The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation
Abstract
:1. Introduction
2. Preliminaries
2.1. Sublinear Expectation
- (i)
- , .
- (ii)
- Monotonicity: for , if , then .
- (iii)
- Subadditivity: for , then .
- (iv)
- Continuity from below: if , , then .
- (i)
- Monotonicity: if , then .
- (ii)
- Constant preserving: ,.
- (iii)
- Subadditivity: .
- (iv)
- Positive homogeneity: ,.
2.2. Slowly Varying Functions
- (i)
- There exists such that is increasing on , is decreasing on , and
- (ii)
- For all ,
3. The M–Z-Type Strong LLN
3.1. The Strong LLN for Negatively Dependent Random Variables
- (i)
- For any array of nonnegative constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
- (i)
- For any , , we haveFirst, since , by the subadditivity of and Proposition 1, we haveBy the Cauchy–Schwarz inequality and (8), we haveThus, recall , we haveBy Lemmas 3 and 4, we can find such that and are increasing on . Without loss of generality, we can assume that and are increasing on .For , we haveBy Definition 7 and (7), we haveTherefore,By the Chebyshev inequality (see Proposition 2.1 in [15] and Theorem 2.1 in [16]), we haveFor , we haveBy Proposition 1 and (7), we haveNote thatLet , . Since is a slowly varying function defined on with some , by Definition 6, for any , we haveFor , by Lemma 5, we have
- (ii)
- Since
- (i)
- For any array of nonnegative constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
3.2. The Strong LLN for Independent Random Variables
- (i)
- For any array of constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
4. Further Discussions on the Moment Condition
4.1.
- (i)
- For any array of nonnegative constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
4.2.
- (i)
- For any array of nonnegative constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
4.3.
- (i)
- For any array of nonnegative constants satisfyingwe haveSpecifically,
- (ii)
- The M–Z-type strong LLN holds, i.e.,
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chen, Z.; Epstein, L. Ambiguity, risk, and asset returns in continuous time. Econometrica 2002, 70, 1403–1443. [Google Scholar] [CrossRef]
- Choquet, G. Theory of capacities. Ann. Inst. Fourier 1954, 5, 131–295. [Google Scholar] [CrossRef]
- Schmeidler, D. Subjective probability and expected utility without additivity. Econom. J. Econom. Soc. 1989, 57, 571–587. [Google Scholar] [CrossRef]
- Wakker, P.P. Testing and characterizing properties of nonadditive measures through violations of the sure-thing principle. Econometrica 2001, 69, 1039–1059. [Google Scholar] [CrossRef]
- Wasserman, L.A.; Kadane, J.B. Bayes’ theorem for Choquet capacities. In The Annals of Statistics; Springer: Berlin/Heidelberg, Germany, 1990; pp. 1328–1339. [Google Scholar]
- Barrieu, P.; Karoui, N.E. Pricing, hedging and optimally designing derivatives via minimization of risk measures. arXiv 2007, arXiv:0708.0948. [Google Scholar]
- El Karoui, N.; Peng, S.; Quenez, M.C. Backward stochastic differential equations in finance. Math. Financ. 1997, 7, 1–71. [Google Scholar] [CrossRef]
- Gianin, E.R. Risk measures via g-expectations. Insur. Math. Econ. 2006, 39, 19–34. [Google Scholar] [CrossRef]
- Peng, S. Dynamical evaluations. Comptes Rendus Math. 2004, 339, 585–589. [Google Scholar] [CrossRef]
- Peng, S.; Yang, S.; Yao, J. Improving value-at-risk prediction under model uncertainty. J. Financ. Econom. 2023, 21, 228–259. [Google Scholar] [CrossRef]
- Peng, S. Backward SDE and related g-expectation. Pitman Res. Notes Math. Ser. 1997, 364, 141–160. [Google Scholar]
- Peng, S. Monotonic limit theorem of BSDE and nonlinear decomposition theorem of Doob–Meyers type. Probab. Theory Relat. Fields 1999, 113, 473–499. [Google Scholar] [CrossRef]
- Chen, Z.; Liu, Q.; Zong, G. Weak laws of large numbers for sublinear expectation. Math. Control Relat. Fields 2018, 8, 637–651. [Google Scholar] [CrossRef]
- Peng, S. Nonlinear Expectations and Stochastic Calculus under Uncertainty: With Robust CLT and G-Brownian Motion; Springer Nature: Berlin/Heidelberg, Germany, 2019; Volume 95. [Google Scholar]
- Chen, Z.; Wu, P.; Li, B. A strong law of large numbers for non-additive probabilities. Int. J. Approx. Reason. 2013, 54, 365–377. [Google Scholar] [CrossRef]
- Zhang, L. Rosenthal’s inequalities for independent and negatively dependent random variables under sub-linear expectations with applications. Sci. China Math. 2016, 59, 751–768. [Google Scholar] [CrossRef]
- Hu, C. A strong law of large numbers for sub-linear expectation under a general moment condition. Stat. Probab. Lett. 2016, 119, 248–258. [Google Scholar] [CrossRef]
- Zhan, Z.; Wu, Q. Strong laws of large numbers for weighted sums of extended negatively dependent random variables under sub-linear expectations. Commun.-Stat.-Theory Methods 2022, 51, 1197–1216. [Google Scholar] [CrossRef]
- Feng, X.; Lan, Y. Strong limit theorems for arrays of rowwise independent random variables under sublinear expectation. Acta Math. Hung. 2019, 159, 299–322. [Google Scholar] [CrossRef]
- Anh, V.T.; Hien, N.T.; Thanh, L.V.; Van, V.T. The Marcinkiewicz–Zygmund-type strong law of large numbers with general normalizing sequences. J. Theor. Probab. 2021, 34, 331–348. [Google Scholar] [CrossRef]
- Bai, Z.; Cheng, P.E. Marcinkiewicz strong laws for linear statistics. Stat. Probab. Lett. 2000, 46, 105–112. [Google Scholar] [CrossRef]
- Chen, P.; Gan, S. Limiting behavior of weighted sums of iid random variables. Stat. Probab. Lett. 2007, 77, 1589–1599. [Google Scholar]
- Miao, Y.; Mu, J.; Xu, J. An analogue for Marcinkiewicz–Zygmund strong law of negatively associated random variables. Rev. Real Acad. Cienc. Exactas Físic. Nat. Ser. Mat. 2017, 111, 697–705. [Google Scholar] [CrossRef]
- Sung, S.H. Marcinkiewicz–Zygmund type strong law of large numbers for pairwise iid random variables. J. Theor. Probab. 2014, 27, 96–106. [Google Scholar] [CrossRef]
- Deng, X.; Wang, X. On complete convergence for extended independent random variables under sub-linear expectations. J. Korean Math. Soc. 2020, 57, 553–570. [Google Scholar]
- Feng, F.; Huang, H. Strong convergence for weighted sums of END random variables under the sub-linear expectations. Commun.-Stat.-Theory Methods 2021, 51, 7885–7896. [Google Scholar] [CrossRef]
- Hsu, P.L.; Robbins, H. Complete convergence and the law of large numbers. Proc. Natl. Acad. Sci. USA 1947, 33, 25–31. [Google Scholar] [CrossRef]
- Feng, F.; Huang, H. A complete convergence theorem for weighted sums under the sub-linear expectations. J. Math. Inequal. 2021, 15, 899–910. [Google Scholar] [CrossRef]
- Lin, Y.; Feng, X. Complete convergence and strong law of large numbers for arrays of random variables under sublinear expectations. Commun.-Stat.-Theory Methods 2020, 49, 5866–5882. [Google Scholar] [CrossRef]
- Zhong, H.; Wu, Q. Complete convergence and complete moment convergence for weighted sums of extended negatively dependent random variables under sub-linear expectation. J. Inequal. Appl. 2017, 2017, 1–14. [Google Scholar] [CrossRef]
- Peng, S. A new central limit theorem under sublinear expectations. arXiv 2008, arXiv:0803.2656. [Google Scholar]
- Chen, Z. Strong laws of large numbers for sub-linear expectations. Sci. China Math. 2016, 59, 945–954. [Google Scholar] [CrossRef]
- Seneta, E. Regularly Varying Functions; Springer: Berlin/Heidelberg, Germany, 1976; Volume 508. [Google Scholar]
- Bojanic, R.; Seneta, E. Slowly varying functions and asymptotic relations. J. Math. Anal. Appl. 1971, 34, 302–315. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, S.; Meng, Z. The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation. Mathematics 2023, 11, 4734. https://doi.org/10.3390/math11234734
Guo S, Meng Z. The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation. Mathematics. 2023; 11(23):4734. https://doi.org/10.3390/math11234734
Chicago/Turabian StyleGuo, Shuxia, and Zhe Meng. 2023. "The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation" Mathematics 11, no. 23: 4734. https://doi.org/10.3390/math11234734
APA StyleGuo, S., & Meng, Z. (2023). The Marcinkiewicz–Zygmund-Type Strong Law of Large Numbers with General Normalizing Sequences under Sublinear Expectation. Mathematics, 11(23), 4734. https://doi.org/10.3390/math11234734