Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales
Abstract
:1. Introduction
2. Notations and Preliminaries
3. Existence and Uniqueness
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hilger, S. Analysis on measure chains. A unified approach to continuous and discrete calculus. Results Math. 1990, 18, 18–56. [Google Scholar] [CrossRef]
- Bohner, M.; Peterson, A. Dynamic Equations on Time Scales. An Introduction with Applications; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2001. [Google Scholar]
- Bohner, M.; Peterson, A. Advances in Dynamic Equations on Time Scales; Birkhäuser: Boston, MA, USA; Basel, Switzerland; Berlin, Germany, 2003. [Google Scholar]
- Georgiev, S. Integral Equation on Time Scales; Atlamtis Press: Paris, France, 2016. [Google Scholar]
- Adivar, M.; Raffoul, Y.N. Stability, Periodicity and Boundedness in Functional Dynamical Systems on Time Scales; Springer: Berlin/Heidelberg, Germany, 2020. [Google Scholar]
- Karpuz, B. Volterra theory on time scales. Results Math. 2014, 65, 263–292. [Google Scholar] [CrossRef]
- Atici, F.M.; Biles, D.C.; Lebedinsky, A. An application of time scales to economics. Math. Comput. Model. 2006, 43, 718–726. [Google Scholar] [CrossRef]
- Ferguson, B.S.; Lim, G.C. Dynamic Economic Models in Discrete Time. Theory and Empirical Applications; Routledge: London, UK, 2003. [Google Scholar]
- Tisdell, C.C.; Zaidi, A. Basic qualitative and quantitative results for solutions to nonlinear dynamic equations on time scales with an application to economic modeling. Nonlinear Anal. 2008, 68, 3504–3524. [Google Scholar] [CrossRef]
- Messina, E.; Pezzalla, M.; Vecchio, A. A non-standard numerical scheme for age-of-infection epidemic model. J. Comput. Dyn. 2022, 9, 239–252. [Google Scholar] [CrossRef]
- Sikorska-Nowak, A. Integrodifferential equation on time scales with Henstock-Kurzweil delta integrals. Discuss. Math. Differ. Incl. Control Opt. 2011, 31, 71–90. [Google Scholar] [CrossRef]
- Georgiev, S. Volterra integrodifferential equation on time scales. Int. J. Appl. Math. Comput. Sci. 2017, 3, 1577–1587. [Google Scholar] [CrossRef]
- Kulik, T.; Tisdell, C.C. Volterra integral equations on time scales. Basic qualitative and quantitative results with applications to initial value problems on unbounded domains. Int. J. Differ. Equ. 2008, 3, 103–133. [Google Scholar]
- Reinfelds, A.; Christian, S. Volterra integral equations on unbounded time scales. Int. J. Differ. Equ. 2019, 14, 169–177. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. A nonstandard Volterra integral equation on time scales. Demonstr. Math. 2019, 52, 503–510. [Google Scholar] [CrossRef]
- Reinfelds, A.; Christian, S. Hyers-Ulam stability of Volterra type integral equations on time scales. Adv. Dyn. Syst. Appl. 2020, 15, 39–48. [Google Scholar]
- Pachpatte, B.G. On certain Volterra integral and integrodifferential equations. Facta Univ. Ser. Math. Inform. 2008, 23, 1–12. [Google Scholar]
- Pachpatte, B.G. Implict type Volterra integrodifferential equation. Tamkang J. Math. 2010, 41, 97–107. [Google Scholar] [CrossRef]
- Pachpatte, D.B. Fredholm type integrodifferential equation on time scales. Electron. J. Differ. Equ. 2010, 140, 1–10. [Google Scholar]
- Pachpatte, D.B. Properties of solutions to nonlinear dynamic integral equations on time scales. Electron. J. Differ. Equ. 2008, 136, 1–8. [Google Scholar]
- Pachpatte, D.B. On a nonlinear dynamic integrodifferential equation on time scales. J. Appl. Anal. 2010, 16, 279–294. [Google Scholar] [CrossRef]
- Christian, S. Volterra Integral Equation on Time Scales. Ph.D. Thesis, University of Latvia, Riga, Latvia, 27 November 2020. [Google Scholar]
- Bohner, M. Some oscillation criteria for first order delay dynamic equations. Far East J. Appl. Math. 2005, 18, 289–304. [Google Scholar]
- Corduneanu, C. Integral Equations and Applications; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reinfelds, A.; Christian, S. Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics 2023, 11, 1760. https://doi.org/10.3390/math11071760
Reinfelds A, Christian S. Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics. 2023; 11(7):1760. https://doi.org/10.3390/math11071760
Chicago/Turabian StyleReinfelds, Andrejs, and Shraddha Christian. 2023. "Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales" Mathematics 11, no. 7: 1760. https://doi.org/10.3390/math11071760
APA StyleReinfelds, A., & Christian, S. (2023). Nonlinear Volterra Integrodifferential Equations from above on Unbounded Time Scales. Mathematics, 11(7), 1760. https://doi.org/10.3390/math11071760