Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory
Abstract
:1. Introduction
2. Related Work
3. Materials and Methods
3.1. Problem Description and Proposed Solution
3.2. Data Collection and Analysis
3.2.1. Dataset Generation
3.2.2. Dataset Analysis
3.3. Hardware and Software Configurations
4. Results
4.1. Experimental Methodology
- -
- Position {X, Y} and Target position {X, Y}.
- -
- Distance left to target, computed based on Euclidean distance between current position and target position.
- -
- Distance relative to origin, computed from AGV’s {X, Y} position and map’s origin point {0, 0}.
- -
- Distance already traveled, computed based on previous position sequence: can contain condensed information about previously cleared obstacles.
- -
- Distance planned to travel, computed based on the coordinates sequence present in the path planning: can contain condensed information about obstacles (if they are visible).
4.2. Evaluation
4.3. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Jaiem, L.; Druon, S.; Lapierre, L.; Crestani, D. A step toward mobile robots autonomy: Energy estimation models. In Towards Autonomous Robotic Systems: 17th Annual Conference, TAROS 2016, Sheffield, UK, 26 June–1 July 2016; Proceedings 17; Springer: Cham, Switzerland, 2016; pp. 177–188. [Google Scholar] [CrossRef] [Green Version]
- Zhang, D.; Kabuka, M.R. Combining weather condition data to predict traffic flow: A GRU-based deep learning approach. IET Intell. Transp. Syst. 2018, 12, 578–585. [Google Scholar] [CrossRef]
- Kashinath, S.A.; Mostafa, S.A.; Mustapha, A.; Mahdin, H.; Lim, D.; Mahmoud, M.A.; Mohammed, M.A.; Al-Rimy, B.A.; Fudzee, M.F.; Yang, T.J. Review of data fusion methods for real-time and multi-sensor traffic flow analysis. IEEE Access 2021, 9, 51258–51276. [Google Scholar] [CrossRef]
- Wang, Y.; Zheng, Y.; Xue, Y. Travel time estimation of a path using sparse trajectories. In Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, New York, NY, USA, 24–27 August 2014; pp. 25–34. [Google Scholar] [CrossRef]
- Zhang, K.; Jia, N.; Zheng, L.; Liu, Z. A novel generative adversarial network for estimation of trip travel time distribution with trajectory data. Transp. Res. Part C Emerg. Technol. 2019, 108, 223–244. [Google Scholar] [CrossRef]
- Mridha, S.; Ganguly, N.; Bhattacharya, S. Link travel time prediction from large scale endpoint data. In Proceedings of the 25th ACM SIGSPATIAL International Conference on Advances in Geographic Information Systems, Redondo Beach, CA, USA, 7–10 November 2017; pp. 1–4. [Google Scholar] [CrossRef]
- Guido, G.; Haghshenas, S.S.; Vitale, A.; Astarita, V. Challenges and opportunities of using data fusion methods for travel time estimation. In Proceedings of the 2022 8th International Conference on Control, Decision and Information Technologies (CoDIT), Istanbul, Turkey, 17–20 May 2022; Volume 1, pp. 587–592. [Google Scholar] [CrossRef]
- Wang, X.; Wu, W.; Xing, Z.; Chen, X.; Zhang, T.; Niu, H. A neural network based multi-state scheduling algorithm for multi-AGV system in FMS. J. Manuf. Syst. 2022, 64, 344–355. [Google Scholar] [CrossRef]
- Wang, K.; Yang, Y.; Li, R. Travel time models for the rack-moving mobile robot system. Int. J. Prod. Res. 2020, 58, 4367–4385. [Google Scholar] [CrossRef]
- Tai, L.; Paolo, G.; Liu, M. Virtual-to-real deep reinforcement learning: Continuous control of mobile robots for mapless navigation. In Proceedings of the 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Vancouver, BC, Canada, 24–28 September 2017; pp. 31–36. [Google Scholar] [CrossRef] [Green Version]
- Bousmalis, K.; Irpan, A.; Wohlhart, P.; Bai, Y.; Kelcey, M.; Kalakrishnan, M.; Downs, L.; Ibarz, J.; Pastor, P.; Konolige, K.; et al. Using simulation and domain adaptation to improve efficiency of deep robotic grasping. In Proceedings of the 2018 IEEE international conference on robotics and automation (ICRA), Brisbane, Australia, 21–25 May 2018; pp. 4243–4250. [Google Scholar] [CrossRef] [Green Version]
- Kang, K.; Belkhale, S.; Kahn, G.; Abbeel, P.; Levine, S. Generalization through simulation: Integrating simulated and real data into deep reinforcement learning for vision-based autonomous flight. In Proceedings of the 2019 International Conference on Robotics and Automation (ICRA), Montreal, QC, Canada, 20–24 May 2019; pp. 6008–6014. [Google Scholar] [CrossRef] [Green Version]
- Li, W.; Gu, S.; Zhang, X.; Chen, T. Transfer learning for process fault diagnosis: Knowledge transfer from simulation to physical processes. Comput. Chem. Eng. 2020, 139, 106904. [Google Scholar] [CrossRef]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Gers, F.A.; Schmidhuber, J.; Cummins, F. Learning to forget: Continual prediction with LSTM. IET Conf. Proc. 1999, 2, 850–855. [Google Scholar] [CrossRef]
- Bhandari, H.N.; Rimal, B.; Pokhrel, N.R.; Rimal, R.; Dahal, K.R.; Khatri, R.K. Predicting stock market index using LSTM. Mach. Learn. Appl. 2022, 9, 100320. [Google Scholar] [CrossRef]
- Liang, Y.; Lin, Y.; Lu, Q. Forecasting gold price using a novel hybrid model with ICEEMDAN and LSTM-CNN-CBAM. Expert Syst. Appl. 2022, 206, 117847. [Google Scholar] [CrossRef]
- Mekruksavanich, S.; Jitpattanakul, A. LSTM Networks Using Smartphone Data for Sensor-Based Human Activity Recognition in Smart Homes. Sensors 2021, 21, 1636. [Google Scholar] [CrossRef]
- Huang, X.; Li, Q.; Tai, Y.; Chen, Z.; Liu, J.; Shi, J.; Liu, W. Time series forecasting for hourly photovoltaic power using conditional generative adversarial network and Bi-LSTM. Energy 2022, 246, 123403. [Google Scholar] [CrossRef]
- Bachici, M.A.; Gellert, A. Modeling Electricity Consumption and Production in Smart Homes using LSTM Networks. Int. J. Adv. Stat. IT&C Econ. Life Sci. 2020, 10, 80–89. [Google Scholar]
- Xiao, Q.; Chang, X.; Zhang, X.; Liu, X. Multi-information spatial–temporal LSTM fusion continuous sign language neural machine translation. IEEE Access 2020, 8, 216718–216728. [Google Scholar] [CrossRef]
- Jelodar, H.; Wang, Y.; Orji, R.; Huang, S. Deep sentiment classification and topic discovery on novel coronavirus or COVID-19 online discussions: NLP using LSTM recurrent neural network approach. IEEE J. Biomed. Health Inform. 2020, 10, 2733–2742. [Google Scholar] [CrossRef]
- Jiang, J.; Zhang, H.; Dai, C.; Zhao, Q.; Feng, H.; Ji, Z.; Ganchev, I. Enhancements of Attention-Based Bidirectional LSTM for Hybrid Automatic Text Summarization. IEEE Access 2021, 9, 123660–123671. [Google Scholar] [CrossRef]
- Ullah, A.; Ahmad, J.; Muhammad, K.; Sajjad, M.; Baik, S.W. Action recognition in video sequences using deep bi-directional LSTM with CNN features. IEEE Access 2017, 6, 1155–1166. [Google Scholar] [CrossRef]
- Yang, R.; Singh, S.K.; Tavakkoli, M.; Amiri, N.; Yang, Y.; Karami, M.A.; Rai, R. CNN-LSTM deep learning architecture for computer vision-based modal frequency detection. Mech. Syst. Signal Process. 2020, 144, 106885. [Google Scholar] [CrossRef]
- Gao, L.; Guo, Z.; Zhang, H.; Xu, X.; Shen, H.T. Video captioning with attention-based LSTM and semantic consistency. IEEE Trans. Multimed. 2017, 19, 2045–2055. [Google Scholar] [CrossRef]
- Deng, J.; Schuller, B.; Eyben, F.; Schuller, D.; Zhang, Z.; Francois, H.; Oh, E. Exploiting time-frequency patterns with LSTM-RNNs for low-bitrate audio restoration. Neural Comput. Appl. 2020, 32, 1095–1107. [Google Scholar] [CrossRef]
- Wang, J.; Xue, M.; Culhane, R.; Diao, E.; Ding, J.; Tarokh, V. Speech emotion recognition with dual-sequence LSTM architecture. In Proceedings of the ICASSP 2020—2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Barcelona, Spain, 4–8 May 2020; pp. 6474–6478. [Google Scholar] [CrossRef] [Green Version]
- Ruvinga, S.; Hunter, G.J.; Duran, O.; Nebel, J.C. Use of LSTM networks to identify “queenlessness” in honeybee hives from audio signals. In Proceedings of the 2021 17th International Conference on Intelligent Environments, Dubai, United Arab Emirates, 21–24 June 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Wang, Z.; Su, X.; Ding, Z. Long-term traffic prediction based on LSTM encoder-decoder architecture. IEEE Trans. Intell. Transp. Syst. 2020, 22, 6561–6571. [Google Scholar] [CrossRef]
- Xue, H.; Huynh, D.Q.; Reynolds, M. PoPPL: Pedestrian trajectory prediction by LSTM with automatic route class clustering. IEEE Trans. Neural Netw. Learn. Syst. 2020, 32, 77–90. [Google Scholar] [CrossRef]
- Ranjan, N.; Bhandari, S.; Zhao, H.P.; Kim, H.; Khan, P. City-wide traffic congestion prediction based on CNN, LSTM and transpose CNN. IEEE Access 2020, 8, 81606–81620. [Google Scholar] [CrossRef]
- Zafar, N.; Haq, I.U.; Chughtai, J.-U.-R.; Shafiq, O. Applying Hybrid Lstm-Gru Model Based on Heterogeneous Data Sources for Traffic Speed Prediction in Urban Areas. Sensors 2022, 22, 3348. [Google Scholar] [CrossRef]
- Wang, H.; Lu, B.; Li, J.; Liu, T.; Xing, Y.; Lv, C.; Cao, D.; Li, J.; Zhang, J.; Hashemi, E. Risk assessment and mitigation in local path planning for autonomous vehicles with LSTM based predictive model. IEEE Trans. Autom. Sci. Eng. 2021, 19, 2738–2749. [Google Scholar] [CrossRef]
- Yao, H.; Liu, Y.; Zhang, X. Developing deep LSTM model for real-time path planning in unknown environments. In Proceedings of the 2020 7th International Conference on Dependable Systems and Their Applications (DSA), Xi’an, China, 28–29 November 2020; pp. 219–225. [Google Scholar] [CrossRef]
- Schlichting, M.R.; Notter, S.; Fichter, W. LSTM-based spatial encoding: Explainable path planning for time-variant multi-agent systems. In Proceedings of the AIAA Scitech 2021 Forum, Virtual, 11–15 & 19–21 January 2021; p. 1860. [Google Scholar] [CrossRef]
- Li, D.; Cao, J.; Li, R.; Wu, L. A spatio-temporal structured LSTM model for short-term prediction of origin-destination matrix in rail transit with multisource data. IEEE Access 2020, 8, 84000–84019. [Google Scholar] [CrossRef]
- Duan, Z.; Zhang, K.; Chen, Z.; Liu, Z.; Tang, L.; Yang, Y.; Ni, Y. Prediction of city-scale dynamic taxi origin-destination flows using a hybrid deep neural network combined with travel time. IEEE Access 2019, 7, 127816–127832. [Google Scholar] [CrossRef]
- Precup, S.-A.; Gellert, A.; Dorobantiu, A.; Zamfirescu, C.-B. Assembly process modeling through long short-term memory. In Recent Challenges in Intelligent Information and Database Systems: 13th Asian Conference, ACIIDS 2021, Phuket, Thailand, 7–10 April 2021; Springer: Singapore, 2021; pp. 28–39. [Google Scholar] [CrossRef]
- Matei, A.; Pirvu, B.-C.; Petruse, R.E.; Candea, C.; Zamfirescu, B.-C. Designing a Multi-agent Control System for a Reconfigurable Manufacturing System. In Service Oriented, Holonic and Multi-Agent Manufacturing Systems for Industry of the Future: Proceedings of SOHOMA 2022, Bucharest, Romania, 22–23 September 2022; Springer: Cham, Switzerland, 2023; pp. 434–445. [Google Scholar] [CrossRef]
- Quigley, M.; Conley, K.; Gerkey, B.; Faust, J.; Foote, T.; Leibs, J.; Wheeler, R.; Ng, A.Y. ROS: An open-source Robot Operating System. In Proceedings of the ICRA Workshop on Open Source Software, Kobe, Japan, 12–17 May 2009; Volume 3, p. 5. [Google Scholar]
- Matei, A.; Circa, D.; Zamfirescu, B.-C. Digital Twin for automated guided vehicles fleet management. Procedia Comput. Sci. 2022, 199, 1363–1369. [Google Scholar] [CrossRef]
- Koenig, N.; Howard, A. Design and use paradigms for gazebo, an open-source multi-robot simulator. In Proceedings of the 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Sendai, Japan, 28 September–2 October 2004; Volume 3, pp. 2149–2154. [Google Scholar] [CrossRef] [Green Version]
- Morley, S.K.; Brito, T.V.; Welling, D.T. Measures of model performance based on the log accuracy ratio. Space Weather 2018, 16, 69–88. [Google Scholar] [CrossRef]
60-20-20 | 70-15-15 | 80-10-10 | 90-5-5 | |
---|---|---|---|---|
MAE | 1.28 | 1.40 | 1.44 | 1.51 |
RMSE | 2.65 | 3.67 | 3.51 | 3.26 |
Data Set | LSTM | Naive | ||||
MAE | RMSE | MSA | MAE | RMSE | MSA | |
initial_values | 3.38 | 8.02 | 2.56% | 5.37 | 9.46 | 6.59% |
all_values | 1.29 | 2.64 | 2.13% | 2.28 | 4.21 | 6.12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matei, A.; Precup, S.-A.; Circa, D.; Gellert, A.; Zamfirescu, C.-B. Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory. Mathematics 2023, 11, 1723. https://doi.org/10.3390/math11071723
Matei A, Precup S-A, Circa D, Gellert A, Zamfirescu C-B. Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory. Mathematics. 2023; 11(7):1723. https://doi.org/10.3390/math11071723
Chicago/Turabian StyleMatei, Alexandru, Stefan-Alexandru Precup, Dragos Circa, Arpad Gellert, and Constantin-Bala Zamfirescu. 2023. "Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory" Mathematics 11, no. 7: 1723. https://doi.org/10.3390/math11071723
APA StyleMatei, A., Precup, S. -A., Circa, D., Gellert, A., & Zamfirescu, C. -B. (2023). Estimating Travel Time for Autonomous Mobile Robots through Long Short-Term Memory. Mathematics, 11(7), 1723. https://doi.org/10.3390/math11071723