Optimal Robot Pose Estimation Using Scan Matching by Turning Function †
Abstract
:1. Introduction
2. Related Works
3. Problem Statement
4. Turning Function Algorithm
4.1. Corner Detection
Algorithm 1 Point resampling |
Input: |
Output: |
1: |
2: |
3: |
4: while do |
5: |
6: |
7: if then |
8: |
9: |
10: is located exactly S Euclidian distance away from the in the slop direction of the straight line from to |
11: Append to the resampled array |
12: |
13: else |
14: |
15: end if |
16: end while |
Algorithm 2 Corner detection (points) |
Input: |
Output: |
1: Corners |
2: Straws |
3: |
4: for , number of do |
5: |
6: end for |
7: |
8: for , number of do |
9: if then |
10: Append() |
11: end if |
12: end for |
13: Append(, number of ) |
Algorithm 3 Is-Line (points, a, b) |
Input: |
Output: |
1: |
2: |
3: |
4: for do |
5: |
6: end for |
7: if then |
8: return True |
9: else |
10: return False |
11: end if |
4.2. Histogram Creation
Algorithm 4 TF (corners) |
Input: |
Output: |
1: |
2: for , number of corners do |
3: ▹ Vectors are create in counterclockwise direction |
4: if then |
5: |
6: end if |
7: |
8: end for |
9: for , number of Vectors do |
10: |
11: |
12: end for |
13: |
14: for , number of Vector do |
15: |
16: if then |
17: |
18: |
19: else |
20: |
21: |
22: end if |
23: if then |
24: |
25: end if |
26: end for |
4.3. Histogram Matching
4.4. Pose and Orientation Estimation
Algorithm 5 Simplex() |
Input: |
Output: |
1: |
2: Select three random points with an arbitrary x and y and call them |
3: ▹ is the amount of error Err after simulation for P1 |
4: |
5: |
6: while do |
7: find the point among P1, P2, and P3 with minimum error |
8: find the point among P1, P2, and P3 with 2nd minimum error |
9: find the point among P1, P2, and P3 with 2nd maximum error |
10: |
11: |
12: |
13: |
14: |
15: |
16: if then |
17: |
18: |
19: if then |
20: |
21: else |
22: |
23: end if |
24: else |
25: if then |
26: |
27: else |
28: if then |
29: |
30: |
31: |
32: else |
33: |
34: |
35: |
36: end if |
37: end if |
38: |
39: |
40: |
41: end if |
42: end while |
43: find the point among B, NB and W with minimum error |
44: |
5. Results and Discussion
5.1. First Scenario
5.2. Second Scenario
5.3. Third Scenario
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Islam, M.J.; Mo, J.; Sattar, J. Robot-to-robot relative pose estimation using humans as markers. Auton. Robot. 2021, 45, 579–593. [Google Scholar] [CrossRef]
- Zhang, C.; Yang, Z.; Liao, L.; You, Y.; Sui, Y.; Zhu, T. RPEOD: A Real-Time Pose Estimation and Object Detection System for Aerial Robot Target Tracking. Machines 2022, 10, 181. [Google Scholar] [CrossRef]
- Shamsfakhr, F.; Sadeghi Bigham, B.; Mohammadi, A. Indoor mobile robot localization in dynamic and cluttered environments using artificial landmarks. Eng. Comput. 2019, 36, 400–419. [Google Scholar] [CrossRef]
- Kozák, V.; Sushkov, R.; Kulich, M.; Přeučil, L. Data-Driven Object Pose Estimation in a Practical Bin-Picking Application. Sensors 2021, 21, 6093. [Google Scholar] [CrossRef] [PubMed]
- Liao, B.; Liu, W. Pseudoinverse-type bi-criteria minimization scheme for redundancy resolution of robot manipulators. Robotica 2015, 33, 2100–2113. [Google Scholar] [CrossRef]
- Jin, L.; Li, S.; Xiao, L.; Lu, R.; Liao, B. Cooperative motion generation in a distributed network of redundant robot manipulators with noises. IEEE Trans. Syst. Man Cybern. Syst. 2017, 48, 1715–1724. [Google Scholar] [CrossRef]
- Xiaowei, Z.; Khing, H.Y.; Seng, C.C.; Yi, Z. The localization of mobile robot based on laser scanner. In Proceedings of the 2000 Canadian Conference on Electrical and Computer Engineering. Conference Proceedings. Navigating to a New Era (Cat. No. 00TH8492), Halifax, NS, Canada, 7–10 May 2000; Volume 2, pp. 841–845. [Google Scholar]
- Banerji, D.; Ray, R.; Basu, J.; Basak, I. Autonomous navigation by robust scan matching technique. arXiv 2012, arXiv:1212.1313. [Google Scholar]
- Park, S.; Park, S.K. Global localization for mobile robots using reference scan matching. Int. J. Control Autom. Syst. 2014, 12, 156–168. [Google Scholar] [CrossRef]
- Shamsfakhr, F.; Bigham, B.S. GSR: Geometrical scan registration algorithm for robust and fast robot pose estimation. Assem. Autom. 2020, 40, 801–817. [Google Scholar] [CrossRef]
- Friedman, C.; Chopra, I.; Rand, O. Perimeter-based polar scan matching (PB-PSM) for 2D laser odometry. J. Intell. Robot. Syst. 2015, 80, 231–254. [Google Scholar] [CrossRef]
- Furukawa, T.; Dantanarayana, L.; Ziglar, J.; Ranasinghe, R.; Dissanayake, G. Fast global scan matching for high-speed vehicle navigation. In Proceedings of the 2015 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI), San Diego, CA, USA, 14–16 September 2015; pp. 37–42. [Google Scholar]
- Li, Z.; Liao, B.; Xu, F.; Guo, D. A new repetitive motion planning scheme with noise suppression capability for redundant robot manipulators. IEEE Trans. Syst. Man Cybern. Syst. 2018, 50, 5244–5254. [Google Scholar] [CrossRef]
- Pozna, C.; Precup, R.E.; Földesi, P. A novel pose estimation algorithm for robotic navigation. Robot. Auton. Syst. 2015, 63, 10–21. [Google Scholar] [CrossRef]
- Padkan, N.; Sadeghi Bigham, B.; Faraji, M.R. Fingerprint matching using the onion peeling approach and turning function. Gene Expr. Patterns 2023, 47, 119299. [Google Scholar] [CrossRef] [PubMed]
- Wolin, A.; Eoff, B.; Hammond, T. ShortStraw: A Simple and Effective Corner Finder for Polylines. SBIM 2008, 8, 33–40. [Google Scholar]
Abbreviation | Definition | Abbreviation | Definition |
---|---|---|---|
RP | Robot Position | VP | Virtual Position |
RSD | Robot Sensor Data | VSD | Virtual Sensor Data |
TF | Turning Function | SS | Shortstraw algorithm |
Scenario | Mean Distance Error | Mean Orientation Error | Distance Improvement | Orientation Improvement |
---|---|---|---|---|
1 | 7.7878 | 1.0526 | 94.8979 | 82.8125 |
2 | 7.9858 | 0.6315 | 64.3136 | 90.6250 |
3 | 9.3984 | 0.8421 | 93.0935 | 88.2353 |
Scenario | Sample | Mean Distance Error | Mean Orientation Error | Distance Improvement | Orientation Improvement |
---|---|---|---|---|---|
1 | 540 | 8.5752 | 0.4368 | 94.2968 | 77.4194 |
2 | 540 | 6.5290 | 0.7371 | 95.3235 | 86.2746 |
3 | 540 | 10.0688 | 1.0536 | 92.7747 | 90.5661 |
Scenario | Sample | Mean Distance Error | Mean Orientation Error | Distance Improvement | Orientation Improvement |
---|---|---|---|---|---|
1 | 540 | 6.0639 | 0.4210 | 89.8533 | 93.7500 |
2 | 540 | 8.6486 | 1.0538 | 93.9186 | 84.6154 |
3 | 540 | 10.4595 | 1.0526 | 95.5024 | 85.5073 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sadeghi Bigham, B.; Abbaszadeh, O.; Zahedi-Seresht, M.; Khosravi, S.; Zarezadeh, E. Optimal Robot Pose Estimation Using Scan Matching by Turning Function. Mathematics 2023, 11, 1449. https://doi.org/10.3390/math11061449
Sadeghi Bigham B, Abbaszadeh O, Zahedi-Seresht M, Khosravi S, Zarezadeh E. Optimal Robot Pose Estimation Using Scan Matching by Turning Function. Mathematics. 2023; 11(6):1449. https://doi.org/10.3390/math11061449
Chicago/Turabian StyleSadeghi Bigham, Bahram, Omid Abbaszadeh, Mazyar Zahedi-Seresht, Shahrzad Khosravi, and Elham Zarezadeh. 2023. "Optimal Robot Pose Estimation Using Scan Matching by Turning Function" Mathematics 11, no. 6: 1449. https://doi.org/10.3390/math11061449
APA StyleSadeghi Bigham, B., Abbaszadeh, O., Zahedi-Seresht, M., Khosravi, S., & Zarezadeh, E. (2023). Optimal Robot Pose Estimation Using Scan Matching by Turning Function. Mathematics, 11(6), 1449. https://doi.org/10.3390/math11061449