Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain
Abstract
:1. Introduction
2. Literature Review
2.1. Research on Electric Vehicles and Power Batteries
2.2. Research on Reverse Logistics Recycling Scheduling
3. Model Establishment and Algorithm Design
3.1. Problem Description
3.2. Model Assumptions
- (1)
- Each vehicle can be used to recycle and distribute the known demand points
- (2)
- The demand for power batteries remains sufficient and the number of vehicles are sufficient
- (3)
- There are feasible paths from the power battery recycling center to the demand point among the demand points
- (4)
- Power batteries at each point of demand can only be delivered by one vehicle
- (5)
- Each demand point has the best material delivery time
- (6)
- Delivery vehicles depart from a recycling center and should return to the center after delivery
- (7)
- Geographical coordinates and number of demand points for each region are known
- (8)
- The material distribution vehicle model and the load is consistent and the average transportation speed is the same;
- (9)
- In emergencies, the uncertain quantity of power battery demand and supply and travel time can be reasonably estimated
- (10)
- Once a material distribution plan is formed, it cannot be changed unless it is subjected to force majeure
- (11)
- Each demand point has a minimum, and there is no demand point discrimination.
3.3. Model Establishment
3.4. Algorithm Design and Calculation Process
4. Simulation Analysis
4.1. Empirical Enterprise Development Status and Future Planning
4.2. Power Battery Reverse Supply Chain Multi-Objective Optimization Scheduling Simulation–A Case Study of Shanghai
4.3. Power Battery Recycling Network Image Processing and Numerical Calculation
- (1)
- Road traffic buffer zone
- (2)
- Residential buffer analysis
- (3)
- Industrial land buffer analysis
- (4)
- Construction land buffer analysis
4.4. Multi-Objective Optimization Scheduling Results Comparison and Analysis
5. Discussion and Conclusions
5.1. Discussion
5.2. Conclusions
5.3. Limitations
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, T.; Yuan, Z.W.; Xing, C. Research on China’s fiscal and taxation policy of new energy vehicle industry technological innovation. Ekon. Istraz. 2022, 1–27. [Google Scholar] [CrossRef]
- Dong, F.; Liu, Y.J. Policy evolution and effect evaluation of new-energy vehicle industry in China. Resour. Policy 2020, 67, 13. [Google Scholar] [CrossRef]
- Haghi, M.; Arslan, O.; Laporte, G. A location-or-routing problem with partial and decaying coverage. Comput. Oper. Res. 2023, 149, 12. [Google Scholar] [CrossRef]
- Hassanpour, S.T.; Ke, G.Y.; Tulett, D.M. A time-dependent location-routing problem of hazardous material transportation with edge unavailability and time window. J. Clean. Prod. 2021, 322, 18. [Google Scholar] [CrossRef]
- Heine, O.F.C.; Demleitner, A.; Matuschke, J. Bifactor approximation for location routing with vehicle and facility capacities. Eur. J. Oper. Res. 2023, 304, 429–442. [Google Scholar] [CrossRef]
- Hoogeboom, M.; Dullaert, W.; Lai, D.; Vigo, D. Efficient Neighborhood Evaluations for the Vehicle Routing Problem with Multiple Time Windows. Transp. Sci. 2020, 54, 400–416. [Google Scholar] [CrossRef]
- Li, H.; Li, Z.P.; Cao, L.; Wang, R.D.; Ren, M. Research on Optimization of Electric Vehicle Routing Problem With Time Window. IEEE Access 2020, 8, 146707–146718. [Google Scholar] [CrossRef]
- Li, J.L.; Liu, Z.B.; Wang, X.F. Public charging station localization and route planning of electric vehicles considering the operational strategy: A bi-level optimizing approach. Sust. Cities Soc. 2022, 87, 16. [Google Scholar] [CrossRef]
- Lv, A.; Sun, B.F. Multi-Objective Robust Optimization for the Sustainable Location-Inventory-Routing Problem of Auto Parts Supply Logistics. Mathematics 2022, 10, 2942. [Google Scholar] [CrossRef]
- Rabbani, M.; Mokarrari, K.R.; Akbarian-saravi, N. A multi-objective location inventory routing problem with pricing decisions in a sustainable waste management system. Sust. Cities Soc. 2021, 75, 14. [Google Scholar] [CrossRef]
- Raeisi, D.; Ghoushchi, S.J. A robust fuzzy multi-objective location-routing problem for hazardous waste under uncertain conditions. Appl. Intell. 2022, 52, 13435–13455. [Google Scholar] [CrossRef] [PubMed]
- Shen, H.Y.; Hou, F. Trade policy uncertainty and corporate innovation evidence from Chinese listed firms in new energy vehicle industry. Energy Econ. 2021, 97, 12. [Google Scholar] [CrossRef]
- Schultz, M.; Soolaki, M.; Salari, M.; Bakhshian, E. A combined optimization-simulation approach for modified outside-in boarding under COVID-19 regulations including limited baggage compartment capacities. J. Air Transp. Manag. 2023, 106, 15. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.H.; Lin, Y.; Li, B.; Li, R.Y.M. A bi-objective optimization model for the medical supplies’ simultaneous pickup and delivery with drones. Comput. Ind. Eng. 2022, 171, 14. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.F.; Wang, L.K.; Jiang, C.X.; Jia, F.; Chen, L.J. Tail dependence network of new energy vehicle industry in mainland China. Ann. Oper. Res. 2022, 315, 565–590. [Google Scholar] [CrossRef]
- Yang, C.X.; Wang, Q.Z.; Pan, M.C.; Hu, J.F.; Peng, W.D.; Zhang, J.Q.; Zhang, L. A linguistic Pythagorean hesitant fuzzy MULTIMOORA method for third-party reverse logistics provider selection of electric vehicle power battery recycling. Expert Syst. Appl. 2022, 198, 19. [Google Scholar] [CrossRef]
- Zhang, H.; Aydin, G.; Parker, R.P. Social Responsibility Auditing in Supply Chain Networks. Manag. Sci. 2022, 68, 1058–1077. [Google Scholar] [CrossRef]
- Feng, Q.; Li, C.Z.; Lu, M.S.; Shanthikumar, J.G. Implementing Environmental and Social Responsibility Programs in Supply Networks Through Multiunit Bilateral Negotiation. Manag. Sci. 2022, 68, 2579–2599. [Google Scholar] [CrossRef]
- Yu, H.; Sun, X.; Solvang, W.D.; Zhao, X. Reverse Logistics Network Design for Effective Management of Medical Waste in Epidemic Outbreaks: Insights from the Coronavirus Disease 2019 (COVID-19) Outbreak in Wuhan (China). Int. J. Environ. Res. Public Health 2020, 17, 1770. [Google Scholar] [CrossRef]
- Zhao, K.; Zuo, Z.Y.; Blackhurst, J.V. Modelling supply chain adaptation for disruptions: An empirically grounded complex adaptive systems approach. J. Oper. Manag. 2019, 65, 190–212. [Google Scholar] [CrossRef]
- Oyola-Cervantes, J.; Amaya-Mier, R. Reverse logistics network design for large off-the-road scrap tires from mining sites with a single shredding resource scheduling application. Waste Manag. 2019, 100, 219–229. [Google Scholar] [CrossRef] [PubMed]
- Motahari, R.; Alavifar, Z.; Andaryan, A.Z.; Chipulu, M.; Saberi, M. A multi-objective linear programming model for scheduling part families and designing a group layout in cellular manufacturing systems. Comput. Oper. Res. 2023, 151, 17. [Google Scholar] [CrossRef]
- Mokni, M.; Yassa, S.; Hajlaoui, J.E.; Omri, M.N.; Chelouah, R. Multi-objective fuzzy approach to scheduling and offloading workflow tasks in Fog-Cloud computing. Simul. Model. Pract. Theory 2023, 123, 24. [Google Scholar] [CrossRef]
- Mahato, D.; Aharwal, V.K.; Sinha, A. Multi-objective optimisation model and hybrid optimization algorithm for Electric Vehicle Charge Scheduling. J. Exp. Theor. Artif. Intell. 2023, 1–23. [Google Scholar] [CrossRef]
- Goli, A.; Ala, A.; Hajiaghaei-Keshteli, M. Efficient multi-objective meta-heuristic algorithms for energy-aware non-permutation flow-shop scheduling problem. Expert Syst. Appl. 2023, 213, 20. [Google Scholar] [CrossRef]
- Belhor, M.; El-Amraoui, A.; Jemai, A.; Delmotte, F. Multi-objective evolutionary approach based on K-means clustering for home health care routing and scheduling problem. Expert Syst. Appl. 2023, 213, 15. [Google Scholar] [CrossRef]
- Alamatsaz, K.; Ahmadi, A.; Al-E-hashem, S. A multiobjective model for the green capacitated location-routing problem considering drivers’ satisfaction and time window with uncertain demand. Environ. Sci. Pollut. Res. 2022, 29, 5052–5071. [Google Scholar] [CrossRef]
- Chen, L.; Xu, P.; Yan, X.D.; Souleyrette, R.R.; Wang, T. Local-Ideal-Points based Autonomous Space Decomposition framework for the Multi-objective Periodic Generalized Directed Rural Postman problem under Length Restrictions with Intermediate Facilities. Comput. Oper. Res. 2023, 150, 28. [Google Scholar] [CrossRef]
- Wang, M.T.; Zhang, C.R.; Bell, M.G.H.; Miao, L.X. A branch-and-price algorithm for location-routing problems with pick-up stations in the last-mile distribution system. Eur. J. Oper. Res. 2022, 303, 1258–1276. [Google Scholar] [CrossRef]
- Yilmaz, Y.; Kalayci, C.B. Variable Neighborhood Search Algorithms to Solve the Electric Vehicle Routing Problem with Simultaneous Pickup and Delivery. Mathematics 2022, 10, 3108. [Google Scholar] [CrossRef]
- Zang, Y.S.; Wang, M.Q.; Qi, M.Y. A column generation tailored to electric vehicle routing problem with nonlinear battery depreciation. Comput. Oper. Res. 2022, 137, 19. [Google Scholar] [CrossRef]
- Cao, D.D.; Xu, X.; Li, W.S.; Hu, J.; Kong, Z.G. Research on random vibration condition of driving motor system for new energy passenger vehicle. Energy Rep. 2022, 8, 988–996. [Google Scholar] [CrossRef]
- Yu, V.F.; Aloina, G.; Susanto, H.; Effendi, M.K.; Lin, S.W. Regional Location Routing Problem for Waste Collection Using Hybrid Genetic Algorithm-Simulated Annealing. Mathematics 2022, 10, 2131. [Google Scholar] [CrossRef]
- Wu, X.H.; Cao, Y.R.; Xiao, Y.; Guo, J. Finding of urban rainstorm and waterlogging disasters based on microblogging data and the location-routing problem model of urban emergency logistics. Ann. Oper. Res. 2020, 290, 865–896. [Google Scholar] [CrossRef]
- Oztas, T.; Tus, A. A hybrid metaheuristic algorithm based on iterated local search for vehicle routing problem with simultaneous pickup and delivery. Expert Syst. Appl. 2022, 202, 17. [Google Scholar] [CrossRef]
- Faugere, L.; Klibi, W.; Iii, C.W.; Montreuil, B. Dynamic pooled capacity deployment for urban parcel logistics. Eur. J. Oper. Res. 2022, 303, 650–667. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, X.Y.; Ju, N.; Jia, H.N.; Sun, Z.J.; Liang, J.X.; Guo, R.X.; Niu, D.; Sun, H.B. High capacity adsorption of antimony in biomass-based composite and its consequential utilization as battery anode. J. Environ. Sci. 2023, 126, 211–221. [Google Scholar] [CrossRef] [PubMed]
- Basirati, M.; Jokar, M.R.A.; Hassannayebi, E. Bi-objective optimization approaches to many-to-many hub location routing with distance balancing and hard time window. Neural Comput. Appl. 2020, 32, 13267–13288. [Google Scholar] [CrossRef]
- Zhang, Q.J.; Mou, F.S.; Li, S.W.; Li, A.; Wang, X.D.; Sun, Y.W. Quantifying emission fluxes of atmospheric pollutants from mobile differential optical absorption spectroscopic (DOAS) observations. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2023, 286, 7. [Google Scholar] [CrossRef]
- Yu, Y.M.; Xu, H.; Cheng, J.P.; Wan, F.; Ju, L.; Liu, Q.Z.; Liu, J. Which type of electric vehicle is worth promoting mostly in the context of carbon peaking and carbon neutrality? A case study for a metropolis in China. Sci. Total Environ. 2022, 837, 12. [Google Scholar] [CrossRef]
- Kristiansen, A.B.; Zhao, B.Y.; Ma, T.; Wang, R.Z. The viability of solar photovoltaic powered off-grid Zero Energy Buildings based on a container home. J. Clean. Prod. 2021, 286, 15. [Google Scholar] [CrossRef]
- Mohammadkhani, A.; Mousavi, S.M. A new last aggregation fuzzy compromise solution approach for evaluating sustainable third-party reverse logistics providers with an application to food industry. Expert Syst. Appl. 2023, 216, 24. [Google Scholar] [CrossRef]
- Chang, J.P.; Chen, Z.S.; Wang, X.J.; Martinez, L.; Pedrycz, W.; Skibniewski, M.J. Requirement-driven sustainable supplier selection: Creating an integrated perspective with stakeholders? Interests and the wisdom of expert crowds. Comput. Ind. Eng. 2023, 175, 20. [Google Scholar] [CrossRef]
- Yang, Y.; Yang, F.F.; Chen, J.; Zeng, Y.Y.; Liu, L.M. Pythagorean Fuzzy Bonferroni Mean with Weighted Interaction Operator and Its Application in Fusion of Online Multidimensional Ratings. Int. J. Comput. Intell. Syst. 2022, 15, 15. [Google Scholar] [CrossRef]
- Shi, J.W.; Zhou, Y. Group Decision Making for Product Innovation Based on PZB Model in Fuzzy Environment: A Case from New-Energy Storage Innovation Design. Mathematics 2022, 10, 3634. [Google Scholar] [CrossRef]
- Mishra, A.R.; Rani, P.; Saha, A.; Pamucar, D.; Hezam, I.M. A q-rung orthopair fuzzy combined compromise solution approach for selecting sustainable third-party reverse logistics provider. Manag. Decis. 2022, 38. [Google Scholar] [CrossRef]
- Cheng, C.; Wang, X.M.; Ren, X.H. Selection of outsourcing logistics providers in the context of low-carbon strategies. Environ. Sci. Pollut. Res. 2022, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Li, J.Z.; Ku, Y.Y.; Liu, C.L.; Zhou, Y.P. Dual credit policy: Promoting new energy vehicles with battery recycling in a competitive environment? J. Clean. Prod. 2020, 243, 14. [Google Scholar] [CrossRef]
- Li, X.; Mu, D.; Du, J.B.; Cao, J.J.; Zhao, F. Game-based system dynamics simulation of deposit-refund scheme for electric vehicle battery recycling in China. Resour. Conserv. Recycl. 2020, 157, 13. [Google Scholar] [CrossRef]
- Alamerew, Y.A.; Brissaud, D. Modelling reverse supply chain through system dynamics for realizing the transition towards the circular economy: A case study on electric vehicle batteries. J. Clean. Prod. 2020, 254, 12. [Google Scholar] [CrossRef]
Table Name | Column Name | Column Description | Column Range |
---|---|---|---|
Vehicle Operation Data | Time | Data acquisition time | yymmdd-hhmmss |
Vehicle status | Vehicle status | 01: vehicle start; 02: Extinguish; 03: Other; 254: abnormal; 255: Invalid | |
Run model | Operating mode | 01: Pure electricity; 02: Mixing; 03: Fuel; 254 indicates an anomaly; 255 Invalid | |
Speed | Speed | Effective value range: 0 km/h~220 km/h, minimum measurement unit; 0.1 km/h | |
Sum mileage | Cumulative mileage | Effective value range: 0 km~999,999.9 km, minimum measurement unit: 0.1 km |
Time | Vehicle Status | Run Model | Speed | Sum Mileage | Sum Voltage | Sum Current |
---|---|---|---|---|---|---|
6 January 2019 15:36 | 1 | 1 | 79.7 | 69788 | 361.2 | 10.4 |
6 January 2019 15:36 | 1 | 1 | 78.6 | 69789 | 360 | 13.1 |
6 January 2019 15:36 | 1 | 1 | 74.2 | 69789 | 361.2 | 9.5 |
6 January 2019 15:36 | 1 | 1 | 81.8 | 69789 | 350.5 | 63.9 |
6 January 2019 15:37 | 1 | 1 | 74.1 | 69789 | 361.2 | 3.4 |
6 January 2019 15:37 | 1 | 1 | 65.3 | 69790 | 359.5 | 20.7 |
6 January 2019 15:37 | 1 | 1 | 61.5 | 69790 | 361.2 | 5.9 |
6 January 2019 15:37 | 1 | 1 | 68.7 | 69790 | 367 | −30.5 |
6 January 2019 15:37 | 1 | 1 | 60 | 69790 | 367.2 | −25.7 |
6 January 2019 15:37 | 1 | 1 | 47.8 | 69790 | 364.5 | 2.1 |
6 January 2019 15:38 | 1 | 1 | 54.6 | 69790 | 356 | 48.1 |
6 January 2019 15:38 | 1 | 1 | 56.8 | 69791 | 359 | 19.4 |
6 January 2019 15:38 | 1 | 1 | 60.8 | 69791 | 349.2 | 74.9 |
6 January 2019 15:38 | 1 | 1 | 61.7 | 69791 | 355.2 | 20.3 |
6 January 2019 15:39 | 1 | 1 | 55.9 | 69791 | 360.7 | −1 |
6 January 2019 15:39 | 1 | 1 | 53.2 | 69791 | 365.2 | −22.2 |
6 January 2019 15:39 | 1 | 1 | 31.8 | 69792 | 367 | −30.1 |
6 January 2019 15:39 | 1 | 1 | 16.5 | 69792 | 358.2 | 30.7 |
6 January 2019 15:39 | 1 | 1 | 18.3 | 69792 | 364 | −11.7 |
Serial Number | Coordinate X | Coordinate Y | Power Battery Recovery Amount |
---|---|---|---|
0 | 118.41 | 37.19 | 1000 |
1 | 118.4 | 37.19 | 5000 |
2 | 118.38 | 37.14 | 2500 |
3 | 118.39 | 37.11 | 5000 |
4 | 118.42 | 37.13 | 5000 |
5 | 118.49 | 37.18 | 3500 |
6 | 118.43 | 37.27 | 500 |
7 | 118.45 | 37.21 | 800 |
8 | 118.48 | 37.23 | 100 |
9 | 118.37 | 37.29 | 100 |
10 | 118.39 | 37.25 | 550 |
11 | 118.41 | 37.23 | 155 |
12 | 118.43 | 37.24 | 120 |
13 | 118.39 | 37.28 | 340 |
14 | 118.38 | 37.29 | 355 |
15 | 118.45 | 37.26 | 550 |
16 | 118.42 | 37.22 | 150 |
17 | 118.48 | 37.27 | 1200 |
18 | 118.44 | 37.24 | 250 |
19 | 118.47 | 37.28 | 2000 |
20 | 118.43 | 37.25 | 500 |
21 | 118.49 | 37.14 | 130 |
22 | 118.46 | 37.13 | 120 |
23 | 118.41 | 37.09 | 110 |
24 | 118.36 | 37.07 | 120 |
25 | 118.45 | 37.17 | 240 |
26 | 118.35 | 37.12 | 500 |
27 | 118.38 | 37.14 | 120 |
28 | 118.37 | 37.18 | 250 |
29 | 118.44 | 37.16 | 200 |
30 | 118.37 | 37.15 | 1500 |
31 | 118.32 | 37.09 | 300 |
32 | 118.45 | 37.11 | 500 |
33 | 118.36 | 37.17 | 250 |
34 | 118.47 | 37.13 | 200 |
35 | 118.44 | 37.11 | 1500 |
36 | 118.4 | 37.12 | 200 |
37 | 118.51 | 37.16 | 300 |
38 | 118.39 | 37.17 | 450 |
39 | 118.34 | 37.14 | 100 |
40 | 118.46 | 37.1 | 250 |
41 | 118.4 | 37.15 | 300 |
42 | 118.37 | 37.12 | 100 |
43 | 118.35 | 37.16 | 500 |
44 | 118.42 | 37.13 | 2500 |
45 | 118.5 | 37.15 | 100 |
46 | 118.38 | 37.14 | 5000 |
47 | 118.42 | 37.1 | 700 |
48 | 118.48 | 37.15 | 200 |
Parameter | Value |
---|---|
Population size | 200 |
Maximum number of iterations | 500 |
Available number of vehicles | 3 |
Vehicle fixed use cost | $100/car |
Rated load of vehicle | 1000 |
Vehicle speed | 60 km/h |
Unit transportation cost | $30/km |
The number of recycling centers to be established | 5 |
Customer demand point demand range | [100, 2000] |
Satisfaction setting range | [−1, 1] |
Customer demand point satisfaction distance | 5 km or less |
Customer demand point dissatisfaction distance | Over 10 km |
Solomon Example (Problem Size) | INSGA-II Algorithm | CPLEX | Gurobi | Particle Swarm Optimization (PSO) | Genetic Algorithm (GA) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Penalty Cost | Time Cost | Total Cost | Penalty Cost | Time Cost | Total Cost | Penalty Cost | Time Cost | Total Cost | Penalty Cost | Time Cost | Total Cost | Penalty Cost | Time Cost | Total Cost | |
C101(50) | 1038.48012 | 3712.66 | 6500.982 | 1129.3790 | 4304.379 | 7383.593 | 1702.317 | 4386.247 | 7938.400 | 1275.489 | 4338.4737 | 7663.797 | 1360.6181 | 4493.8103 | 7954.2634 |
C102(50) | 874.054376 | 4068.08 | 6691.969 | 1469.8050 | 4245.937 | 7665.577 | 1285.708 | 4057.066 | 7192.609 | 1417.701 | 4118.3183 | 7585.854 | 891.886 | 4601.9397 | 7593.6607 |
R101(100) | 1206.618 | 3955.88 | 6912.341 | 850.5790 | 4749.121 | 7549.535 | 1592.634 | 4148.677 | 7591.146 | 1724.007 | 4374.3977 | 8148.239 | 1075.0392 | 4104.6257 | 7279.4999 |
R102(100) | 1555.545 | 4313.12 | 7618.503 | 1464.9450 | 4811.835 | 8226.615 | 1431.049 | 4120.079 | 7400.963 | 1414.106 | 4149.9083 | 7613.849 | 1424.623 | 4592.8057 | 8117.2637 |
Improved Algorithm Transportation Route | Improved Algorithm Optimal Value | Customers Satisfaction | Calculation Time |
---|---|---|---|
First car: 0→11→3→9→12→6→5→8→7→0 | 143,911.0049 | 0.8697 | 34.843 s |
Basic algorithm Transport route | Optimal value of basic algorithm | Customers Satisfaction | Calculation Time |
First car: 0→7→6→11 Second car: 0→8→5→9→12→3 | 144,623.1240 | 0.7880 | 35.474 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, K.; Tian, Y.; Xu, F.; Li, C. Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain. Mathematics 2023, 11, 901. https://doi.org/10.3390/math11040901
Tan K, Tian Y, Xu F, Li C. Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain. Mathematics. 2023; 11(4):901. https://doi.org/10.3390/math11040901
Chicago/Turabian StyleTan, Kangye, Yihui Tian, Fang Xu, and Chunsheng Li. 2023. "Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain" Mathematics 11, no. 4: 901. https://doi.org/10.3390/math11040901
APA StyleTan, K., Tian, Y., Xu, F., & Li, C. (2023). Research on Multi-Objective Optimal Scheduling for Power Battery Reverse Supply Chain. Mathematics, 11(4), 901. https://doi.org/10.3390/math11040901