Next Article in Journal
Continuous Wavelet Transform of Time-Frequency Analysis Technique to Capture the Dynamic Hedging Ability of Precious Metals
Next Article in Special Issue
Cohomology Algebras of a Family of DG Skew Polynomial Algebras
Previous Article in Journal
Modification of Learning Ratio and Drop-Out for Stochastic Gradient Descendant Algorithm
 
 
Font Type:
Arial Georgia Verdana
Font Size:
Aa Aa Aa
Line Spacing:
Column Width:
Background:
Article

On the Construction of Pandiagonal Magic Cubes

1
School of Mathematics and Physics, Hechi University, Guangxi 546300, China
2
School of Mathematics and Physics, University of Science and Technology Beijing, Beijing 100083, China
3
School of Mathematics and Statistics, Chongqing Technology and Business University, Chongqing 400067, China
*
Author to whom correspondence should be addressed.
Mathematics 2023, 11(5), 1185; https://doi.org/10.3390/math11051185
Submission received: 18 January 2023 / Revised: 21 February 2023 / Accepted: 23 February 2023 / Published: 28 February 2023
(This article belongs to the Special Issue Algebra and Discrete Mathematics, 4th Edition)

Abstract

:
This paper investigates the construction method of pandiagonal magic cube. First, we define a pandiagonal Latin cube. According to this definition, the cube can be constructed by simple methods. After designing a set of orthogonal pandiagonal Latin cubes, the corresponding order pandiagonal magic cube can be constructed. In addition, we give the algebraic conditions of the universal diagonal Latin cube orthogonality and the strict theoretical proof. Based on the proposed method, it can be shown that at least 6 ( n ! ) 3 pandiagonal magic cubes of order n is formed through a pandiagonal Latin cube. Moreover, our method is easy to implement by computer program.

1. Introduction

A square matrix of order n, composed of continuous natural numbers from 1 to n 2 , is called the magic square of order n if the sums of elements in each row, column and diagonal are the same. This sum is called magic sum, and it is equal to n ( 1 + n 2 ) 2 [1]. Magic square is one of the important research objects of combinatorial design. It is applied in the fields of image processing, computer science, and cryptography [2,3,4]. The study of magic squares can be traced back to ancient China. The “Luoshu” discovered 4000 years ago is a magic square of order three [5]. Thereafter, there has been a lot of research on magic squares, and magic squares in these studies have different characteristics [6,7,8]. If the sums of the numbers on each pandiagonal are the same in a magic square, this magic square is called pandiagonal magic square. The so-called pandiagonal refers to the “broken diagonal” paralleled to the diagonal, and wrap round at the edges of the square [9,10]. For example, let a magic square be ( a i j ) n × n , then a 12 , a 23 , ⋯, a n 1 , n , a n , 1 are elements of a pandiagonal. There are also other pandiagonals. After extending a magic square to the three-dimensional, a magic cube is obtained. An integer magic cube of order n is a three-dimensional array A = ( a i j k ) which consists of the numbers 1 , 2 , , n 3 , with each section and six diagonal planes being magic squares. Previous studies have given the construction methods of concrete magic cubes with various characteristics [11,12,13]. If every cross section, every diagonal and every pandiagonal of the magic cube is a pandiagonal magic square, it is called a pandiagonal magic cube. The relevant concepts are strictly defined below.
An integer cube of order n is a three-dimensional array A = ( a i j k ) which consists of the numbers 1, 2, ⋯, n 3 . Matrices ( a i j k ) i , j = 1 , 2 , , n , ( a i j k ) i , k = 1 , 2 , , n , ( a i j k ) j , k = 1 , 2 , , n are called cross sections. In particular, ( a i j 1 ) i , j = 1 , 2 , , n , ( a i 1 k ) i , k = 1 , 2 , , n , ( a 1 j k ) j , k = 1 , 2 , , n are called surfaces. Similarly, matrices ( a i j j ) i , j = 1 , 2 , , n , ( a i , n j + 1 , j ) i , j = 1 , 2 , , n , ( a i j i ) i , j = 1 , 2 , , n , ( a i , j , n i + 1 ) i , j = 1 , 2 , , n , ( a i i j ) i , j = 1 , 2 , , n , ( a i , n i + 1 , j ) i , j = 1 , 2 , , n are called diagonal planes.
 Definition 1. 
An integer cube is called a pandiagonal magic cube, if all of its cross sections and diagonal planes are pandiagonal magic squares.
The concept of pandiagonal magic square can be found in [6,7,8,14]. Because a line parallel to an edge of an integer cube is a row or a column of a cross section, a great diagonal is a diagonal of a diagonal plane, so that a pandiagonal magic cube is certainly a magic cube [15].
The studies of magic squares and magic cubes have made relatively rich achievements. Cammann and Andrews introduced the early research results of magic squares and magic cubes [12,16]. Abe put forward 23 questions about magic squares, involving basic magic squares, pandiagonal magic squares, sparse magic squares, anti-magic squares, etc., which promoted the study of magic squares [17]. Loly et al. [18], Lee et al. [19], Nordgren et al. [20], and Hou et al. [21] discussed the algebraic properties of magic squares. Trenkler proposed an algorithm for making magic cubes [22]. However, the study on pandiagonal magic cubes is rare.
In this paper, we will study the existence and construction of pandiagonal magic cubes of order n based on the pandiagonal magic square idea in [6]. The following is the outline of this paper. First, a three-dimensional auxiliary cube is defined and its properties are discussed. Then, based on the discussion of Latin cube and pandiagonal Latin cube, the design method of the pandiagonal Latin cube is given. At the same time, we give the necessary and sufficient conditions for the orthogonality of three pandiagonal Latin cubes. Finally, by using the orthogonal pandiagonal Latin cubes, the construction method of pandiagonal magic cubes is obtained. In addition, we give a method to find another two pandiagonal Latin cubes orthogonal to one known pandiagonal Latin cube.

2. Auxiliary Cube and Its Properties

In this section, the definition and properties of the auxiliary cube are shown.
 Definition 2. 
A cube A = ( a i j k ) which consists of consecutive integers from 1 to n 3 is called an Auxiliary Cube (hereafter written as Aux Cube) if it satisfies the following conditions:
(1) The top surface ( a i j 1 ) is an auxiliary matrix [6], namely ( a i j 1 ) satisfies
a i 11 a 111 = a i 21 a 121 = = a i n 1 a 1 n 1 ( i = 1 , 2 , , n )
(2) The cross sections ( a i j k ) i , j = 1 , 2 , , n and ( a i j 1 ) i , j = 1 , 2 , , n satisfy
a i j k a i j 1 = β k ( k = 1 , 2 , , n )
where β k is independent of i and j.
The preceding conditions (1) and (2) are equivalent to the fact that each cross section is an auxiliary matrix [6].
Let
a i j k = n ( i 1 ) + j + n 2 ( k 1 )
then A = ( a i j k ) is called Natural Auxiliary Cube. Clearly, by interchanging two parallel cross sections of an Aux Cube A, we can form other Aux Cubes. A is an Aux Cube if, and only if, A can be obtained from Natural Aux Cube through finite interchanges of parallel cross sections in succession. Because there are n ! permutations of 1 , 2 , , n , we can create ( n ! ) 3 Aux Cubes from Natural Aux Cube by interchanging parallel cross sections.
 Lemma 1. 
Let A be an Aux Cube of order n, then the sum of any n entries in different rows, different columns and different levels is the same. Namely, if A = ( a i j k ) , i 1 , i 2 , , i n , j 1 , j 2 , , j n , k 1 , k 2 , , k n are all permutations of 1 , 2 , , n , then
s = 1 n a i s j s k s = constant
 Proof. 
Assume
a i 11 a 111 = a i 21 a 121 = = a i n 1 a 1 n 1 = α i
Then we have
a i j k = a i j 1 + β k a i j 1 = a 1 j 1 + α i
Suppose that
a i 1 j 1 k 1 , , a i n j n k n
are n entries in different rows, different columns, and different levels of A. This is equivalent to the fact that “ i 1 , i 2 , , i n ”, “ j 1 , j 2 , , j n ”, “ k 1 , k 2 , , k n ” are all permutations of 1 , 2 , , n . The sum of these entries is given by
s = 1 n a i s j s k s = s = 1 n ( a 1 j s 1 + α i s + β k s ) = s = 1 n a 1 j s 1 + s = 1 n α i s + s = 1 n β k s = s = 1 n a 1 s 1 + s = 1 n α s + s = 1 n β s
The last three terms are independent of “ i 1 , i 2 , , i n ”, “ j 1 , j 2 , , j n ”, “ k 1 , k 2 , , k n ”. This completes the proof. □
Let A be an Aux Cube. From Lemma 1, a pandiagonal magic cube can be obtained by adjusting the entries of A so that its each row, each column and each pandiagonal of its each cross section and each diagonal plane consists of entries in distinct rows, distinct columns and distinct levels of A, respectively.
 Definition 3. 
The integer cube A of order n consisting of 1 , 2 , , n is said to be a pandiagonal Latin cube if all of its cross sections and diagonal planes are pandiagonal Latin squares [6].
 Definition 4. 
A set of pandiagonal Latin cubes L 1 = ( l i j k 1 ) , L 2 = ( l i j k 2 ) , L 3 = ( l i j k 3 ) is called orthogonal if entries of the cube
L = ( l i j k 1 , l i j k 2 , l i j k 3 )
run through all ordered three-tuples ( 1 , 1 , 1 ) to ( n , n , n ) [8,23].
For an integer cube A = ( a i j k ) , its entries have three subscripts i, j and k. The set of first integers, i.e., i’s, form another integer cube, and similarly for the second and third ones. It is not difficult to understand the following fact. If A = ( a ( i , j , k ) ) is an Aux Cube, L 1 = ( l i j k 1 ) , L 2 = ( l i j k 2 ) , L 3 = ( l i j k 3 ) are orthogonal pandiagonal Latin cubes. Define B = ( b s u v ) as
b s u v = a ( l s u v 1 , l s u v 2 , l s u v 3 ) ( s , u , v = 1 , 2 , , n )
Then B is a pandiagonal magic cube. Therefore, we can construct a pandiagonal magic cube as follows. First, construct a set of orthogonal pandiagonal Latin cubes, and join them into a cube of 3-tuples, and then change entries into entries of some auxiliary cube so that the subscripts are these three-tuples. This provides a pandiagonal magic cube.
If we use the first, second and third subscripts of each element in a pandiagonal magic cube to form a number cube in the original order, respectively, three orthogonal pandiagonal Latin cubes can be obtained.
In this paper, we will use a transformation T s , whose definition can be found in [6]. Let i 1 , i 2 , , i n be a permutation of 1 , 2 , , n . T s ( i 1 , i 2 , , i n ) ( 3 s n 1 ) is a square matrix such that the first row is
i 1 , , i s 1 , i s , i s + 1 , , i n
and the second row is
i s , i s + 1 , , i n , i 1 , , i s 1
By using the same rule, we form third row, and so on, to obtain T s ( i 1 , i 2 , , i n ) , which is written as
i 1 i 2 i s i s + 1 i n i s i s + 1 i s 1 n rows
For example, T 3 ( 1 , 2 , 3 , 4 , 5 ) is given by
1 2 3 4 5 3 4 5 1 2 5 1 2 3 4 2 3 4 5 1 4 5 1 2 3

3. Special Case: A Pandiagonal Magic Cube of Order 11

In this section, an example of a pandiagonal magic cube of order 11 is revealed.
First, we construct a pandiagonal Latin cube of order 11. Let Figure 1 represent the integer cube. Let the first row of top surface, namely D C be
1 2 3 4 5 6 7 8 9 10 11
From [6], in order that D C G H is a pandiagonal Latin square, it suffices to select some k, 3 k n 1 , such that D C G H = T k ( 1 , 2 , , 11 ) (because n = 11 is a prime number). Let k = 7, i.e., let the back surface D C G H be T 3 ( 1 , 2 , , 11 ) :
1 2 3 4 5 6 7 8 9 10 11 3 4 5 6 7 8 9 10 11 1 2 5 6 7 8 9 10 11 1 2 3 4 7 8 9 10 11 1 2 3 4 5 6 9 10 11 1 2 3 4 5 6 7 8 11 1 2 3 4 5 6 7 8 9 10 2 3 4 5 6 7 8 9 10 11 1 4 5 6 7 8 9 10 11 1 2 3 6 7 8 9 10 11 1 2 3 4 5 8 9 10 11 1 2 3 4 5 6 7 10 11 1 2 3 4 5 6 7 8 9
Then take s, 3 s n 1 , s k , for example, s = 5 . Apply T 5 to each row of D C G H to obtain 11 horizontal cross sections. They form the integer cube A B C D - E F G H , the top surface of which is T 5 ( 1 , 2 , , 11 ) :
1 2 3 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 1 2 3 4 9 10 11 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 11 1 6 7 8 9 10 11 1 2 3 4 5 10 11 1 2 3 4 5 6 7 8 9 3 4 5 6 7 8 9 10 11 1 2 7 8 9 10 11 1 2 3 4 5 6 11 1 2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 11 1 2 3 8 9 10 11 1 2 3 4 5 6 7
The second cross section under the top surface is T 5 ( 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 1 , 2 ) :
3 4 5 6 7 8 9 10 11 1 2 7 8 9 10 11 1 2 3 4 5 6 11 1 2 3 4 5 6 7 8 9 10 4 5 6 7 8 9 10 11 1 2 3 8 9 10 11 1 2 3 4 5 6 7 1 2 3 4 5 6 7 8 9 10 11 5 6 7 8 9 10 11 1 2 3 4 9 10 11 1 2 3 4 5 6 7 8 2 3 4 5 6 7 8 9 10 11 1 6 7 8 9 10 11 1 2 3 4 5 10 11 1 2 3 4 5 6 7 8 9
etc. We denote the cube A B C D - E F G H as T 3 , 5 ( 1 , 2 , , 11 ) , since the above cube is constructed by T 3 and T 5 .
Now, we turn to prove that the cube T 3 , 5 ( 1 , 2 , , 11 ) is a pandiagonal Latin cube of order 11. First, it should be noted that cross sections parallel to the top surface are all pandiagonal Latin squares. The back surface D C G H is also a pandiagonal Latin square. It follows from symmetry of the top and back surfaces that cross sections parallel to back surface D C G H are also pandiagonal Latin squares. We have to prove that cross sections parallel to D A E H and the six diagonal planes are pandiagonal magic squares. The surface D A E H is given by
1 5 9 2 6 10 3 7 11 4 8 3 7 11 4 8 1 5 9 2 6 10 5 9 2 6 10 3 7 11 4 8 1 7 11 4 8 1 5 9 2 6 10 3 9 2 6 10 3 7 11 4 8 1 5 11 4 8 1 5 9 2 6 10 3 7 2 6 10 3 7 11 4 8 1 5 9 4 8 1 5 9 2 6 10 3 7 11 6 10 3 7 11 4 8 1 5 9 2 8 1 5 9 2 6 10 3 7 11 4 10 3 7 11 4 8 1 5 9 2 6
This is just right T 7 ( 1 , 5 , 9 , 2 , 6 , 10 , 3 , 7 , 11 , 4 , 8 ) . Similarly, we can prove that all cross sections parallel to D A E H are created through applying T 7 to some column of top surface. Thus they are all pandiagonal Latin squares. The diagonal plane D C F E is given by
1 2 3 4 5 6 7 8 9 10 11 7 8 9 10 11 1 2 3 4 5 6 2 3 4 5 6 7 8 9 10 11 1 8 9 10 11 1 2 3 4 5 6 7 3 4 5 6 7 8 9 10 11 1 2 9 10 11 1 2 3 4 5 6 7 8 4 5 6 7 8 9 10 11 1 2 3 10 11 1 2 3 4 5 6 7 8 9 5 6 7 8 9 10 11 1 2 3 4 11 1 2 3 4 5 6 7 8 9 10 6 7 8 9 10 11 1 2 3 4 5
which is T 7 ( 1 , 2 , , 11 ) , a pandiagonal Latin square. The diagonal plane A B G H is
8 9 10 11 1 2 3 4 5 6 7 6 7 8 9 10 11 1 2 3 4 5 4 5 6 7 8 9 10 11 1 2 3 2 3 4 5 6 7 8 9 10 11 1 11 1 2 3 4 5 6 7 8 9 10 9 10 11 1 2 3 4 5 6 7 8 7 8 9 10 11 1 2 3 4 5 6 5 6 7 8 9 10 11 1 2 3 4 3 4 5 6 7 8 9 10 11 1 2 1 2 3 4 5 6 7 8 9 10 11 10 11 1 2 3 4 5 6 7 8 9
We see that the above square is T 10 ( 8 , 9 , 10 , 1 , 2 , 3 , 4 , 5 , 6 , 7 ) , a pandiagonal Latin square. The diagonal planes A D G F , C B E H , D H F B , and C G E A are, respectively, given by
T 7 ( 1 , 5 , 9 , 2 , 6 , 10 , 3 , 7 , 11 , 4 , 8 )
T 4 ( 11 , 4 , 8 , 1 , 5 , 9 , 2 , 6 , 10 , 3 , 7 )
T 9 ( 1 , 3 , 5 , 7 , 9 , 11 , 2 , 4 , 6 , 8 , 10 )
T 8 ( 11 , 2 , 4 , 6 , 8 , 10 , 1 , 3 , 5 , 7 , 9 )
They are all pandiagonal Latin squares.
The preceding facts make clear that the cube T 3 , 5 ( 1 , 2 , , 11 ) is a pandiagonal Latin cube.
By the same method, we can construct T 6 , 9 ( 1 , 2 , , 11 ) and T 4 , 7 ( 1 , 2 , , 11 ) . It can be shown that they are all pandiagonal Latin cubes, and that T 3 , 5 ( 1 , 2 , , 11 ) , T 6 , 9 ( 1 , 2 , , 11 ) , T 4 , 7 ( 1 , 2 , , 11 ) are orthogonal.
Now we construct cube of three-tuple L = l i j k 1 , l i j k 2 , l i j k 3 i , j , k = 1 , 2 , , 11 , where l i j k 1 T 3 , 5 ( 1 , 2 , , 11 ) , l i j k 2 T 6 , 9 ( 1 , 2 , , 11 ) , l i j k 3 T 4 , 7 ( 1 , 2 , , 11 ) . For example, the top surface of L is given by
( 1 , 1 , 1 ) ( 2 , 2 , 2 ) ( 3 , 3 , 3 ) ( 4 , 4 , 4 ) ( 5 , 5 , 5 ) ( 6 , 6 , 6 ) ( 7 , 7 , 7 ) ( 8 , 8 , 8 ) ( 9 , 9 , 9 ) ( 10 , 10 , 10 ) ( 11 , 11 , 11 ) ( 5 , 9 , 7 ) ( 6 , 10 , 8 ) ( 7 , 11 , 9 ) ( 8 , 1 , 10 ) ( 9 , 2 , 11 ) ( 10 , 3 , 1 ) ( 11 , 4 , 2 ) ( 1 , 5 , 3 ) ( 2 , 6 , 4 ) ( 3 , 7 , 5 ) ( 4 , 8 , 6 ) ( 9 , 6 , 2 ) ( 10 , 7 , 3 ) ( 11 , 8 , 4 ) ( 1 , 9 , 5 ) ( 2 , 10 , 6 ) ( 3 , 11 , 7 ) ( 4 , 1 , 8 ) ( 5 , 2 , 9 ) ( 6 , 3 , 10 ) ( 7 , 4 , 11 ) ( 8 , 5 , 1 ) ( 2 , 3 , 8 ) ( 3 , 4 , 9 ) ( 4 , 5 , 10 ) ( 5 , 6 , 11 ) ( 6 , 7 , 1 ) ( 7 , 8 , 2 ) ( 8 , 9 , 3 ) ( 9 , 10 , 4 ) ( 10 , 11 , 5 ) ( 11 , 1 , 6 ) ( 1 , 2 , 7 ) ( 6 , 11 , 3 ) ( 7 , 1 , 4 ) ( 8 , 2 , 5 ) ( 9 , 3 , 6 ) ( 10 , 4 , 7 ) ( 11 , 5 , 8 ) ( 1 , 6 , 9 ) ( 2 , 7 , 10 ) ( 3 , 8 , 11 ) ( 4 , 9 , 1 ) ( 5 , 10 , 2 ) ( 10 , 8 , 9 ) ( 11 , 9 , 10 ) ( 1 , 10 , 11 ) ( 2 , 11 , 1 ) ( 3 , 1 , 2 ) ( 4 , 2 , 3 ) ( 5 , 3 , 4 ) ( 6 , 4 , 5 ) ( 7 , 5 , 6 ) ( 8 , 6 , 7 ) ( 9 , 7 , 8 ) ( 3 , 5 , 4 ) ( 4 , 6 , 5 ) ( 5 , 7 , 6 ) ( 6 , 8 , 7 ) ( 7 , 9 , 8 ) ( 8 , 10 , 9 ) ( 9 , 11 , 10 ) ( 10 , 1 , 11 ) ( 11 , 2 , 1 ) ( 1 , 3 , 2 ) ( 2 , 4 , 3 ) ( 7 , 2 , 10 ) ( 8 , 3 , 11 ) ( 9 , 4 , 1 ) ( 10 , 5 , 2 ) ( 11 , 6 , 3 ) ( 1 , 7 , 4 ) ( 2 , 8 , 5 ) ( 3 , 9 , 6 ) ( 4 , 10 , 7 ) ( 5 , 11 , 8 ) ( 6 , 1 , 9 ) ( 11 , 10 , 5 ) ( 1 , 11 , 6 ) ( 2 , 1 , 7 ) ( 3 , 2 , 8 ) ( 4 , 3 , 9 ) ( 5 , 4 , 10 ) ( 6 , 5 , 11 ) ( 7 , 6 , 1 ) ( 8 , 7 , 2 ) ( 9 , 8 , 3 ) ( 10 , 9 , 4 ) ( 4 , 7 , 11 ) ( 5 , 8 , 1 ) ( 6 , 9 , 2 ) ( 7 , 10 , 3 ) ( 8 , 11 , 4 ) ( 9 , 1 , 5 ) ( 10 , 2 , 6 ) ( 11 , 3 , 7 ) ( 1 , 4 , 8 ) ( 2 , 5 , 9 ) ( 3 , 6 , 10 ) ( 8 , 4 , 6 ) ( 9 , 5 , 7 ) ( 10 , 6 , 8 ) ( 11 , 7 , 9 ) ( 1 , 8 , 10 ) ( 2 , 9 , 11 ) ( 3 , 10 , 1 ) ( 4 , 11 , 2 ) ( 5 , 1 , 3 ) ( 6 , 2 , 4 ) ( 7 , 3 , 5 )
By using this cube of 3-tuple L, we construct the integer cube C = ( c i j k ) with
c i j k = 11 l i j k 1 1 + l i j k 2 + 11 2 l i j k 3 1 , i , j , k = 1 , 2 , , n .
Then C is a pandiagonal magic cube which is shown in Appendix A.

4. Main Results and Their Proofs

Our purpose is for any integer n to derive existence conditions of pandiagonal magic cubes of order n and to study a construction method by using the approach developed in Section 3. First, we construct three orthogonal pandiagonal Latin cubes, and then join them into a cube of ordered three-tuples. By replacing elements of the cube into elements of some auxiliary cube, we obtain a pandiagonal magic cube.
Let i 1 , i 2 , , i n be any permutation of 1 , 2 , , n . Without loss of generality let it just be 1 , 2 , , n . Otherwise, it suffices to prove the result for 1 , 2 , , n first, then change j into i j ( j = 1 , 2 , , n ) . Since this transformation changes a permutation of 1 , 2 , , n into another permutation of 1 , 2 , , n , the following discussion is valid in general.
Taking 1 , 2 , , n as an edge, we construct an integer cube A B C D - E F G H as follows (see Figure 1). Assume 3 k n 1 , 3 s n 1 . Let the back plane D C G H be T k ( 1 , 2 , , n ) . Apply T s to each row of D C G H to obtain n horizontal cross sections. They form the integer cube A B C D - E F G H . Denote it by T k , s ( 1 , 2 , , n ) or briefly T k , s .
Now let us study sufficient conditions such that T k , s is a pandiagonal Latin cube. By using the same method as in Section 3, we easily follows that parallel cross sections of the cube T k , s have identical generating transformation T t for some t. Sections parallel to pandiagonal sections of T k , s also have identical generating transformation T t for some t . Therefore it suffices to find conditions, such that A B C D , D C G H , A D H E , and six diagonal sections are pandiagonal Latin squares. For pandiagonal Latin squares, we have the following theorem.
 Theorem 1. 
Let n and k be integers with 3 k n 1 . Then T k ( 1 , 2 , , n ) is a pandiagonal Latin square of order n if, and only if,
( k , n ) = 1 , ( k 1 , n ) = 1 , ( k 2 , n ) = 1
Here, ( i , j ) = 1 means that i and j are mutually prime, namely, the maximum common factor of i and j is equal to 1.
When n is a prime number, the proof of this theorem can be found in [6]. The proof of general situation requires the following two preliminary facts.
 Lemma 2. 
If the first column of T k ( 1 , 2 , , n ) is a permutation of 1 , 2 , , n , so is every column of   T k ( 1 , 2 , , n ) .
 Proof. 
We regard an element of T k ( 1 , 2 , , n ) as itself modulo n, then [ i ] = [ j n + i ] (j is an integer. We choose representative elements of congruence group of modulo n as 1 , 2 , , n . Hereafter suppose just so). Consider numbers in the bracket [ ]. Since
T k ( 1 , 2 , , n ) = 1 2 n 1 + ( k 1 ) [ 2 + ( k 1 ) ] [ n + ( k 1 ) ] 1 + ( n 1 ) ( k 1 ) [ 2 + ( n 1 ) ( k 1 ) ] [ n + ( n 1 ) ( k 1 ) ]
it is clear that if 1, 1 + ( k 1 ) , ⋯, 1 + ( n 1 ) ( k 1 ) is a permutation of 1 , 2 , , n , so are i, i + ( k 1 ) , ⋯, i + ( n 1 ) ( k 1 ) ( i = 1 , 2, ⋯, n). This proves the Lemma. □
 Lemma 3. 
If some diagonal of T k ( 1 , 2 , , n ) is a permutation of 1 , 2 , , n , so is each pandiagonal which is parallel to the diagonal. If some pandiagonal of T k ( 1 , 2 , , n ) is a permutation of 1 , 2 , , n , so is each pandiagonal which is parallel to the pandiagonal.
 Proof. 
Since [ i ] = [ j n + i ] , we can substitute i for [ j n + i ] for some j. The following are the first n rows of T k ( 1 , 2 , , 2 n )
[ 1 ] [ 2 ] [ n ] [ n + 1 ] [ 2 n ] 2 n + k [ 2 n + k + 1 ] [ 2 n + k + ( n 1 ) ] [ 2 n + k + n ] [ 2 n + k + 2 n 1 ] b 1 b 2 b n b n + 1 b 2 n
From the generating rule, we see that the first n columns just form T k ( 1 , 2 , , n ) . Since [ i ] = [ n + i ] , [ 2 n + k + i ] = [ 2 n + k + i + n ] , the last n columns also form T k ( 1 , 2 , , n ) . Hence the line from b 1 to [ n ] is a diagonal. The line from b 2 to [ n + 1 ] stands for the pandiagonal [ 1 ] b 2 [ 2 n + k + ( n 1 ) ] , and the line from b n to [ 2 n 1 ] stands for the pandiagonal [ n 1 ] [ 2 n + k + n 2 ] b n . Since b 1 [ n ] is a diagonal, ( b 1 + i ) [ n + i ]   ( i = 1 , , n 1 ) are all pandiagonals which parallel to line b 1 [ n ] . Thus, if one of them is a permutation of 1 , 2 , , n , then so are others. The proof for pandiagonals which are parallel to diagonal [ 1 ] b n is the same. This completes the proof of Lemma 3. □
 (Proof of Theorem 1). 
Sufficiency. Suppose the conditions hold. From Lemmas 2 and 3, it suffices to prove that the first column and two diagonals are permutations of 1 , 2 , , n . From the definition of T k ( 1 , 2 , , n ) , its first column is
[ 1 ] , [ 1 + ( k 1 ) ] , , [ 1 + ( n 1 ) ( k 1 ) ]
i.e., the difference of two successive elements is k 1 . Since ( k 1 , n ) = 1 , if 3 k n 1 , the first column is a permutation of 1 , 2 , , n .
Similarly, the difference of two elements of the diagonal starting from [ 1 ] is [ ( 2 n + k + 1 ) 1 ] = [ k ] = k . It follows at once from ( k , n ) = 1 that the diagonal is a permutation of 1 , 2 , , n . Similar proof is applicable to another diagonal because [ ( 2 n + k + 2 n 2 ) 2 n ] = k 2 and ( k 2 , n ) = 1 .
Necessity. Suppose one of the conditions ( k , n ) = 1 , ( k 1 , n ) = 1 , ( k 2 , n ) = 1 does not hold. For example, let ( k 1 , n ) = d 1 . So there exists integers p and q, such that k 1 = d q , n = d p , ( p , q ) = 1 . Thus the first column of T k ( 1 , 2 , , n ) is [ 1 ] [ 1 + ( k 1 ) ] [ 1 + p ( k 1 ) ] [ 1 + ( n 1 ) ( k 1 ) ] . Since [ 1 + p ( k 1 ) ] = [ 1 + n / d · d q ] = [ 1 + n q ] = [ 1 ] , the pth element is equal to the first element. This implies that the first column is not a permutation of 1 , 2 , , n , which is a contradiction. The other cases are treated similarly. This completes the proof of Theorem 1. □
The following is one of the main theorems of this paper.
 Theorem 2. 
Let 3 k n 1 , 3 s n 1 . Suppose that the following conditions are satisfied
(1) ( k , n ) = 1 , ( k 1 , n ) = 1 , ( k 2 , n ) = 1 ;
(2) ( s , n ) = 1 , ( s 1 , n ) = 1 , ( s 2 , n ) = 1 ;
(3) ( k s , n ) = 1 , ( s k + 1 , n ) = 1 , ( k s + 1 , n ) = 1 ;
(4) ( k + s 1 , n ) = 1 , ( k + s 2 , n ) = 1 , ( k + s 3 , n ) = 1 .
Then the preceding T k , s ( i 1 , i 2 , , i n ) is a pandiagonal Latin cube, where i 1 , i 2 , , i n is a permutation of 1 , 2 , , n , and vice versa.
 Proof. 
We show that the conditions ( 1 ) ( 4 ) are necessary and sufficient so that each surface and each diagonal section is a pandiagonal Latin square.
Because the surface D C G H is T k ( 1 , 2 , , n ) , ( 1 ) is a necessary and sufficient condition such that D C G H is a pandiagonal Latin square. Similarly, ( 2 ) is a necessary and sufficient condition such that A B C D is a pandiagonal Latin square.
The left surface A D H E is given by
1 n + s 2 n + ( 2 s 1 ) ( n 1 ) n + ( n 1 ) s ( n 2 ) n + k n + k + ( s 1 ) n + k + 2 ( s 1 ) n + k + ( n 1 ) ( s 1 )
From Theorem 1, in order that this surface be a pandiagonal Latin square, necessary and sufficient conditions are
( s 1 , n ) = 1 , ( k 1 , n ) = 1 , ( k + s 2 , n ) = 1 , ( s k , n ) = 1 .
These are included in ( 1 ) ( 4 ) .
The diagonal section D C F E is T [ k + s 1 ] ( 1 , 2 , , n ) . It is a pandiagonal Latin square if, and only if,
( k + s 1 , n ) = 1 , ( k + s 2 , n ) = 1 , ( k + s 3 , n ) = 1 .
These are exactly conditions in ( 4 ) .
The diagonal section A B G H is given by
( n 1 ) n + ( n 1 ) s ( n 2 ) ( n 1 ) n + ( n 1 ) s ( n 2 ) + 1 n 2 ( n 1 ) + ( n 1 ) s n + k + ( n 2 ) ( s 1 ) n + k + ( n 2 ) ( s 1 ) + 1 2 n 1 + k + ( n 2 ) ( s 1 )
i.e.,
n + 2 s n + 3 s n + 1 s k 2 s + 2 k 2 s + 3 k 2 s + 1
It is a pandiagonal Latin square if, and only if,
( ( k 2 s + 2 ) ( n + 2 s ) , n ) = 1 ,
( ( k 2 s + 2 ) ( n + 3 s ) , n ) = 1 ,
( ( k 2 s + 3 ) ( n + 2 s ) , n ) = 1 ,
i.e.,
( k s , n ) = 1 , ( s k + 1 , n ) = 1 , ( k s + 1 , n ) = 1 .
These conditions are also included in ( 1 ) ( 4 ) .
The diagonal section B C H E is
n s 1 ( n 1 ) ( s 1 ) k 2 k + s 3 k 2 + ( n 1 ) ( s 1 )
In order that this section be a pandiagonal Latin square, necessary and sufficient conditions are
( n s + 1 , n ) = 1 , ( n k + 2 , n ) = 1 , ( k s 1 , n ) = 1 , ( n k s + 3 , n ) = 1 .
i.e.,
( s 1 , n ) = 1 , ( k 2 , n ) = 1 , ( s k + 1 , n ) = 1 , ( k + s 3 , n ) = 1 .
These conditions are included in ( 1 ) ( 4 ) .
The diagonal section D H F B is
1 n + k ( n 1 ) n + ( n 1 ) k ( n 2 ) n + s + 1 n + s + k
It is a pandiagonal Latin square if, and only if,
( n + s + 1 1 , n ) = 1 , ( n + k 1 , n ) = 1 , ( s + 1 k , n ) = 1 , ( n + s + k 1 , n ) = 1 .
i.e.,
( s , n ) = 1 , ( k 1 , n ) = 1 , ( s k + 1 , n ) = 1 , ( s + k 1 , n ) = 1 .
These conditions are also included in ( 1 ) ( 4 ) .
The diagonal section C G E A is
n 2 n 1 + k n 2 ( n 1 ) + ( n 1 ) k 2 n 2 + s 2 n 2 + ( s 1 ) + k
It is a pandiagonal Latin square if, and only if,
( k 1 , n ) = 1 , ( s 2 , n ) = 1 , ( k s + 1 , n ) = 1 , ( s + k 3 , n ) = 1 .
These conditions are also included in ( 1 ) ( 4 ) .
The diagonal section A B G H is
( n 1 ) n + ( n 1 ) s ( n 2 ) ( n 1 ) n + ( n 1 ) s ( n 2 ) + 1 n 2 ( n 1 ) + ( n 1 ) s n + k + ( n 2 ) ( s 1 ) n + k + ( n 2 ) ( s 1 ) + 1 2 n 1 + k + ( n 2 ) ( s 1 )
It is a pandiagonal Latin square if, and only if,
( k s , n ) = 1 , ( s k + 1 , n ) = 1 , ( k s + 1 , n ) = 1 .
This is the condition ( 3 ) .
The diagonal section A D G F is
1 1 + ( s 1 ) 1 + ( n 1 ) ( s 1 ) k + 1 k + 1 + ( s 1 ) k + 1 + ( n 1 ) ( s 1 )
It is a pandiagonal Latin square if, and only if,
( s 1 , n ) = 1 , ( k , n ) = 1 , ( k s + 1 , n ) = 1 , ( k + s 1 , n ) = 1 .
These conditions are included in ( 1 ) ( 4 ) . The proof is completed. □
 Remark 1. 
We observe that if T k , s ( i 1 , i 2 , , i n ) is a pandiagonal Latin cube, so is T s , k ( i 1 , i 2 , , i n ) . Since conditions ( 1 ) ( 4 ) of Theorem 2 are symmetric with respect to s, k.
 Corollary 1. 
Let n be a prime number. Then if
3 k n 1 , 3 s n 1 ;
k s , k s + 1 , s k + 1 ;
k + s 1 n , k + s 2 n , k + s 3 n ,
are satisfied, T k , s ( i 1 , i 2 , , i n ) is a pandiagonal Latin cube.
 Proof. 
Immediate from Theorem 2. □
Now we give the second main theorem of this paper.
 Theorem 3. 
Suppose T k i , s i ( j 1 , j 2 , , j n ) ( i = 1 , 2 , 3 ) are pandiagonal Latin cubes. They are orthogonal if, and only if, the determinant
Δ = s 1 k 1 1 s 2 k 2 1 s 3 k 3 1
and n are coprime, i.e., ( Δ , n ) = 1 .
 Proof. 
Without loss of generality it suffices to prove that ( Δ , n ) = 1 if, and only if, number 1, which is on the common vertex ( 1 , 1 , 1 ) of T k i , s i ( 1 , 2 , , n ) ( i = 1 , 2 , 3 ) , cannot appear on another common place. Indeed, if 1 appears again on common place ( i , j , r ) , then there are relations
1 + ( i 1 ) ( s i 1 ) + ( r 1 ) ( k i 1 ) + ( j 1 ) 1 ( m o d n ) ( i = 1 , 2 , 3 )
Thus there exist integers u 1 , u 2 , u 3 , such that
( i 1 ) ( s i 1 ) + ( r 1 ) ( k i 1 ) + ( j 1 ) = u i n ( i = 1 , 2 , 3 )
This is a system of linear equations for ( i 1 ) , ( j 1 ) , ( r 1 ) . The determinant of coefficient matrix is
s 1 1 k 1 1 1 s 2 1 k 2 1 1 s 3 1 k 3 1 1 = s 1 k 1 1 s 2 k 2 1 s 3 k 3 1 = Δ
From cyclic group theory [24], ( Δ , n ) = 1 if, and only if, there is a unique solution of system (1) with 1 i n , 1 j n , 1 r n . Since ( i , j , k ) = ( 1 , 1 , 1 ) is a solution, there is no other solution. The proof is complete. □
From this theorem we obtain the following result.
 Corollary 2. 
Let T k i , s i ( 1 , 2 , , n ) ( i = 1 , 2 , 3 ) be three pandiagonal Latin cubes of order n. In order that they are orthogonal, two necessary conditions are
( i ) Not all of s i + k i ( i = 1 , 2 , 3 ) are the same;
( i i ) Not all of s i k i ( i = 1 , 2 , 3 ) are the same.
We prove ( i ) . If s 1 + k 1 = s 2 + k 2 = s 3 + k 3 , then
Δ = s 1 k 1 1 s 2 k 2 1 s 3 k 3 1 = 0
It is not coprime with n. The proof of ( i i ) is similar.
The following theorem give a method of generating orthogonal pandiagonal Latin cubes from a given pandiagonal Latin cube.
 Theorem 4. 
Suppose T k , s ( i 1 , i 2 , , i n ) is a pandiagonal Latin cube. Choose integers α, β, 3 α n 1 , 3 β n 1 , such that
1 + α ( s 1 ) k ( m o d n )
1 + β ( s 1 ) 2 ( m o d n )
Then T k , s ( i 1 , i 2 , , i n ) , T s , k ( j 1 , j 2 , , j n ) , T α + 1 , β + 1 ( k 1 , k 2 , , k n ) are orthogonal pandiagonal Latin cubes.
 Proof. 
The proof is performed in five steps. Steps (a) to (d) show that T α + 1 , β + 1 is a pandiagonal Latin cube. Step (e) shows that T k , s , T s , k , T α + 1 , β + 1 are orthogonal. For convenience we denote α + 1 , β + 1 by α , β , respectively.
(a) We prove ( 1 ) of Theorem 2, i.e.,
( α , n ) = 1 , ( α 1 , n ) = 1 , ( α 2 , n ) = 1
1. If ( α , n ) 1 , i.e., α and n have a common factor d which is larger than 1:
α + 1 = α = p d
n = q d
where p and q are positive integer, ( p , q ) = 1 . Substituting (4) into (2) yields
k ( p d 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k p d ( s 1 ) s + 2 ( m o d n )
This can be written as
k + s 2 p d ( s 1 ) ( m o d n )
This means d is a common factor of k + s 2 and n, i.e., ( k + s 2 , n ) 1 . This contradicts assumptions. Thus, the relation ( α , n ) = 1 is true.
2. If ( α 1 , n ) 1 , then there is d > 1 which is a common factor of α 1 and n. So we obtain
α = α 1 = p d
n = q d
Substituting (6) into (2) we obtain
k p d ( s 1 ) + 1 ( m o d n )
i.e.,
k 1 p d ( s 1 ) ( m o d n )
Therefore, ( k 1 , n ) 1 . This contradicts assumptions, so that we have ( α 1 , n ) = 1 .
3. If ( α 2 , n ) 1 , then there exists an integer d > 1 , such that
α 1 = α 2 = p d
n = q d
Substituting (8) into (2) yields
k ( p d + 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k s p d ( s 1 ) ( m o d n )
So ( k s , n ) 1 . This is a contradiction. Thus ( α 2 , n ) = 1 .
(b) We prove ( 2 ) of Theorem 2, i.e.,
( β , n ) = 1 , ( β 1 , n ) = 1 , ( β 2 , n ) = 1
1. If ( β , n ) 1 , then there exists d > 1 which is a common factor of β and n:
β + 1 = β = p d
n = q d
Substituting (10) into (3), we obtain
2 ( p d 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
s p d ( s 1 ) ( m o d n )
This means ( s , n ) 1 . This is a contradiction. So ( β , n ) = 1 .
2. If ( β 1 , n ) 1 , then there exists d > 1 which is a common factor of β 1 and n:
β = β = p d
n = q d
Substituting (12) into (3) we obtain
2 p d ( s 1 ) + 1 ( m o d n )
i.e.,
1 p d ( s 1 ) ( m o d n )
This means d is a factor of number 1, a contradiction. So ( β 1 , n ) = 1 .
3. If ( β 2 , n ) 1 , then β 2 and n have a common factor d > 1 :
β 1 = β 2 = p d
n = q d
Substituting (14) into (3) yields
2 ( p d + 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
s p d ( s 1 ) ( m o d n )
So ( s , n ) 1 . This is a contradiction. Thus ( β 2 , n ) = 1 .
(c) We prove ( 3 ) of Theorem 2, i.e.,
( α β , n ) = 1 , ( α β + 1 , n ) = 1 , ( β α + 1 , n ) = 1
1. If ( α β , n ) 1 , then there exists d > 1 which is a common factor of α β and n:
α β = α β = p d
n = q d
Substituting (16) into (2) we obtain
k ( β + p d ) ( s 1 ) + 1 ( m o d n )
i.e.,
k [ β ( s 1 ) + 1 ] + p d ( s 1 ) ( m o d n )
By applying (3), we obtain
k 2 p d ( s 1 ) ( m o d n )
This means ( k 2 , n ) 1 . This is a contradiction. So ( α β , n ) = 1 .
2. If ( α β + 1 , n ) 1 , then there exists d > 1 which is a common factor of α β + 1 and n:
α β + 1 = α β + 1 = p d
n = q d
Substituting (18) into (2) yields
k ( β + p d 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k [ β ( s 1 ) + 1 ] + p d ( s 1 ) ( s 1 ) ( m o d n )
Because of (3), this can be written as
k 2 + p d ( s 1 ) ( s 1 ) ( m o d n )
i.e.,
k + s 3 p d ( s 1 ) ( m o d n )
This means ( k + s 3 , n ) 1 . This contradicts the assumption. So ( α β + 1 , n ) = 1 .
3. If ( β α + 1 , n ) 1 , then there exists d > 1 which is a common factor of β α + 1 and n such that
β α + 1 = β α + 1 = p d
n = q d
Substituting (20) into (2) yields
k ( β p d + 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k [ β ( s 1 ) + 1 ] p d ( s 1 ) + ( s 1 ) ( m o d n )
Because of (3), this can be written as
k 2 p d ( s 1 ) + ( s 1 ) ( m o d n )
i.e.,
s k + 1 p d ( s 1 ) ( m o d n )
This means ( s k + 1 , n ) 1 . This contradicts assumption. So ( β α + 1 , n ) = 1 .
(d) We prove ( 4 ) of Theorem 2, i.e.,
( α + β 1 , n ) = 1 , ( α + β 2 , n ) = 1 , ( α + β 3 , n ) = 1
1. If ( α + β 1 , n ) 1 , then α + β 1 and n have a common factor d > 1 :
α + β + 1 = α + β 1 = p d
n = q d
Substituting (22) into (2) yields
k ( p d β 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k p d ( s 1 ) β ( s 1 ) ( s 1 ) + 1 ( m o d n )
From (3), we obtain
k + s 1 p d ( s 1 ) ( m o d n )
So ( k + s 1 , n ) 1 . This is a contradiction. Thus ( α + β 1 , n ) = 1 .
2. If ( α + β 2 , n ) 1 , then α + β 2 and n have a common factor d > 1 :
α + β = α + β 2 = p d
n = q d
Substituting (24) into (2) yields
k ( p d β ) ( s 1 ) + 1 ( m o d n )
i.e.,
k p d ( s 1 ) β ( s 1 ) + 1 ( m o d n )
Using (3), we obtain
k p d ( s 1 ) ( m o d n )
So ( k , n ) 1 . This is a contradiction. Thus ( α + β 2 , n ) = 1 .
3. If ( α + β 3 , n ) 1 , then α + β 3 and n have a common factor d > 1 :
α + β 1 = α + β 3 = p d
n = q d
Substituting (26) into (2) yields
k ( p d β + 1 ) ( s 1 ) + 1 ( m o d n )
i.e.,
k p d ( s 1 ) β ( s 1 ) + ( s 1 ) + 1 ( m o d n )
It follows from (3) that
k s + 1 p d ( s 1 ) ( m o d n )
So ( k s + 1 , n ) 1 . This is a contradiction. Thus ( α + β 3 , n ) = 1 .
(a), (b), (c), and (d) above show that α + 1 , β + 1 satisfy the conditions of Theorem 2, so that T α + 1 , β + 1 is a pandiagonal magic cube. Now we have three pandiagonal magic cubes T k , s , T s , k , T α + 1 , β + 1 .
(e) We now turn to prove the orthogonality of T k , s , T s , k , T α + 1 , β + 1 . First, construct three determinants:
Δ = s k 1 k s 1 α + 1 β + 1 1 = s 1 k 1 1 k 1 s 1 1 α β 1
Δ ( s 1 ) = s 1 k 1 1 k 1 s 1 1 α ( s 1 ) β ( s 1 ) s 1
Δ = s 1 k 1 1 k 1 s 1 1 k 1 1 s 1 = ( s k ) [ ( s + k 2 ) ( s 1 ) k ]
From assumptions of (2), (3), we have ( s 1 , n ) = 1 . Therefore, we obtain
( Δ , n ) = 1 ( Δ ( s 1 ) , n ) = 1 ( Δ , n ) = 1
Note that ( s + k 2 ) ( s 1 ) k = ( s 2 ) ( k + s 1 ) , so ( ( s + k 2 ) ( s 1 ) k , n ) = 1 . Because T k , s ( 1 , 2 , , n ) is a pandiagonal Latin square (third condition (2) and first condition (4) in Theorem 2), ( ( s + k 2 ) ( s 1 ) k , n ) = 1 . Compounded with ( s k , n ) = 1 , we have ( Δ , n ) = 1 , so ( Δ , n ) = 1 . From Theorem 3 it follows that T k , s , T s , k , T α + 1 , β + 1 are orthogonal. This completes the proof. □
The following theorem give another method to construct orthogonal pandiagonal Latin cubes.
 Theorem 5. 
Suppose 3 k n 1 , 3 s n 1 . If the conditions
(1) ( k + i , n ) = 1 ( i = 2 , 1 , 0 , 1 , 2 ) ;
(2) ( s + i , n ) = 1 ( i = 2 , 1 , 0 , 1 , 2 ) ;
(3) ( k s , n ) = 1 ( s k + 1 , n ) = 1 , ( k s + 1 , n ) = 1 ;
(4) ( k + s + i , n ) = 1 ( i = 3 , 2 , 1 , 0 , 1 , 2 , 3 )
are satisfied, then T k , s , T s , k , T n k , n s , T n s , n k are all pandiagonal Latin cubes and three of them are orthogonal.
 Proof. 
For { s , k } or { n k , n s } , the conditions of Theorem 2 are satisfied. Then T k , s , T s , k , T n k , n s , T n s , n k are all pandiagonal Latin cubes.
In addition,
Δ = s k 1 k s 1 n s n k 1 = 2 n ( k s ) 2 ( k s ) ( k + s ) ,
and n are coprime if, and only if, ( 2 ( k s ) ( k + s ) , n ) = 1 . However, this is true because ( 2 , n ) = 1 , ( k s , n ) = 1 , ( k + s , n ) = 1 .
Hence from Theorem 3, any three of them are orthogonal. This completes the proof. □
Now, we can construct a pandiagonal magic cube by using Natural Aux Cube. We obtain the following theorem.
 Theorem 6. 
Let T k i , s i ( j 1 ( i ) , j 2 ( i ) , , j n ( i ) ) = ( l t u v ( i ) ) ( i = 1 , 2 , 3 ) be orthogonal pandiagonal Latin cubes. Construct integers cube C = ( c t u v ) , where
c t u v = n ( l t u v ( 1 ) 1 ) + l t u v ( 2 ) + n 2 ( l t u v ( 3 ) 1 ) ( t , u , v = 1 , 2 , , n )
Then C is a pandiagonal magic cube.
 Proof. 
Consider any section or diagonal S of C. According to the properties of pandiagonal Latin cubes, l t u v ( 1 ) , l t u v ( 2 ) , l t u v ( 3 ) take the complete permutation of 1 , 2 , , n on any row, column or pandiagonal line of S. When adding the elements of C on such a row, column, or pandiagonal, there is
c t u v = n l t u v ( 1 ) 1 + l t u v ( 2 ) + n 2 l t u v ( 3 ) 1 = n i = 1 n i n + i = 1 n i + n 2 i = 1 n i n = n 2 ( n 1 ) 2 + n ( n + 1 ) 2 + n 3 ( n 1 ) 2 = n 1 + n 3 2
They are all equal to magic sum, so C is a pandiagonal magic cube. □
If a set of orthogonal pandiagonal Latin cubes is given, we can construct 6 ( n ! ) 3 pandiagonal magic squares. This is because there exist six arrangements of three pandiagonal Latin squares and there are n ! permutations of 1 , 2 , , n .
Next, we give some examples of satisfying the Theorems and Corollaries.
 Example 1. 
For n = 11, computer studies show that there exist 23 pandiagonal Latin cubes which satisfy the conditions of Corollary 1, and there are 9870 orthogonal sets. For example, three orthogonal pandiagonal Latin cube sets are { T 3 , 5 , T 6 , 9 , T 4 , 7 } , { T 6 , 10 , T 3 , 8 , T 5 , 10 } , { T 6 , 10 , T 3 , 8 , T 6 , 3 } .
 Example 2. 
Suppose n = 143.
Let k 1 = 67 , s 1 = 4 , k 2 = 96 , s 2 = 5 , k 3 = 120 , s 3 = 8 .
Then they satisfy the conditions of Theorem 3.
 Example 3. 
For n = 121, let
k = 29 , s = 21 , α + 1 = 75 , β + 1 = 116 .
k = 21 , s = 29 , α + 1 = 19 , β + 1 = 14
k = 5 , s = 109 , α + 1 = 28 , β + 1 = 97
These are three sets of parameters such that orthogonal pandiagonal Latin cubes satisfy the conditions of Theorem 4.

5. Further Property

The pandiagonal magic cube considered in the foregoing sections has further interesting properties.
Let A B C D - E F G H in Figure 2 be an integer cube, and N M - K L be a pandiagonal line on the top surface A B C D . Using two planes which are parallel to the edge D H , we can cut A B C D - E F G H into three parts. Let cross sections be N M M N and K L L K . Through parallel translation, we obtain a square matrix N M K L L K M N (or K L N M M N L K ), which is called a pandiagonal plane. There are six sets of such planes, where each set has n pandiagonal planes which are parallel to each other.
A pandiagonal plane of a pandiagonal magic cube is also a pandiagonal magic square. In fact, let us begin with a pandiagonal Latin cube. Let A B C D - E F G H be a pandiagonal Latin cube, then its each pandiagonal plane has the same generating transformation with the diagonal plane parallel to itself. For example, the diagonal plane A C G E of T 3 , 5 ( 1 , 2 , , 11 ) of Section 3 is given by
8 5 2 10 7 4 1 9 6 3 11 10 7 4 1 9 6 3 11 8 5 2 1 9 6 3 11 8 5 2 10 7 4 3 11 8 5 2 10 7 4 1 9 6 5 2 10 7 4 1 9 6 3 11 8 7 4 1 9 6 3 11 8 5 2 10 9 6 3 11 8 5 2 10 7 4 1 11 8 5 2 10 7 4 1 9 6 3 2 10 7 4 1 9 6 3 11 8 5 4 1 9 6 3 11 8 5 2 10 7 6 3 11 8 5 2 10 7 4 1 9
A pandiagonal plane parallel to A C G E is
6 3 11 8 5 2 10 7 4 1 9 8 5 2 10 7 4 1 9 6 3 11 10 7 4 1 9 6 3 11 8 5 2 1 9 6 3 11 8 5 2 10 7 4 3 11 8 5 2 10 7 4 1 9 6 5 2 10 7 4 1 9 6 3 11 8 7 4 1 9 6 3 11 8 5 2 10 9 6 3 11 8 5 2 10 7 4 1 11 8 5 2 10 7 4 1 9 6 3 2 10 7 4 1 9 6 3 11 8 5 4 1 9 6 3 11 8 5 2 10 7
They are all generated by T 4 . This fact can be proved in general. Because of this and the fact that all of diagonal planes are pandiagonal magic squares, pandiagonal planes are all pandiagonal magic squares for a pandiagonal magic cube.
As an example, in Appendix B, we give a set of pandiagonal planes of the pandiagonal magic cube shown in Appendix A. They are cross sections of another pandiagonal magic cube. In other words, if A = ( a i j k ) is a pandiagonal magic cube, then B = ( b i j k ) = ( a j [ k j + 1 ] i ) (here [ ] expresses modulo n, we define that [0] = n) is also a pandiagonal magic cube. Similarly, ( b i j k ) = ( a j [ k + j 1 ] i ) , ( b i j k ) = ( a [ k j + 1 ] i j ) , B = ( b i j k ) = ( a i j [ k j + 1 ] ) , ( b i j k ) = ( a [ k + j 1 ] i j ) , ( b i j k ) = ( a i j [ k + j 1 ] ) are all pandiagonal magic cubes. Appendix B shows B = ( b i j k ) = ( a j [ k j + 1 ] i ) .

6. Conclusions

In this paper, we have defined a kind of magic cube called pandiagonal magic cube, whose cross sections and diagonal planes are pandiagonal magic squares. We have given a construction method for this pandiagonal magic cube. First, we construct three orthogonal pandiagonal Latin cubes, join them into a cube of three-tuples, and then replace entries by entries of some auxiliary cube so that the subscripts are these three-tuple. The last cube is a pandiagonal magic cube. If we have a pandiagonal Latin cube, Theorems 4 and 5 tell us how to construct a set of orthogonal pandiagonal Latin cubes. Some examples are also included. The construction method of pandiagonal magic cubes proposed in this paper can be extended to higher dimensions.

Author Contributions

Methodology, Writing—original draft, Writing—review and editing, F.L.; Writing—review and editing, H.X. All authors have read and agreed to the published version of the manuscript.

Funding

This research received no external funding.

Data Availability Statement

Data are contained within the article.

Conflicts of Interest

The authors declare no conflict of interest.

Appendix A

The following are the sections of the pandiagonal magic cube generated by T 3 , 5 ( 1 , 2 , , 11 ) , T 6 , 9 ( 1 , 2 , , 11 ) and T 4 , 7 ( 1 , 2 , , 11 ) .
Section 1 1 134 267 400 533 666 799 932 1065 1198 1331 779 912 1045 1167 1300 102 235 247 380 513 646 215 348 481 493 626 759 881 1014 1147 1280 82 861 994 1127 1260 62 195 328 461 594 716 728 308 430 563 696 829 962 974 1107 1240 42 175 1075 1208 1220 22 144 277 410 543 676 809 942 390 523 656 789 922 1055 1188 1310 112 124 257 1157 1290 92 225 358 370 503 636 769 902 1024 604 616 738 871 1004 1137 1270 72 205 338 471 1250 52 185 318 451 573 706 839 851 984 1117 686 819 952 1085 1097 1230 32 165 287 420 553
Section 2 391 524 657 790 923 1056 1178 1311 113 125 258 1158 1291 93 226 359 371 504 637 770 892 1025 605 606 739 872 1005 1138 1271 73 206 339 472 1251 53 186 319 441 574 707 840 852 985 1118 687 820 953 1086 1098 1231 33 155 288 421 554 2 135 268 401 534 667 800 933 1066 1199 1321 780 913 1035 1168 1301 103 236 248 381 514 647 216 349 482 494 627 749 882 1015 1148 1281 83 862 995 1128 1261 63 196 329 462 584 717 729 298 431 564 697 830 963 975 1108 1241 43 176 1076 1209 1221 12 145 278 411 544 677 810 943
Section 3 781 903 1036 1169 1302 104 237 249 382 515 648 217 350 483 495 617 750 883 1016 1149 1282 84 863 996 1129 1262 64 197 330 452 585 718 730 299 432 565 698 831 964 976 1109 1242 44 166 1077 1210 1211 13 146 279 412 545 678 811 944 392 525 658 791 924 1046 1179 1312 114 126 259 1159 1292 94 227 360 372 505 638 760 893 1026 595 607 740 873 1006 1139 1272 74 207 340 473 1252 54 187 309 442 575 708 841 853 986 1119 688 821 954 1087 1099 1232 23 156 289 422 555 3 136 269 402 535 668 801 934 1067 1189 1322
Section 4 1160 1293 95 228 361 373 506 628 761 894 1027 596 608 741 874 1007 1140 1273 75 208 341 463 1253 55 177 310 443 576 709 842 854 987 1120 689 822 955 1088 1100 1222 24 157 290 423 556 4 137 270 403 536 669 802 935 1057 1190 1323 771 904 1037 1170 1303 105 238 250 383 516 649 218 351 484 485 618 751 884 1017 1150 1283 85 864 997 1130 1263 65 198 320 453 586 719 731 300 433 566 699 832 965 977 1110 1243 34 167 1078 1200 1212 14 147 280 413 546 679 812 945 393 526 659 792 914 1047 1180 1313 115 127 260
Section 5 219 352 474 486 619 752 885 1018 1151 1284 86 865 998 1131 1264 66 188 321 454 587 720 732 301 434 567 700 833 966 978 1111 1233 35 168 1068 1201 1213 15 148 281 414 547 680 813 946 394 527 660 782 915 1048 1181 1314 116 128 261 1161 1294 96 229 362 374 496 629 762 895 1028 597 609 742 875 1008 1141 1274 76 209 331 464 1254 45 178 311 444 577 710 843 855 988 1121 690 823 956 1089 1090 1223 25 158 291 424 557 5 138 271 404 537 670 803 925 1058 1191 1324 772 905 1038 1171 1304 106 239 251 384 517 639
Section 6 598 610 743 876 1009 1142 1275 77 199 332 465 1244 46 179 312 445 578 711 844 856 989 1122 691 824 957 1079 1091 1224 26 159 292 425 558 6 139 272 405 538 671 793 926 1059 1192 1325 773 906 1039 1172 1305 107 240 252 385 507 640 220 342 475 487 620 753 886 1019 1152 1285 87 866 999 1132 1265 56 189 322 455 588 721 733 302 435 568 701 834 967 979 1101 1234 36 169 1069 1202 1214 16 149 282 415 548 681 814 936 395 528 650 783 916 1049 1182 1315 117 129 262 1162 1295 97 230 363 364 497 630 763 896 1029
Section 7 867 1000 1133 1255 57 190 323 456 589 722 734 303 436 569 702 835 968 969 1102 1235 37 170 1070 1203 1215 17 150 283 416 549 682 804 937 396 518 651 784 917 1050 1183 1316 118 130 263 1163 1296 98 231 353 365 498 631 764 897 1030 599 611 744 877 1010 1143 1276 67 200 333 466 1245 47 180 313 446 579 712 845 857 990 1112 692 825 947 1080 1092 1225 27 160 293 426 559 7 140 273 406 539 661 794 927 1060 1193 1326 774 907 1040 1173 1306 108 241 253 375 508 641 210 343 476 488 621 754 887 1020 1153 1286 88
Section 8 1246 48 181 314 447 580 713 846 858 980 1113 693 815 948 1081 1093 1226 28 161 294 427 560 8 141 274 407 529 662 795 928 1061 1194 1327 775 908 1041 1174 1307 109 242 243 376 509 642 211 344 477 489 622 755 888 1021 1154 1287 78 868 1001 1123 1256 58 191 324 457 590 723 735 304 437 570 703 836 958 970 1103 1236 38 171 1071 1204 1216 18 151 284 417 550 672 805 938 386 519 652 785 918 1051 1184 1317 119 131 264 1164 1297 99 221 354 366 499 632 765 898 1031 600 612 745 878 1011 1144 1266 68 201 334 467
Section 9 305 438 571 704 826 959 971 1104 1237 39 172 1072 1205 1217 19 152 285 418 540 673 806 939 387 520 653 786 919 1052 1185 1318 120 132 254 1165 1298 89 222 355 367 500 633 766 899 1032 601 613 746 879 1012 1134 1267 69 202 335 468 1247 49 182 315 448 581 714 847 848 981 1114 683 816 949 1082 1094 1227 29 162 295 428 561 9 142 275 397 530 663 796 929 1062 1195 1328 776 909 1042 1175 1308 110 232 244 377 510 643 212 345 478 490 623 756 889 1022 1155 1277 79 869 991 1124 1257 59 192 325 458 591 724 736
Section 10 684 817 950 1083 1095 1228 30 163 296 429 551 10 143 265 398 531 664 797 930 1063 1196 1329 777 910 1043 1176 1309 100 233 245 378 511 644 213 346 479 491 624 757 890 1023 1145 1278 80 859 992 1125 1258 60 193 326 459 592 725 737 306 439 572 694 827 960 972 1105 1238 40 173 1073 1206 1218 20 153 286 408 541 674 807 940 388 521 654 787 920 1053 1186 1319 121 122 255 1166 1288 90 223 356 368 501 634 767 900 1033 602 614 747 880 1002 1135 1268 70 203 336 469 1248 50 183 316 449 582 715 837 849 982 1115
Section 11 1074 1207 1219 21 154 276 409 542 675 808 941 389 522 655 788 921 1054 1187 1320 111 123 256 1156 1289 91 224 357 369 502 635 768 901 1034 603 615 748 870 1003 1136 1269 71 204 337 470 1249 51 184 317 450 583 705 838 850 983 1116 685 818 951 1084 1096 1229 31 164 297 419 552 11 133 266 399 532 665 798 931 1064 1197 1330 778 911 1044 1177 1299 101 234 246 379 512 645 214 347 480 492 625 758 891 1013 1146 1279 81 860 993 1126 1259 61 194 327 460 593 726 727 307 440 562 695 828 961 973 1106 1239 41 174

Appendix B

The following is a set of pandiagonal planes of the pandiagonal magic cube in Appendix A. They form another pandiagonal magic cube.
Section 1 1 819 185 871 358 1055 410 1107 594 1280 646 779 134 952 318 1004 370 1188 543 1240 716 82 215 912 267 1085 451 1137 503 1310 676 42 728 861 348 1045 400 1097 573 1270 636 112 809 175 308 994 481 1167 533 1230 706 72 769 124 942 1075 430 1127 493 1300 666 32 839 205 902 257 390 1208 563 1260 626 102 799 165 851 338 1024 1157 523 1220 696 62 759 235 932 287 984 471 604 1290 656 22 829 195 881 247 1065 420 1117 1250 616 92 789 144 962 328 1014 380 1198 553 686 52 738 225 922 277 974 461 1147 513 1331
Section 2 391 1209 564 1261 627 103 800 155 852 339 1025 1158 524 1221 697 63 749 236 933 288 985 472 605 1291 657 12 830 196 882 248 1066 421 1118 1251 606 93 790 145 963 329 1015 381 1199 554 687 53 739 226 923 278 975 462 1148 514 1321 2 820 186 872 359 1056 411 1108 584 1281 647 780 135 953 319 1005 371 1178 544 1241 717 83 216 913 268 1086 441 1138 504 1311 677 43 729 862 349 1035 401 1098 574 1271 637 113 810 176 298 995 482 1168 534 1231 707 73 770 125 943 1076 431 1128 494 1301 667 33 840 206 892 258
Section 3 781 136 954 309 1006 372 1179 545 1242 718 84 217 903 269 1087 442 1139 505 1312 678 44 730 863 350 1036 402 1099 575 1272 638 114 811 166 299 996 483 1169 535 1232 708 74 760 126 944 1077 432 1129 495 1302 668 23 841 207 893 259 392 1210 565 1262 617 104 801 156 853 340 1026 1159 525 1211 698 64 750 237 934 289 986 473 595 1292 658 13 831 197 883 249 1067 422 1119 1252 607 94 791 146 964 330 1016 382 1189 555 688 54 740 227 924 279 976 452 1149 515 1322 3 821 187 873 360 1046 412 1109 585 1282 648
Section 4 1160 526 1212 699 65 751 238 935 290 987 463 596 1293 659 14 832 198 884 250 1057 423 1120 1253 608 95 792 147 965 320 1017 383 1190 556 689 55 741 228 914 280 977 453 1150 516 1323 4 822 177 874 361 1047 413 1110 586 1283 649 771 137 955 310 1007 373 1180 546 1243 719 85 218 904 270 1088 443 1140 506 1313 679 34 731 864 351 1037 403 1100 576 1273 628 115 812 167 300 997 484 1170 536 1222 709 75 761 127 945 1078 433 1130 485 1303 669 24 842 208 894 260 393 1200 566 1263 618 105 802 157 854 341 1027
Section 5 219 905 271 1089 444 1141 496 1314 680 35 732 865 352 1038 404 1090 577 1274 629 116 813 168 301 998 474 1171 537 1223 710 76 762 128 946 1068 434 1131 486 1304 670 25 843 209 895 261 394 1201 567 1264 619 106 803 158 855 331 1028 1161 527 1213 700 66 752 239 925 291 988 464 597 1294 660 15 833 188 885 251 1058 424 1121 1254 609 96 782 148 966 321 1018 384 1191 557 690 45 742 229 915 281 978 454 1151 517 1324 5 823 178 875 362 1048 414 1111 587 1284 639 772 138 956 311 1008 374 1181 547 1233 720 86
Section 6 598 1295 650 16 834 189 886 252 1059 425 1122 1244 610 97 783 149 967 322 1019 385 1192 558 691 46 743 230 916 282 979 455 1152 507 1325 6 824 179 876 363 1049 415 1101 588 1285 640 773 139 957 312 1009 364 1182 548 1234 721 87 220 906 272 1079 445 1142 497 1315 681 36 733 866 342 1039 405 1091 578 1275 630 117 814 169 302 999 475 1172 538 1224 711 77 763 129 936 1069 435 1132 487 1305 671 26 844 199 896 262 395 1202 568 1265 620 107 793 159 856 332 1029 1162 528 1214 701 56 753 240 926 292 989 465
Section 7 867 343 1040 406 1092 579 1276 631 118 804 170 303 1000 476 1173 539 1225 712 67 764 130 937 1070 436 1133 488 1306 661 27 845 200 897 263 396 1203 569 1255 621 108 794 160 857 333 1030 1163 518 1215 702 57 754 241 927 293 990 466 599 1296 651 17 835 190 887 253 1060 426 1112 1245 611 98 784 150 968 323 1020 375 1193 559 692 47 744 231 917 283 969 456 1153 508 1326 7 825 180 877 353 1050 416 1102 589 1286 641 774 140 947 313 1010 365 1183 549 1235 722 88 210 907 273 1080 446 1143 498 1316 682 37 734
Section 8 1246 612 99 785 151 958 324 1021 376 1194 560 693 48 745 221 918 284 970 457 1154 509 1327 8 815 181 878 354 1051 417 1103 590 1287 642 775 141 948 314 1011 366 1184 550 1236 723 78 211 908 274 1081 447 1144 499 1317 672 38 735 868 344 1041 407 1093 580 1266 632 119 805 171 304 1001 477 1174 529 1226 713 68 765 131 938 1071 437 1123 489 1307 662 28 846 201 898 264 386 1204 570 1256 622 109 795 161 858 334 1031 1164 519 1216 703 58 755 242 928 294 980 467 600 1297 652 18 836 191 888 243 1061 427 1113
Section 9 305 991 478 1175 530 1227 714 69 766 132 939 1072 438 1124 490 1308 663 29 847 202 899 254 387 1205 571 1257 623 110 796 162 848 335 1032 1165 520 1217 704 59 756 232 929 295 981 468 601 1298 653 19 826 192 889 244 1062 428 1114 1247 613 89 786 152 959 325 1022 377 1195 561 683 49 746 222 919 285 971 458 1155 510 1328 9 816 182 879 355 1052 418 1104 591 1277 643 776 142 949 315 1012 367 1185 540 1237 724 79 212 909 275 1082 448 1134 500 1318 673 39 736 869 345 1042 397 1094 581 1267 633 120 806 172
Section 10 684 50 747 223 920 286 972 459 1145 511 1329 10 817 183 880 356 1053 408 1105 592 1278 644 777 143 950 316 1002 368 1186 541 1238 725 80 213 910 265 1083 449 1135 501 1319 674 40 737 859 346 1043 398 1095 582 1268 634 121 807 173 306 992 479 1176 531 1228 715 70 767 122 940 1073 439 1125 491 1309 664 30 837 203 900 255 388 1206 572 1258 624 100 797 163 849 336 1033 1166 521 1218 694 60 757 233 930 296 982 469 602 1288 654 20 827 193 890 245 1063 429 1115 1248 614 90 787 153 960 326 1023 378 1196 551
Section 11 1074 440 1126 492 1299 665 31 838 204 901 256 389 1207 562 1259 625 101 798 164 850 337 1034 1156 522 1219 695 61 758 234 931 297 983 470 603 1289 655 21 828 194 891 246 1064 419 1116 1249 615 91 788 154 961 327 1013 379 1197 552 685 51 748 224 921 276 973 460 1146 512 1330 11 818 184 870 357 1054 409 1106 593 1279 645 778 133 951 317 1003 369 1187 542 1239 726 81 214 911 266 1084 450 1136 502 1320 675 41 727 860 347 1044 399 1096 583 1269 635 111 808 174 307 993 480 1177 532 1229 705 71 768 123 941

References

  1. Sesiano, J. Magic Squares; Springer: Berlin/Heidelberg, Germany, 2019. [Google Scholar]
  2. Ganapathy, G.; Mani, K. Add-on security model for public-key cryptosystem based on magic square implementation. In Proceedings of the World Congress on Engineering and Computer Science, San Francisco, CA, USA, 20–22 October 2009; Volume 1, pp. 22–27. [Google Scholar]
  3. Loly, P.D. Franklin squares: A chapter in the scientific studies of magical squares. Complex Syst. Champaign 2007, 17, 143. [Google Scholar]
  4. Ollerenshaw, K.; Bree, D. Most-perfect pandiagonal magic squares. Math. Today Bull. Inst. Math. Its Appl. 1998, 34, 139–143. [Google Scholar]
  5. Swetz, F.J.; Luo, R. Legacy of the Luoshu. Aust. Math. Soc. 2008, 184. [Google Scholar]
  6. Fucheng, L. Construction of Pandiagonal Magic Squarey of Odd Order. Chin. J. Eng. 1992, 14, 594–598. [Google Scholar]
  7. Fucheng, L. Pandiagonal Magic Squares. Chin. J. Eng. 2001, 23, 6–8. [Google Scholar]
  8. Keedwell, A.D.; Denes, J. Latin Squares and Their Applications; Elsevier: Amsterdam, The Netherlands, 2015. [Google Scholar]
  9. Xu, C.X.; Lu, Z.W. Pandiagonal magic squares. Lect. Notes Comput. Sci. 1995, 959, 388–391. [Google Scholar]
  10. Li, W.; Wu, D.; Pan, F. A construction for doubly pandiagonal magic squares. Discret. Math. 2012, 312, 479–485. [Google Scholar] [CrossRef] [Green Version]
  11. Benson, W.H.; Jacoby, O. Magic Cubes: New Recreations; Courier Corporation: Chelmsford, MA, USA, 1981. [Google Scholar]
  12. Andrews, W.S. Magic Squares and Cubes; Open Court Publishing Company: Chicago, IL, USA, 1917. [Google Scholar]
  13. Trenkler, M. A construction of magic cubes. Math. Gaz. 2000, 84, 36–41. [Google Scholar] [CrossRef]
  14. Candy, A.L. Construction, Classification and Census of Magic Squares of Order Five; Edwards Brothers: Ann Arbor, MI, USA, 1939. [Google Scholar]
  15. Adler, A.; Li, S.Y.R. Magic cubes and Prouhet sequences. Am. Math. Mon. 1977, 84, 618–627. [Google Scholar] [CrossRef]
  16. Cammann, S. The evolution of magic squares in China. J. Am. Orient. Soc. 1960, 80, 116–124. [Google Scholar] [CrossRef]
  17. Abe, G. Unsolved problems on magic squares. Discret. Math. 1994, 127, 3–13. [Google Scholar] [CrossRef] [Green Version]
  18. Loly, P.; Cameron, I.; Trump, W.; Schindel, D. Magic square spectra. Linear Algebra Appl. 2009, 430, 2659–2680. [Google Scholar] [CrossRef] [Green Version]
  19. Lee, M.Z.; Love, E.; Narayan, S.K.; Wascher, E.; Webster, J.D. On nonsingular regular magic squares of odd order. Linear Algebra Appl. 2012, 437, 1346–1355. [Google Scholar] [CrossRef] [Green Version]
  20. Nordgren, R.P. On properties of special magic square matrices. Linear Algebra Appl. 2012, 437, 2009–2025. [Google Scholar] [CrossRef] [Green Version]
  21. Houa, X.D.; Lecuonab, A.G.; Mullenc, G.L.; Sellersd, J.A. On the dimension of the space of magic squares over a field. Linear Algebra Appl. 2013, 438, 3463–3475. [Google Scholar] [CrossRef]
  22. Trenkler, M. An algorithm for making magic cubes. π ME J. 2005, 12, 105–106. [Google Scholar]
  23. Arkin, J.; Hoggatt, V.E.; Straus, E.G. Systems of magic Latin k-cubes. Can. J. Math. 1976, 28, 1153–1161. [Google Scholar] [CrossRef]
  24. Hungerford, T.W. Algebra; Springer Science & Business Media: Berlin/Heidelberg, Germany, 2012. [Google Scholar]
Figure 1. A Integer Cube.
Figure 1. A Integer Cube.
Mathematics 11 01185 g001
Figure 2. The Integer Cube- A B C D - E F G H .
Figure 2. The Integer Cube- A B C D - E F G H .
Mathematics 11 01185 g002
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content.

Share and Cite

MDPI and ACS Style

Liao, F.; Xie, H. On the Construction of Pandiagonal Magic Cubes. Mathematics 2023, 11, 1185. https://doi.org/10.3390/math11051185

AMA Style

Liao F, Xie H. On the Construction of Pandiagonal Magic Cubes. Mathematics. 2023; 11(5):1185. https://doi.org/10.3390/math11051185

Chicago/Turabian Style

Liao, Fucheng, and Hao Xie. 2023. "On the Construction of Pandiagonal Magic Cubes" Mathematics 11, no. 5: 1185. https://doi.org/10.3390/math11051185

APA Style

Liao, F., & Xie, H. (2023). On the Construction of Pandiagonal Magic Cubes. Mathematics, 11(5), 1185. https://doi.org/10.3390/math11051185

Note that from the first issue of 2016, this journal uses article numbers instead of page numbers. See further details here.

Article Metrics

Back to TopTop