Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four
Abstract
:1. Introduction
2. Codes over I
- 1.
- is a self-dual binary code;
- 2.
- .
- 1.
- For any positive integer n, there exists a QSD code over I of length n.
- 2.
- Let be an I-code with . Then will be a QSD code.
- Let . Since for every , of size .
- If , then is a free code with , where k is the dimension of . By Theorem 1 and Corollary 1, we have a self-orthogonal code of size .
3. Codes over I with Prescribed Residue and Torsion
4. Codes over E
- 1.
- is self-orthogonal, i.e., ;
- 2.
- ;
- 3.
- if .
- 1.
- is left self-dual if and only if is free and is self-dual.
- 2.
- is right self-dual if and only if is of type .
5. Codes over E with Prescribed Residue and Torsion
6. Mass Formula for Self-Orthogonal Codes over I and E
7. Classification
8. Conclusions and Open Problems
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Assmus, E.F., Jr.; Mattson, H.F., Jr. New 5-designs. Comb. Theory 1969, 6, 122–151. [Google Scholar] [CrossRef]
- Bose, R.C.; Ray-Chaudhuri, D.K. On a class of error correcting binary group codes. Inf. Control 1960, 3, 68–79. [Google Scholar] [CrossRef]
- Betsumiya, K.; Gulliver, T.A.; Harada, M.; Munemasa, A. On type II codes over F4. IEEE Trans. Inform. Theory 2001, 47, 2242–2248. [Google Scholar] [CrossRef]
- Hocquenghem, A. Codes correcteurs d’erreurs. Chiffres (French) 1959, 2, 147–156. [Google Scholar]
- Huffman, W.C.; Pless, V. Fundamentals of Error-Correcting Codes; Cambridge University Press: Cambridge, MA, USA, 2003. [Google Scholar]
- Hartmann, C.R.P.; Tzeng, K.K. Generalizations of the BCH bound. Inf. Control 1972, 20, 489–498. [Google Scholar] [CrossRef]
- Massey, J.L. Linear codes with complementary duals. Discret. Math. 1992, 106, 337–342. [Google Scholar] [CrossRef]
- Massey, J.L. Reversible codes. Inf. Control 1964, 7, 369–380. [Google Scholar] [CrossRef]
- Roos, C. A generalization of the BCH bound for cyclic codes, including the Hartmann-Tzeng bound. J. Comb. Theory Ser. A 1982, 33, 229–232. [Google Scholar] [CrossRef]
- Conway, J.H.; Sloane, N.J.A. Sphere Packings, Lattices and Groups, 3rd ed.; Springer: New York, NY, USA, 1999. [Google Scholar]
- van Lint, J.H.; Wilson, R. On the minimum distance of cyclic codes. IEEE Trans. Inf. Theory 1986, 32, 23–40. [Google Scholar] [CrossRef]
- Abualrub, T.; Oehmke, R. Cyclic codes of length 2e over Z4. Discret. Appl. Math. 2003, 128, 3–9. [Google Scholar] [CrossRef]
- Blackford, T. Cyclic codes of oddly even length over Z4. Discret. Appl. Math. 2003, 128, 27–46. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Ling, S. Cyclic codes over Z4 of even length. Des. Codes Cryptography 2006, 39, 127–153. [Google Scholar] [CrossRef]
- Jitman, S.; Sangwisut, E.; Udomkavanich, P. Hulls of cyclic codes over Z4. Discret. Math. 2020, 343, 111621. [Google Scholar] [CrossRef]
- Pless, V.; Qian, Z. Cyclic codes and quadratic residue codes over Z4. IEEE Trans. Inf. Theory 1996, 42, 1594–1600. [Google Scholar] [CrossRef]
- Prakash, O.; Yadav, S.; Verma, R.K. Constacyclic and linear complementary dual codes over Fq + uFq. Def. Sci. J. 2020, 70, 626–632. [Google Scholar] [CrossRef]
- Alahmadi, A.; Alkathiry, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Type IV codes over a non-local non-unital ring. Proyecciones (Antofagasta) 2020, 39, 963–978. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Basaffar, W.; Bonnecaze, A.; Shoaib, H.; Solé, P. Quasi type IV codes over a non-unital ring. Appl. Algebra Eng. Commun. Comput. 2021, 32, 217–228. [Google Scholar] [CrossRef]
- Alahmadi, A.; Altassan, A.; Basaffar, W.; Shoaib, H.; Bonnecaze, A.; Solé, P. Type IV codes over a non-unital ring. J. Algebra Its Appl. 2022, 21, 2250142. [Google Scholar] [CrossRef]
- Alahmadi, A.; Melaibari, A.; Solé, P. Duality of codes over non-unital rings of order four. IEEE Access 2023, 11, 53120–53133. [Google Scholar] [CrossRef]
- Kim, J.-L.; Ohk, D.E. DNA codes over two noncommutative rings of order four. J. Appl. Math. Comput. 2022, 68, 2015–2038. [Google Scholar] [CrossRef]
- Fine, B. Classification of finite rings of order p2. Math. Mag. 1993, 66, 248–252. [Google Scholar] [CrossRef]
- Raghavendran, R. A class of finite rings. Compos. Math. 1970, 22, 49–57. [Google Scholar]
- Hammons, A.R.; Kumar, P.V.; Calderbank, A.R.; Sloane, N.J.A.; Solé, P. The Z4-linearity of Kerdock, Preparata, Goethals, and related codes. IEEE Trans. Inf. Theory 1994, 40, 301–319. [Google Scholar] [CrossRef]
- Dougherty, S.T.; Gaborit, P.; Harada, M.; Solé, P. Type II codes over F2 + uF2. IEEE Trans. Inf. Theory 1999, 45, 32–45. [Google Scholar] [CrossRef]
- Galvez, L.; Betty, R.A.; Nemenzo, F. Self-orthogonal Codes over Fq + uFq and Fq + uFq + u2Fq. Eur. J. Pure Appl. Math. 2020, 13, 873–892. [Google Scholar] [CrossRef]
- Hou, X.-D. On the number of inequivalent binary self-orthogonal codes. IEEE Trans. Inf. Theory 2007, 53, 2459–2479. [Google Scholar]
- Bosma, W.; Cannon, J.; Playoust, C. The Magma algebra system. I. The user language. J. Symb. Comput. 1997, 24, 235–265. [Google Scholar] [CrossRef]
n | Generator Matrix | Weight Distribution | ||
---|---|---|---|---|
2 | 1 | |||
2 | ||||
2 | ||||
2 | ||||
2 | ||||
3 | 2 | |||
2 | ||||
6 | ||||
2 | ||||
2 | ||||
6 | ||||
6 | ||||
2 | ||||
2 | ||||
2 | ||||
2 | ||||
2 | ||||
2 | ||||
2 |
n | Generator Matrix | Weight Distribution | ||
---|---|---|---|---|
2 | 2 | |||
3 | 2 | |||
2 | ||||
2 | ||||
4 | 4 | |||
24 | ||||
8 | ||||
2 | ||||
4 | ||||
2 | ||||
4 | ||||
2 | ||||
8 | ||||
4 | ||||
4 | ||||
24 | ||||
8 |
n | I-Codes | Remark | E-Codes | Remark | |
---|---|---|---|---|---|
2 | 2 | 2 | |||
1 | * | 1 | **, [20] | ||
2 | *, [19] | 1 | **, [20] | ||
1 | ** | - | |||
3 | 3 | 3 | |||
3 | 3 | ||||
1 | * | 1 | **, [20] | ||
4 | 2 | ||||
6 | *, [19] | 1 | **, [20] | ||
1 | - | ||||
4 | 4 | 4 | |||
6 | 6 | ||||
4 | 4 | ||||
1 | * | 1 | **, (Table 1 in [20] ) | ||
9 | 5 | ||||
23 | 6 | ||||
14 | * | 2 | **, (Table 1 in [20]) | ||
2 | - | ||||
10 | * | 1 | **, (Table 1 in [20]) | ||
7 | - | ||||
1 | ** | - | |||
5 | 5 | 5 | |||
10 | 10 | ||||
10 | 10 | ||||
5 | 5 | ||||
1 | * | 1 | **, (Table 2 in [20]) | ||
14 | 8 | ||||
59 | 18 | ||||
66 | 12 | ||||
24 | * | 2 | **, (Table 2 in [20]) | ||
2 | - | ||||
36 | 3 | ||||
60 | * | 1 | **, (Table 2 in [20]) | ||
17 | - | ||||
1 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alahmadi, A.; Alshuhail, A.; Betty, R.A.; Galvez, L.; Solé, P. Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four. Mathematics 2023, 11, 4736. https://doi.org/10.3390/math11234736
Alahmadi A, Alshuhail A, Betty RA, Galvez L, Solé P. Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four. Mathematics. 2023; 11(23):4736. https://doi.org/10.3390/math11234736
Chicago/Turabian StyleAlahmadi, Adel, Altaf Alshuhail, Rowena Alma Betty, Lucky Galvez, and Patrick Solé. 2023. "Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four" Mathematics 11, no. 23: 4736. https://doi.org/10.3390/math11234736
APA StyleAlahmadi, A., Alshuhail, A., Betty, R. A., Galvez, L., & Solé, P. (2023). Mass Formula for Self-Orthogonal and Self-Dual Codes over Non-Unital Rings of Order Four. Mathematics, 11(23), 4736. https://doi.org/10.3390/math11234736