On Some Formulas for the Lauricella Function
Abstract
:1. Introduction and Preliminaries
2. The Limit Formulas
3. Some Decomposition Formulas Associated with the Lauricella Function
4. Integral Representations
5. Differentiation Formulas
6. Finite Sums
7. Infinite Sums
8. Recurrence-Type Relations
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bers, L. Mathematical Aspects of Subsonic and Transonic Gas Dynamics; Wiley: New York, NY, USA, 1958. [Google Scholar]
- Niukkanen, A.W. Generalised hypergeometric series NF(x1,...,xN) arising in physical and quantum chemical applications. J. Phys. A Math. Gen. 1983, 16, 1813–1825. [Google Scholar] [CrossRef]
- Lauricella, G. On multivariable hypergeometric functions. Rend. Circ. Mat. Palermo 1893, 7, 111–158. [Google Scholar] [CrossRef]
- Erdelyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Appell, P. On hypergeometric series of two variables, and on linear differential equations with partial derivatives. C. R. Acad. Sci. 1880, 90, 296–298. (In French) [Google Scholar]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions. Q. J. Math. 1940, 11, 249–270. [Google Scholar] [CrossRef]
- Srivastava, H.M.; Karlsson, P.W. Multiple Gaussian Hypergeometric Series; Halsted Press (Ellis Horwood Limited): Chichester, UK; Wiley: New York, NY, USA, 1985. [Google Scholar]
- Srivastava, H.M.; Hasanov, A.; Choi, J. Double-layer potentials for a generalized bi-axially symmetric Helmholtz equation. Sohag J. Math. 2015, 2, 316–332. [Google Scholar]
- Appell, P.; Kampé de Fériet, J. Hypergeometric and Hyperspheric Functions: Hermite Polynomials; Gauthier-Villars: Paris, France, 1926. (In French) [Google Scholar]
- Ergashev, T.G. Generalized Holmgren Problem for an Elliptic Equation with Several Singular Coefficients. Differ. Equ. 2020, 56, 842–856. [Google Scholar] [CrossRef]
- Brychkov, Y.; Saad, N. Some formulas for the Appell function F2(a,b,b′;c,c′;w,z). Integral Transform. Spec. Funct. 2014, 25, 111–123. [Google Scholar] [CrossRef]
- Hasanov, A.; Berdyshev, A.S.; Ryskan, A. Fundamental solutions for a class of four-dimensional degenerate elliptic equation. Complex Var. Elliptic Equ. 2020, 65, 632–647. [Google Scholar] [CrossRef]
- Baishemirov, Z.; Berdyshev, A.; Ryskan, A.A. Solution of a Boundary Value Problem with Mixed Conditions for a Four-Dimensional Degenerate Elliptic Equation. Mathematics 2022, 10, 1094. [Google Scholar] [CrossRef]
- Burchnall, J.L.; Chaundy, T.W. Expansions of Appell’s double hypergeometric functions (II). Q. J. Math. 1941, 12, 112–128. [Google Scholar] [CrossRef]
- Hasanov, A.; Srivastava, H.M. Decomposition formulas associated with the Lauricella function FA(r) and other multiple hypergeometric functions. Appl. Math. Lett. 2006, 19, 113–121. [Google Scholar] [CrossRef]
- Hasanov, A.; Srivastava, H.M. Decomposition Formulas Associated with the Lauricella Multivariable Hypergeometric Functions. Comput. Math. Appl. 2007, 53, 1119–1128. [Google Scholar] [CrossRef]
- Hasanov, A.; Ergashev, T.G. New decomposition formulas associated with the Lauricella multivariable hypergeometric functions. Montes Taurus J. Pure Appl. Math. 2021, 3, 317–326. [Google Scholar]
- Prudnikov, A.P.; Brychkov, Y.A.; Marichev, O.I. Integrals and Series; Gordon and Breach Science Publishers: New York, NY, USA, 1989; Volume 3. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ryskan, A.; Ergashev, T. On Some Formulas for the Lauricella Function. Mathematics 2023, 11, 4978. https://doi.org/10.3390/math11244978
Ryskan A, Ergashev T. On Some Formulas for the Lauricella Function. Mathematics. 2023; 11(24):4978. https://doi.org/10.3390/math11244978
Chicago/Turabian StyleRyskan, Ainur, and Tuhtasin Ergashev. 2023. "On Some Formulas for the Lauricella Function" Mathematics 11, no. 24: 4978. https://doi.org/10.3390/math11244978
APA StyleRyskan, A., & Ergashev, T. (2023). On Some Formulas for the Lauricella Function. Mathematics, 11(24), 4978. https://doi.org/10.3390/math11244978