An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems
Abstract
:1. Introduction and Preliminaries
2. Main Results
Algorithm 1 Choose parameters , as initial points. |
Step 1 Take arbitrarily , if and , then stop, otherwise, go to step 2, where
|
Step 2 Let is the smallest nonegative integer m such that
|
where , , and , |
Step 3 Compute , where
|
Step 4 Compute . Set and go to Step 1. |
3. Numerical Examples
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ye, M. An improved projection method for solving generalized variational inequality problems. Optimization 2018, 67, 1523–1533. [Google Scholar] [CrossRef]
- Chen, Y.; Ye, M. An inertial Popov extragradient projection algorithm for solving multi-valued variational inequality problems. Optimization 2022. [Google Scholar] [CrossRef]
- He, X.; Huang, N.; Li, X. Modified projection methods for solving multi-valued variational inequality without monotonicity. Netw. Spart. Econ. 2019. [Google Scholar] [CrossRef]
- Debnath, P.; Konwar, N.; Radenović, S. (Eds.) Metric Fixed Point Theory: Applications in Science, Engineering and Behavioural Sciences; Springer: Singapore, 2021. [Google Scholar]
- Ye, M. An infeasible projection type algorithm for nonmonotone variational inequalities. Numer. Algorithms 2022, 89, 1723–1742. [Google Scholar] [CrossRef]
- Ceng, L.C.; Yao, J.C. Strong Convergence theorem by an extragradient method for fixed point problems and variational inequality problems. Taiwanese J. Math. 2006, 10, 1293–1303. [Google Scholar]
- Zhao, T.Y.; Wang, D.Q.; Ceng, L.C. Quasi-inertial Tsengas extragradient algorithms for pseudomonotone variational inequalities and fixed point problems of quasi-nonexpansive operators. Numer. Func. Anal. Opt. 2020, 42, 69–90. [Google Scholar] [CrossRef]
- Shehu, Y.; Iyiola, O.S.; Reich, S. A modified inertial subgradient extragradient method for solving variational inequalities. Optim. Eng. 2021. [Google Scholar] [CrossRef]
- Gibali, A.; Shehu, Y. An efficient iterative method for finding common fixed point and variational inequalities in Hilbert spaces. Optimization 2019, 68, 13–32. [Google Scholar] [CrossRef]
- Yao, Y.; Postolache, M. Iterative methods for pseudomonotone variational inequalities and fixed point problems. J. Optimiz. Theory. Appl. 2012, 155, 273–287. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Modified subgradient extragradient algorithms for variational inequality problems and fixed point problems. Optimization 2018, 67, 83–102. [Google Scholar] [CrossRef]
- Thong, D.V.; Hieu, D.V. Some extragradient-viscosity algorithms for solving variational inequality problems and fixed point problems. Numer. Algorithms 2019, 82, 761–789. [Google Scholar] [CrossRef]
- Fang, C.J.; Wang, Y.; Yang, S.K. Two algorithms for solving single-valued variational inequalities and fixed point problems. J. Fix. Point. Theory. A 2016, 18, 27–43. [Google Scholar] [CrossRef]
- Godwin, E.C.; Alakoya, T.O.; Mewomo, O.T. Relaxed inertial Tseng extragradient method for variational inequality and fixed point problems. Appl. Anal. 2022. [Google Scholar] [CrossRef]
- Alakoya, T.O.; Jolaoso, L.O.; Mewomo, O.T. Modified inertial subgradient extragradient method with self adaptive stepsize for solving monotone variational inequality and fixed point problems. Optimization 2021, 70, 545–574. [Google Scholar] [CrossRef]
- Tu, K.; Xia, F.Q.; Yao, J.C. An iterative algorithm for solving generalized variational inequality problems and fixed point problems. Appl. Anal. 2016, 95, 209–225. [Google Scholar] [CrossRef]
- Zhang, L.; Fang, C.; Chen, S. A projection-type method for solving multi-valued variational inequalities and fixed point problems. Optimization 2017, 66, 2329–2344. [Google Scholar] [CrossRef]
- Alvarez, F.; Attouch, H. An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping. Set-Valued Anal. 2021, 9, 3–11. [Google Scholar] [CrossRef]
- Alakoya, T.O.; Jolaoso, L.O.; Taiwo, A.; Mewomo, O.T. Inertial algorithm with self-adaptive step size for split common null point and common fixed point problems for multivalued mappings in Banach spaces. Optimization 2022, 71, 3041–3075. [Google Scholar] [CrossRef]
- Godwin, E.C.; Izuchukwu, C.; Mewomo, O.T. Image restorations using a modified relaxed inertial technique for generalized split feasibility problems. Math. Method. Appl. Sci. 2023, 46, 5521–5544. [Google Scholar] [CrossRef]
- Godwin, E.C.; Izuchukwu, C.; Mewomo, O.T. An inertial extrapolation method for solving generalized split feasibility problems in real Hilbert spaces. Boll Unione Mat Ital. 2021, 14, 379–401. [Google Scholar] [CrossRef]
- Mu, Z.; Peng, Y. A note on the inertial proximal point method. Stat. Optim. Inf. Comput. 2015, 3, 241–248. [Google Scholar] [CrossRef]
- Iutzeler, F.; Hendrickx, J.M. A generic online acceleration scheme for optimization algorithms via relaxation and inertia. Optim. Method. Softw. 2019, 34, 383–405. [Google Scholar] [CrossRef] [Green Version]
- Iutzeler, F.; Malick, J. On the proximal gradient algorithm with alternated inertia. J. Optim. Theory Appl. 2018, 176, 688–710. [Google Scholar] [CrossRef] [Green Version]
- Shehu, Y.; Iyiola, O.S. Projection methods with alternating inertial steps for variational inequalities: Weak and linear convergence. Appl. Numer. Math. 2020, 157, 315–337. [Google Scholar] [CrossRef]
- Burachik, R.S.; Millan, R.D. A projection algorithm for non-monotone variational inequalities. Set-Valued Var. Anal. 2020, 28, 149–166. [Google Scholar] [CrossRef] [Green Version]
- Linh, H.M.; Reich, S.; Thong, D.V.; Lan, N.P. Analysis of two variants of an inertial projection algorithm for finding the minimum-norm solutions of variational inequality and fixed point problems. Numer. Algorithms 2022, 89, 1695–1721. [Google Scholar] [CrossRef]
- Belguidoum, O.; Grar, H. An improved projection algorithm for variational inequality problem with multivalued mapping. Number. Algebr. Control. 2023, 13, 210–223. [Google Scholar] [CrossRef]
- Jolaoso, L.O.; Shehu, Y.; Yao, J.C. Inertial extragradient type method for mixed variational inequalities without monotonicity. Math. Comput. Simulat. 2022, 192, 353–369. [Google Scholar] [CrossRef]
- Ye, M.; He, Y. A double projection method for solving variational inequalities without monotonicity. Comput. Optim. Appl. 2015, 60, 141–150. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, Z.; Xiao, Y.; Zhang, C. A new projection-type method for solving multi-valued mixed variational inequalities without monotonicity. Appl. Anal. 2020, 99, 1453–1466. [Google Scholar] [CrossRef]
Algorithm 1 | |||
---|---|---|---|
e | iter | Cpu | |
7 | 2.1875 | (0.8854; 0.0465; 0.0215; 0.0463) | |
17 | 2.9218 | (0.9891; 0.0052; 0.0004; 0.0051) | |
26 | 3.4218 | (0.9989; 0.0005; 7.6653; 0.0005) | |
30 | 3.7500 | (0.9994; 0.0002; 9.3523; 0.0002) |
Algorithm 1 | Algorithm 1 [1] | Algorithm 3.1 [31] | ||
---|---|---|---|---|
Case I | iter | 15 | 23 | 29 |
Cpu | 2.7340 | 3.1093 | 3.3656 | |
Case II | iter | 16 | 21 | 28 |
Cpu | 2.7968 | 3.0781 | 3.9218 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Liu, X.; Sun, Y.; Hu, J. An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems. Mathematics 2023, 11, 1850. https://doi.org/10.3390/math11081850
Zhang H, Liu X, Sun Y, Hu J. An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems. Mathematics. 2023; 11(8):1850. https://doi.org/10.3390/math11081850
Chicago/Turabian StyleZhang, Huan, Xiaolan Liu, Yan Sun, and Ju Hu. 2023. "An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems" Mathematics 11, no. 8: 1850. https://doi.org/10.3390/math11081850
APA StyleZhang, H., Liu, X., Sun, Y., & Hu, J. (2023). An Alternated Inertial Projection Algorithm for Multi-Valued Variational Inequality and Fixed Point Problems. Mathematics, 11(8), 1850. https://doi.org/10.3390/math11081850