Theory of Functional Connections Extended to Fractional Operators
Abstract
:1. Introduction
2. Background on Fractional Calculus
2.1. The Gamma Function
- ;
- , for ;
- is logarithmically convex (or superconvex).
2.2. Riemann–Liouville Fractional Integral
2.3. Riemann–Liouville Fractional Derivative
2.4. Caputo Fractional Derivative
2.5. Grünwald–Letnikov Definitions
3. Background on the Theory of Functional Connections
A Simple Explanatory Example
4. Shifted Chebyshev Polynomials
Example
5. Numerical Examples
5.1. Single Fractional Constraint
5.2. Three Mixed Constraints
5.3. Two Linear Combinations of Fractional Constraints
6. Discussion
Author Contributions
Funding
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
TFC | Theory of functional connections |
SCP | Shifted Chebyshev polynomials |
Appendix A. Some Fractional Integrals and Derivatives with Closed-Form Expressions
Appendix B. Non-Locality of Fractional Operators (Memory Effect)
Appendix C. Least-Squares Approaches
- The common solution: ;
- The QR decomposition: , then , where and R an upper-triangular matrix;
- The SVD decompositions: , then where and and where is the pseudo-inverse of , which is formed by replacing every non-zero diagonal entry by its reciprocal and transposing the resulting matrix;
- The Cholesky decomposition: , then , where U is an upper-triangular matrix.
References
- Hilfer, R.; Butzer, P.; Westphal, U. An introduction to fractional calculus. In Applications of Fractional Calculus in Physics; World Scientific: Singapore, 2010; pp. 1–85. [Google Scholar]
- Gorenflo, R.; Mainardi, F. Fractional calculus: Integral and differential equations of fractional order. arXiv 2008, arXiv:0805.3823. [Google Scholar]
- Caponetto, R.; Dongola, G.; Fortuna, L.; Petráš, I. Fractional Order Systems: Modeling and Control Applications; World Scientific: Singapore, 2010; pp. 1–178. [Google Scholar]
- Sasso, M.; Palmieri, G.; Amodio, D. Application of fractional derivative models in linear viscoelastic problems. Mech. Time-Depend. Mater. 2011, 15, 367–387. [Google Scholar] [CrossRef]
- Mainardi, F. Fractional Calculus and Waves in Linear Viscoelasticity: An Introduction to Mathematical Models; World Scientific Publishing Co. Pte. Ltd.: Hackensack, NJ, USA, 2022; pp. 37+587. [Google Scholar]
- Fomin, S.; Chugunov, V.; Hashida, T. Application of fractional differential equations for modeling the anomalous diffusion of contaminant from fracture into porous rock matrix with bordering alteration zone. Transp. Porous Media 2010, 81, 187–205. [Google Scholar] [CrossRef]
- Pritz, T. Five-parameter fractional derivative model for polymeric damping materials. J. Sound Vib. 2003, 265, 935–952. [Google Scholar] [CrossRef]
- Nualart, D. Stochastic calculus with respect to fractional Brownian motion. Ann. Fac. Sci. Toulouse Math. 2006, 15, 63–78. [Google Scholar] [CrossRef] [Green Version]
- Magin, R.L. Fractional calculus in bioengineering: A tool to model complex dynamics. In Proceedings of the 13th International Carpathian Control Conference (ICCC), High Tatras, Slovakia, 28–31 May 2012; pp. 464–469. [Google Scholar] [CrossRef]
- Meerschaert, M.M. Fractional calculus, anomalous diffusion, and probability. In Fractional Dynamics: Recent Advances; World Scientific: Singapore, 2012; pp. 265–284. [Google Scholar]
- Liu, L.; Zheng, L.; Liu, F.; Zhang, X. Anomalous convection diffusion and wave coupling transport of cells on comb frame with fractional Cattaneo–Christov flux. Commun. Nonlinear Sci. Numer. Simul. 2016, 38, 45–58. [Google Scholar] [CrossRef] [Green Version]
- Bagley, R.L. Power law and fractional calculus model of viscoelasticity. AIAA J. 1989, 27, 1412–1417. [Google Scholar] [CrossRef]
- Beghin, L.; Garra, R.; Macci, C. Correlated fractional counting processes on a finite-time interval. J. Appl. Probab. 2015, 52, 1045–1061. [Google Scholar] [CrossRef] [Green Version]
- Antil, H.; Warma, M. Optimal control of fractional semilinear PDEs. ESAIM Control Optim. Calc. Var. 2020, 26, 30. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z.; Guo, Q.; Li, C. A fractional model for the allometric scaling laws. Open Appl. Math. J. 2008, 2, 26–30. [Google Scholar] [CrossRef]
- West, B.J. Fractal physiology and the fractional calculus: A perspective. Front. Physiol. 2010, 1, 12. [Google Scholar] [CrossRef] [Green Version]
- Giusti, A. MOND-like fractional Laplacian theory. Phys. Rev. D 2020, 101, 124029. [Google Scholar] [CrossRef]
- Tarasov, V.E. Fractional econophysics: Market price dynamics with memory effects. Phys. A: Stat. Mech. Its Appl. 2020, 557, 124865. [Google Scholar] [CrossRef]
- Oldham, K.B.; Spanier, J. Theory and applications of differentiation and integration to arbitrary order, With an annotated chronological bibliography by Bertram Ross. In The Fractional Calculus; Academic Press: New York, NY, USA, 1974; Volume 111, p. 13+234. [Google Scholar]
- Leake, C.; Johnston, H.; Mortari, D. The Theory of Functional Connections: A Functional Interpolation. Framework with Applications; Lulu: Morrisville, NC, USA, 2022. [Google Scholar]
- Garrappa, R. Numerical solution of fractional differential equations: A survey and a software tutorial. Mathematics 2018, 6, 16. [Google Scholar] [CrossRef] [Green Version]
- Artin, E. The Gamma Function; Courier Dover Publications: Miniola, NY, USA, 2015. [Google Scholar]
- Diethelm, K. The Analysis of Fractional Differential Equations; Springer: Berlin/Heidelberg, Germany, 2010. [Google Scholar]
- Scherer, R.; Kalla, S.L.; Tang, Y.; Huang, J. The Grünwald–Letnikov method for fractional differential equations. Comput. Math. Appl. 2011, 62, 902–917. [Google Scholar] [CrossRef] [Green Version]
- Garrappa, R.; Kaslik, E.; Popolizio, M. Evaluation of Fractional Integrals and Derivatives of Elementary Functions: Overview and Tutorial. Mathematics 2019, 7, 407. [Google Scholar] [CrossRef] [Green Version]
- Mortari, D. The Theory of Connections: Connecting Points. Mathematics 2017, 5, 57. [Google Scholar] [CrossRef] [Green Version]
- Mortari, D. Least-Squares Solution of Linear Differential Equations. Mathematics 2017, 5, 48. [Google Scholar] [CrossRef] [Green Version]
- Mortari, D.; Johnston, H.R.; Smith, L. High accuracy least-squares solutions of nonlinear differential equations. J. Comput. Appl. Math. 2019, 352, 293–307. [Google Scholar] [CrossRef] [PubMed]
- Leake, C.D. The Multivariate Theory of Functional Connections: An n-Dimensional Constraint Embedding Technique Applied to Partial Differential Equations. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2021. [Google Scholar]
- Johnston, H.R. The Theory of Functional Connections: A Journey from Theory to Application. Ph.D. Thesis, Texas A&M University, College Station, TX, USA, 2021. [Google Scholar]
- Schiassi, E.; Furfaro, R.; Leake, C.D.; Florio, M.D.; Johnston, H.R.; Mortari, D. Extreme theory of functional connections: A fast physics-informed neural network method for solving ordinary and partial differential equations. Neurocomputing 2021, 457, 334–356. [Google Scholar] [CrossRef]
- Wang, Y.; Topputo, F. A TFC-based homotopy continuation algorithm with application to dynamics and control problems. J. Comput. Appl. Math. 2022, 401, 113777. [Google Scholar] [CrossRef]
- Yassopoulos, C.; Leake, C.D.; Reddy, J.; Mortari, D. Analysis of Timoshenko–Ehrenfest beam problems using the Theory of Functional Connections. Eng. Anal. Bound. Elem. 2021, 132, 271–280. [Google Scholar] [CrossRef]
- Johnston, H.R.; Schiassi, E.; Furfaro, R.; Mortari, D. Fuel-Efficient Powered Descent Guidance on Large Planetary Bodies via Theory of Functional Connections. J. Astronaut. Sci. 2020, 67, 1521–1552. [Google Scholar] [CrossRef]
- Wolfram, D.A. Change of Basis between Classical Orthogonal Polynomials. arXiv 2021, arXiv:2108.13631. [Google Scholar]
- Dorrah, A.; Sutrisno, A.; Desfan Hafifullah, D.; Saidi, S. The Use of Fractional Integral and Fractional Derivative “α=5/2” in the 5-th Order Function and Exponential Function using the Riemann–Liouville Method. Appl. Math. 2021, 11, 23–27. [Google Scholar]
- Cao, K.; Chen, Y.; Stuart, D. A fractional micro-macro model for crowds of pedestrians based on fractional mean field games. IEEE/CAA J. Autom. Sin. 2016, 3, 261–270. [Google Scholar] [CrossRef] [Green Version]
- Ahmad, W.M.; El-Khazali, R. Fractional-order dynamical models of love. Chaos Solitons Fractals 2007, 33, 1367–1375. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mortari, D.; Garrappa, R.; Nicolò, L. Theory of Functional Connections Extended to Fractional Operators. Mathematics 2023, 11, 1721. https://doi.org/10.3390/math11071721
Mortari D, Garrappa R, Nicolò L. Theory of Functional Connections Extended to Fractional Operators. Mathematics. 2023; 11(7):1721. https://doi.org/10.3390/math11071721
Chicago/Turabian StyleMortari, Daniele, Roberto Garrappa, and Luigi Nicolò. 2023. "Theory of Functional Connections Extended to Fractional Operators" Mathematics 11, no. 7: 1721. https://doi.org/10.3390/math11071721
APA StyleMortari, D., Garrappa, R., & Nicolò, L. (2023). Theory of Functional Connections Extended to Fractional Operators. Mathematics, 11(7), 1721. https://doi.org/10.3390/math11071721