0011 |
14 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0001 | 5.0006 |
15 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0003 |
16 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0002 |
17 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0001 |
18 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 | 5.0000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saleem, N.; Ullah, K.; Nabwey, H.A.; Bilal, H.; Ullah, S.; George, R. Fixed-Point Approximation of Operators Satisfying (RCSC)—Condition in CAT(0) Spaces. Mathematics 2023, 11, 4658. https://doi.org/10.3390/math11224658
Saleem N, Ullah K, Nabwey HA, Bilal H, Ullah S, George R. Fixed-Point Approximation of Operators Satisfying (RCSC)—Condition in CAT(0) Spaces. Mathematics. 2023; 11(22):4658. https://doi.org/10.3390/math11224658
Chicago/Turabian StyleSaleem, Naeem, Kifayat Ullah, Hossam A. Nabwey, Hazrat Bilal, Sharif Ullah, and Reny George. 2023. "Fixed-Point Approximation of Operators Satisfying (RCSC)—Condition in CAT(0) Spaces" Mathematics 11, no. 22: 4658. https://doi.org/10.3390/math11224658
APA StyleSaleem, N., Ullah, K., Nabwey, H. A., Bilal, H., Ullah, S., & George, R. (2023). Fixed-Point Approximation of Operators Satisfying (RCSC)—Condition in CAT(0) Spaces. Mathematics, 11(22), 4658. https://doi.org/10.3390/math11224658