Unification of Chowla’s Problem and Maillet–Demyanenko Determinants
Abstract
:1. Introduction and Main Results
2. Establishing the Underlying Principles
2.1. Dedekind Determinant
2.2. DFT and Periodic Dirichlet Series
2.3. Dirichlet Characters and L-Functions
3. Proof of the Main Theorem
4. Appendix
4.1. Chowla’s Problem and Maillet–Demyanenko Determinants
4.2. Cyclotomic Fields and Class Numbers
4.3. Zeta Functions and Ramified Functional Equations
4.4. Weighted Character Sums
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CP | Chowla’s (inverse) problem |
MD | Maillet–Demyanenko determinants |
DFT | Discrete Fourier Transforms |
CPMD | Chowla’s problem and Maillet–Demyanenko determinants |
References
- Chowla, S. The Riemann zeta and allied functions. Bull. Amer. Math. Soc. 1952, 58, 287–305. [Google Scholar] [CrossRef] [Green Version]
- Chowla, S. On a special infinite series. Norke Vid. Selsk. Forhand. 1964, 17, 85–87. [Google Scholar]
- Chowla, S. The nonexistence of nontrivial relations between the roots of a certain irreducible equation. J. Number Theory 1970, 2, 120–123. [Google Scholar] [CrossRef] [Green Version]
- Carlitz, L.; Olson, F.R. Maillet’s determinant. Proc. Amer. Math. Soc. 1944, 6, 265–269. [Google Scholar]
- Kanemitsu, S.; Kuzumaki, T. On a generalization of the Maillet determinant II. Acta Arith. 2001, 99, 343–361. [Google Scholar] [CrossRef] [Green Version]
- Wang, K. On a theorem of S. Chowla. J. Number Theory 1982, 15, 1–4. [Google Scholar] [CrossRef]
- Wang, K. On Maillet’s determinant. J. Number Theory 1984, 18, 305–312. [Google Scholar] [CrossRef] [Green Version]
- Knopp, M. Hamburger’s theorem on ζ(s) and the abundance principle for Dirichlet series with functional equations. In Number Theory; Bambah, R.P., Ed.; Hindustan Book Agency: New Delhi, India, 2000; pp. 201–216. [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Contributions to the Theory of Zeta Functions: The Modular Relation Supremacy; World Sci.: Singapore, 2015. [Google Scholar]
- Li, H.Y.; Kanemitsu, S.; Kuzumaki, T. On Zeta Functions and Allied Theta-Functions, to Appear, 2023.
- Schnee, W. Die Funktionalgelichung der Zetafunktion und der Dirichletschen Reihen mit periodischen Koeffizienten. Math. Z. 1930, 31, 378–390. [Google Scholar] [CrossRef]
- Ishibashi, M.; Kanemitsu, S. Dirichlet series with periodic coefficients. Res. Math. 1999, 35, 70–88. [Google Scholar] [CrossRef]
- Milnor, J. On polylogarithms, Hurwitz zeta functions, and the Kubert identities. Enseign. Math. 1983, 29, 281–322. [Google Scholar]
- Chakraborty, K.; Kanemitsu, S.; Kuzumaki, T. Seeing the invisible: Around generalized Kubert functions. Annales Univ. Sci. Budapest. Sect. Comp. 2018, 47, 185–195. [Google Scholar]
- Hawkins, T. New light on Frobenius’ creation of the theory of group characters. Arch. History Exact Sci. 1974, 12, 217–243. [Google Scholar] [CrossRef]
- Lang, S. Cyclotomic Fields; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Washington, L. Introduction to Cyclotomic Fields; Spring: New York, NY, USA, 1983. [Google Scholar]
- Hasse, H. Über die Klassenzahl abelscher Zahlkörper 1952, 2nd ed.; with Appendix by J. Martinet; Akademie Verlag: Berlin, Germany, 1985. [Google Scholar]
- Yamamoto, Y. Dirichlet series with periodic coefficients. In Algebraic Number Theory; JSPS: Tokyo, Japan, 1977; pp. 275–289. [Google Scholar]
- Funakura, T. On Kronecker’s limit formula for Dirichlet series with periodic coefficients. Acta Arith. 1990, 55, 59–73. [Google Scholar] [CrossRef] [Green Version]
- Li, F.-H.; Wang, N.-L.; Kanemitsu, S. Number Theory and Its Applications; World Sci.: London, UK; Singapore; Hackensack, NJ, USA, 2013. [Google Scholar]
- Wang, N.-L.; Agarwal, K.; Kanemitsu, S. Limiting values and functional and difference equations. Math. Differ. Differ. Equations 2020, 8, 407. [Google Scholar] [CrossRef]
- Chakraborty, K.; Kanemitsu, S.; Tukada, H. Vistas of Special Functions; World Sci.: Singapore, 2009. [Google Scholar]
- Hashimoto, M.; Kanemitsu, S.; Toda, M. On Gauss’s formula for ψ and finite expressions for the L-series at 1. J. Math. Soc. Japan 2008, 60, 219–236. [Google Scholar] [CrossRef]
- Eisenstein, G. Aufgaben und Lehrsätze. J. Reine Angew. Math. 1844, 27, 281–283. [Google Scholar]
- Li, H.-L.; Hashimoto, M.; Kanemitsu, S. The structural elucidation of Eisensteins formula. Sci. China. 2010, 53, 2341–2350. [Google Scholar] [CrossRef]
- Apostol, T.M. Introduction to Analytic Number Theory; Springer: Berlin, Germany, 1976. [Google Scholar]
- Davenport, H. Multiplicative Number Theory; Springer: New York, NY, USA, 1980. [Google Scholar]
- Iwasawa, K. Lectures on p-Adic L-Functions; Princeton UP: Princeton, NJ, USA, 1972; pp. 13–20. [Google Scholar]
- Shirasaka, S. On a theorem of S. Chowla. Mem. Fac. Sci. Kyushu Univ. Ser. A 1989, 43, 21–23. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, P. On the linear independence of certain algebraic numbers. Keio Sem. Math. Sci. 1988, 12, 11–30. [Google Scholar]
- Baker, A.; Brich, B.J.; Wirsing, E.A. On a problem of Chowla. J. Number Theory 1973, 5, 224–236. [Google Scholar] [CrossRef] [Green Version]
- Fujisaki, G. On Chowla’s theorem. RIMS Kokyuroku 1981, 411, 199–202. [Google Scholar]
- Fujiwara, M. On linear relations between roots of unity. RIMS Kokyuroku 1978, 334, 71–73. [Google Scholar]
- Livingston, A.E. The series f(n)/n for periodic f. Canad. Math. Bull. 1965, 8, 413–432. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, S.D.; Saradha, N.; Shorey, T.N.; Tijdeman, R. Transcendental inifnite series. Indag. Math. 2001, 12, 1–14. [Google Scholar] [CrossRef] [Green Version]
- Girstmair, K. Letter to the Editor. J. Number Theory 1986, 23, 405. [Google Scholar] [CrossRef] [Green Version]
- Yamamura, K. Bibliography on determinantal expressions of relative class numbers of imaginary abelian number fields. In Proceedings of the 5th China-Japan Seminar on Number Theory Held at Kinki University, Higashi-Osaka, Japan; Aoki, T., Kanemitsu, S., Liu, J.Y., Eds.; World Sci.: Singapore, 2009; pp. 244–250. [Google Scholar]
- Jakubec, S. On some new estimates for h−((ζp)). Acta Arith. 2009, 137, 43–50. [Google Scholar] [CrossRef] [Green Version]
- Hirabayashi, M. A determinant formula for the relative class number formula for an imaginary abelian number field. Commun. Math. 2014, 22, 133–140. [Google Scholar]
- Hirabayashi, M. A generalization of Jakubec’s formula. Math. Slovaca 2015, 65, 215–227. [Google Scholar] [CrossRef]
- Jakubec, S. Connection between multiplication theorem for Bernoulli polynomials and first factor . Math. Slovaca 2017, 67, 345–348. [Google Scholar] [CrossRef]
- Ayoub, R. On a theorem of iwasawa. J. Number Theory 1975, 7, 108–120. [Google Scholar] [CrossRef] [Green Version]
- Ernvall, R. Generalized Bernoulli numbers, generalized irregular primes, and class number. Ann. Univ. Turku Ser. A Math. 1979, 178, 7. [Google Scholar]
- Shimada, T. Fermat quotient of cyclotomic units. Acta Arith. 1996, 76, 335–358. [Google Scholar] [CrossRef]
- Kanemitsu, S.; Kuzumaki, T. On a generalization of the Demyanenko determinant. Abh. Math. Sem. Univ. Hamburg 2007, 77, 25–38. [Google Scholar] [CrossRef]
- Takagi, T. Algebraic Number Theory—Number Theory and Class Field Theory, 2nd ed.; Iwanami-Shoten: Tokyo, Japan, 1971. [Google Scholar]
- Meyer, C. Die Berechnung der Klassenzahl Abelscher Körper über Quadratischen Zahlkörpern; Akademie-Verl.: Berlin, Germany, 1957. [Google Scholar]
- Hasse, H. On a question of S. Chowla. Acta Arith. 1971, 18, 275–280. [Google Scholar] [CrossRef]
- Gut, M. Die Zetafunktion, die Klassenzahl und die Kronecker’shce Grenzformel eines beliebiges Kreiskörpers. Comment. Math. Helv. 1929, 1, 160–226. [Google Scholar] [CrossRef]
- Erdélyi, A.; Magnus, W.; Oberhettinger, F.; Tricomi, F.G. (Eds.) Higher Transcendental Functions; McGraw-Hill: New York, NY, USA, 1953; Volume 1. [Google Scholar]
- Kanemitsu, S.; Tsukada, H. Vistas of Special Functions; World Scientific: Singapore, 2007. [Google Scholar]
- Whittaker, E.T.; Watson, G.N. A Course in Modern Analysis, 4th ed.; Cambridge UP: Cambridge, UK, 1927. [Google Scholar]
- Wang, X.-H.; Mehta, J.; Kanemitsu, S. The boundary Lerch zeta function and short character sums à la Y. Yamamoto. Kyushu J. Math. 2020, 74, 313–335. [Google Scholar] [CrossRef]
objects | odd | even |
character | odd | even |
quadratic field | imaginary | real |
function | Bernoulli polynomial | Clausen function |
class number | relative class number | classumber of max. real subfield |
determinant | Maillet | Maillet with Clausen function |
vector space | ||
add. character basis | ||
characteristic. ftn. basis |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, N.; Chakraborty, K.; Kanemitsu, S. Unification of Chowla’s Problem and Maillet–Demyanenko Determinants. Mathematics 2023, 11, 655. https://doi.org/10.3390/math11030655
Wang N, Chakraborty K, Kanemitsu S. Unification of Chowla’s Problem and Maillet–Demyanenko Determinants. Mathematics. 2023; 11(3):655. https://doi.org/10.3390/math11030655
Chicago/Turabian StyleWang, Nianliang, Kalyan Chakraborty, and Shigeru Kanemitsu. 2023. "Unification of Chowla’s Problem and Maillet–Demyanenko Determinants" Mathematics 11, no. 3: 655. https://doi.org/10.3390/math11030655
APA StyleWang, N., Chakraborty, K., & Kanemitsu, S. (2023). Unification of Chowla’s Problem and Maillet–Demyanenko Determinants. Mathematics, 11(3), 655. https://doi.org/10.3390/math11030655