Parallel Selector for Feature Reduction
Abstract
:1. Introduction
- Forward searching. The core of such a phase is to discriminate appropriate features in each iteration and add them into a feature subset named the reduct pool. The specific process of one popular forward search strategy named forward greedy searching (FGS) [24,25,26,27,28,29,30] is a follows: (1) given a predefined constraint, each feature is evaluated by a measure [31,32,33,34], and the most qualified feature is selected; (2) the selected feature is added into a reduct pool; (3) if the constraint is satisfied, the search process is terminated. Obviously, the most effective feature in each iteration constitutes the final feature subset.
- Backward searching. The core of such a phase is to discriminate those features with inferior quality and remove them from the raw features. The specific process of one popular backward searching named backward greedy searching (BGS) [35,36] is as follows: (1) given a predefined constraint, each object in raw feature is evaluated by a measure, and those unqualified features are selected; (2) selected features from raw features are removed; (3) if the constraint is satisfied by the remaining features, the search process is terminated.
- Random searching. The core of such a phase is to randomly select qualified features from candidate features and add them into a reduct pool. The specific process of one classic random searching strategy is named simulated annealing (SA) [37,38] is as follows: (1) for given a predefined constraint, a randomly generated binary sequence is used to picture features (“1” indicates the corresponding feature is selected; “0” indicates the corresponding feature is not selected; the number of binary digits represents the number of raw features.); (2) multiple random changes are exerted upon the sequence, the corresponding fitness values are recorded, i.e., the selected features are evaluated; (3) the sequence turns into a new state with the highest fitness value; (4), (2), and (3) are executed iteratively until the given constraint is satisfied.
- Providing diverse viewpoints for feature evaluation. In most existing search strategies, the richness of the measure is hard to take into account; that is, the importance of candidate features generated from single measure is usually deemed to be sufficient, e.g., the final reduct of greedy-based forward searching algorithm which was proposed by Hu et al. [39] is derived from a measure named dependency and a corresponding constraint. From this point of view, the selected feature subset may be unqualified if another independent measure is used to evaluate the importance of features. However, in our framework, different measures are employed for evaluating features; thus, more comprehensive evaluations about features can then be obtained. In view of this, our framework is then more effective than are previous feature reduction strategies.
- Improving data stability for feature reduction. In previous studies, the reduct pool is composed of the qualified features selected from each iteration, which indicates the reduct pool is iteratively updated. Thus, it should be pointed out that for each iteration, all features that have been added into the reduct pool are involved in the next evaluation, e.g., the construction of final feature subset in feature reduction strategy proposed by Yang et al. [40] is affected by the selected features. From this point of view, if data perturbation occurs, the selected features will mislead subsequent selection. However, in our framework, each feature is weighted by its granularity value and a feature sequence is then obtained, which is relatively stable in the face of data perturbation.
- Accelerating searching process for feature reduction. In most search strategies for selecting features, e.g., heuristic algorithm and backward greedy algorithm, all iterative features should be evaluated for characterizing their importance. However, the redundancy of evaluation is inevitable in the iteration. This will bring extra time consumption if selection occurs in higher dimensional data. However, in our framework, according to different measures, the process of feature evaluation should be respectively carried out only once. Moreover, the introduction of a grouping mechanism makes it possible to select qualified features in parallel.
2. Preliminaries
2.1. Neighborhood Rough Set
2.2. Neighborhood-Based Measures
2.2.1. Granularity
2.2.2. Conditional Entropy
2.3. Feature Reduction
- A meets the -constraint;
- , B does not meet the -constraint.
3. The Construction of a Parallel Selector for Feature Reduction
3.1. Isotonic Regression
- Reflexivity: .
- Transitivity: , .
- Antisymmetry: , if and , then .
- Comparability: , we always have or .
Algorithm 1: Pool adjacent violators algorithm (PAVA). |
- 1.
- Suppose the dosage in a kind of animal is gradually increased such thatN animals are tested corresponding to dosage , and means the reaction of the j-th animal regarding the dosage such thatmeans that the active proportion at the dosage is , which is usually estimated from sample proportion such that
- 2.
- Following Equation (11), suppose that has the same order such thatfollows binomial distribution and the likelihood function of P is
- 3.
- To give a further explanation, suppose ; the specific calculation process is shown in Table 1.
- (a)
- ;
- (b)
- .
Due to , we have , ; that is, , , and so Equation (14) holds, which facilitates the general statistical analysis of the medicine’s effects.
3.2. Isotonic Regression-Based Numerical Correction
Algorithm 2: Pool Adjacent Violators Algorithm for Feature Measure (PAVA_FM). |
3.3. Isotonic Regression-Based Parallel Selection
- Calculate the granularity of each conditional feature in turn, sort these features in ascending order by granularity value, and record the original location index of sorted features.
- Based on 1, calculate the conditional entropy of each sorted feature according to the recorded location index.
- Based on 2, obtain the isotonic regression of conditional entropy according to Definitions (12) and (13). Inspired by Example 1, we group features through updated conditional entropy; that is, features with the same value of conditional entropy are placed into one group. Assume that the number of groups is , and m is the number of raw features.
- Based on 3, when becomes too large, i.e., approaches m, the grouping mechanism is obviously meaningless. To prevent this from happening, we propose a mechanism to reduce the number of groups. That is, to begin with , calculate D-value between and (the value of a group means the corrected value of the conditional entropy of features in the group arrived via isotonic regression), obtain the sum of all D-values such that , and calculate the mean D-value of . To begin with again, if , merge with .
Algorithm 3: Isotonic Regression-based Fast Feature Reduction (IRFFR). |
- 1.
- For each feature, we have , , , , , , , , , , .
- 2.
- Sort features in ascending order such that , , , , , , , , , , .
- 3.
- Calculate the corresponding conditional entropy such that , , , , , , , , , , .
- 4.
- The isotonic regression of is , then , , , , , .
- 5.
- , , , , , , we then have , , , .
- 6.
- For , we put and into a reduct pool; for , we put and into a reduct pool. That is, we have the final reduct .
4. Experiments
4.1. Datasets
4.2. Experimental Configuration
4.3. The First Group of Experiments
4.3.1. Comparison of Classification Accuracy
- For most of data sets, no matter which ratio of label noise is injected into the raw data, compared with six popular algorithms, the predictions generated through the reducts derived by our IRFFR possess superiorities. The essential reason is that the feature sequence regarding granularity is helpful for selecting out more stable features. In the example of “Parkinson Multiple Sound Recording” (ID-10, Figure 1j)’, all classification accuracies of IRFFR over four label noise ratios are greater than 0.6; in contrast, when the label noise ratio reaches 20%, 30%, and 40%, all classification accuracies of the six comparative algorithms are less than 0.6. Moreover, for some data sets, no matter which classifier is adopted, the classification accuracies regarding our IRFFR are greatly superior to the six comparative algorithms. The essential reason is that diverse evaluations do bring more qualified features out. With the example of “QSAR Biodegradation” (ID-12, Figure 1l and Figure 2l)’, in KNN, all classification accuracies of IRFFR are greater than 0.66 over four label noise ratios; in contrast, the classification accuracies of all comparative algorithms are less than 0.66 over these noise ratios. In CART, all classification accuracies of IRFFR are greater than 0.67 over four label noise ratios; in contrast, the classification accuracies of all comparative algorithms are less than 0.67 over these noise ratios. In SVM, with “Sonar” (ID-14, Figure 3n) as an example, all classification accuracies of IRFFR are greater than 0.76 over four label noise ratios; in contrast, the classification accuracies of all comparative algorithms are around 0.68 over these noise ratios. Therefore, it can be observed that our IRFFR can derive the reducts with outstanding classification accuracy.
- For most data sets, a higher label noise ratio led to a negative impact on the classification accuracies of all seven algorithms. In other words, with the increase in the label noise ratio ( increases from 10 to 40), the classification accuracies of all seven algorithms show a significant decrease, which can be seen in Figure 1, Figure 2 and Figure 3. With “Twonorm” (ID-20, Figure 1t and Figure 2t)’ as an example, the increase of does discriminate the stripes with different colors. However, it should be noted that for some data sets, such as “LSVT Voice Rehabilitation” (ID-8, Figure 1h and Figure 2h) and “SPECTF Heart” (ID-15, Figure 1o and Figure 2o) and “QSAR Biodegradation” (ID-12, Figure 3l, the changes in these figures are quite unexpected, which can be attributed to a higher label noise ratio leading to the lower stability of the classification results. Furthermore, for some data sets, such as “Diabetic Retinopathy Debrecen” (ID-4, Figure 1d and Figure 2d)’, “Parkinson Multiple Sound Recording” (ID-10, Figure 1j, Figure 2j and Figure 3j)’, and “Statlog” (Vehicle Silhouettes) (ID-17, Figure 1q and Figure 2q)’, the increasing label noise ratio does not have a significant effect on the classification accuracies of our IRFFR. In other words, compared with other algorithms, our IRFFR has a better antinoise ability.
4.3.2. Comparison of Classification Stability
- For most of data sets, regardless of which ratio of label noise was injected into raw data, compared with six popular algorithms, the classification stabilities of the reducts derived by our IRFFR were not the greatest out-performers in SVM; rather, the classification stabilities in KNN and CART were superior. Especially, for some data sets, the predictions conducted by the reducts of our IRRFR obtained absolute dominance. With “Musk” (Version 1)(ID-9, Figure 4i and Figure 5i) as an example, regarding KNN and CART, the classification stabilities of our IRFFR are respectively greater than 0.66 and 0.65; S in contrast, the classification stabilities of the six comparative algorithms are only around 0.56 and 0.58. Therefore, it can be observed that by introducing the new grouping mechanism proposed in Section 3.3, from the viewpoint of both stability and accuracy, our IRFFR is effective in improving the classification performance.
- Following Figure 4 and Figure 5, similar to the classification accuracy, we can also observe that a higher ratio does have a negative impact on the classification stability. Moreover, the classification stability regarding our IRFFR has superior antinoise ability that is similar to that of the classification accuracy. With “Parkinson Multiple Sound Recording” (ID-10, Figure 4j and Figure 5j)” and “QSAR Biodegradation” (ID-12, Figure 4l and Figure 5l)” as examples, although the increasing ratio of label noise was injected into the raw data, the classification stabilities corresponding to our IRFFR over four different label noise ratios do not show dramatic change.
4.3.3. Comparison of Elapsed Time
- The time consumption for selecting features by our IRFFR was much less than that of all the comparative algorithms. The essential reason is that IRFFR can reduce the searching space for candidate features, which indicates that our IRFFR has superior efficiency. With the “Wine quality” (ID-24, Table 5)” data set as an example, if , the time consumption to obtain the reducts of IRFFR, KCR, FGS, SI, AG, ESAR, and NFEFR are 2.5880, 59.9067, 1480.2454, 19.2041, 9.1134, 10.0511, and 98.9501 s, respectively. Our IRFFR requires only 2.5880 s.
- It should be pointed out that for IRFFR and FGS, the time consumption has the largest difference. With “Pen-Based Recognition of Handwritten Digits” (ID-11) as an example, the elapsed time of our IRFFR over four different noisy label ratios are 25.2519, 17.5276, 16.1564, and 19.5612 s respectively; in contrast, the elapsed time of the FGS over four different noisy label ratios are 1083.2167, 4033.1561, 4023.1564, and 4057.2135 s, respectively. Therefore, the mechanism of parallel selection can significantly improve the efficiency in selecting features.
- With the increase in the label noise ratio, the elapsed time of seven different algorithms express different change tendencies. For example, when increases from 10 to 20, all elapsed time according to seven algorithms over the data set of “Breast Cancer Wisconsin” (Diagnostic) (ID-1) show a downward tendency. However, when is 30, the case is quite different, as is the case when is 40. That is, some algorithms require more time for reduct construction. In addition, we can observe that for the average elapsed time, the change of six comparative algorithms is gradual. On the contrary, the elapsed time of our IRFFR shows a clear descending trend. Therefore, the increase in the noisy label ratio does not significantly affect the time consumption of our IRFFR.
4.4. The Second Group of Experiments
- Quick Random Sampling for Attribute Reduction (QRSAR) [58].
- Dissimilarity-Based Searching for Attribute Reduction (DBSAR) [72].
4.4.1. Comparison of Elapsed Time
- Compared with those of other advanced accelerators, the time consumptions for deriving the final reduct of our IRFFR were considerably superior, meaning the mechanism of grouping and parallel selection does improve the efficiency of selecting features. In other words, our IRFFR substantially reduces the time needed to complete the process of selecting features. With the data set “Pen-Based Recognition of Handwritten Digits” (ID-11)’ as an example, when , the elapsed time of the three algorithms are 16.2186, 76.8057, and 99.5899 s, respectively. Moreover, regarding three other ratios (), the elapsed time also shows great differences.
- With the examples of both IRFFR and QRSAR, the change of ratio does not bring distinct oscillation to the elapsed time of our IRFFR. The essential reason for this is that the mechanism of the diverse evaluation is especially significant for the selection of more qualified features if data perturbation occurs. However, this mechanism does not exist in QRSAR, which may results in some abnormal changes to QRSAR. For instance, when changes from 10 to 30, the elapsed times of QRSAR for “Twonorm” (ID-20) are 50.6085, 35.4501, and 42.5415 s, respectively.
- Although our IRFFR is not faster than the two comparative algorithms in all cases, the speed-up ratios related to elapsed time of IRFFR are all higher than 40%. This is mainly because IRFFR selects the qualified features in parallel; that is, IRFFR places the optimal feature at a specific location in each group, and the final feature subset is then derived. From this point of view, QRSAR and DBSAR are more complicated than IRFFR.
4.4.2. Comparison of Classification Performances
- Compared with QRSAR and DBSAR, when , in KNN, our IRFFR achieves slightly superior rising rates of classification accuracy such that 2.36% and 0.59% (see Table 12). With the increase of , the advantage of our IRFFR is gradually revealed. For instance, when , regarding the KNN classifier, the rising rates of classification accuracy with respect to the comparative algorithms are 6.93% and 4.49%, respectively, which shows a significant increase. The essential reason is that the granularity has been introduced into our framework, the corresponding feature sequence is achieved, and the final subset is then relatively stable. Although the rising rates of QRSAR and DBSAR are slightly lower when increases from 30 to 40, compared with the case of lower ratio of , i.e., , our IRFFR does yield great success.
- Different from classification accuracy, regardless of which label noise ratio is injected and which classifier employed, the classification stabilities of our IRFFR show steady improvement (see Table 15, Table 16 and Table 17). Specifically, if , concerning all three classifiers, all rising rates of average classification stabilities exceed 5.0 %. Such an improvement is especially significant in a higher label noise ratio because diverse evaluation is helpful for deriving a more stable reduct, and our IRFFR can then posses a better classification performance if data perturbation occurs.
5. Conclusions
- It should not be ignored that the problems caused by multilabeling have aroused extensive discussion in the academic community. Therefore, it is urgent to further introduce the proposed method to dimension reduction problems with multilabel distributed data sets.
- The type of data perturbation considered in this paper involves only the aspect of the label. Therefore, can simulate other data perturbation forms, such as injecting feature noise [74], to make the proposed algorithm more robust.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gui, N.; Ge, D.; Hu, Z. AFS: An attention-based mechanism for supervised feature selection. Proc. AAAI Conf. Artif. Intell. 2019, 33, 3705–3713. [Google Scholar] [CrossRef]
- Li, K.; Wang, F.; Yang, L.; Liu, R. Deep feature screening: Feature selection for ultra high-dimensional data via deep neural networks. Neurocomputing 2023, 538, 126186. [Google Scholar] [CrossRef]
- Chen, C.; Weiss, S.T.; Liu, Y.Y. Graph Convolutional Network-based Feature Selection for High-dimensional and Low-sample Size Data. arXiv 2022, arXiv:2211.14144. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Z.; Xu, X.; Xing, H.; Song, F.; Wang, X.; Zhao, B. A federated learning system with enhanced feature extraction for human activity recognition. Knowl.-Based Syst. 2021, 229, 107338. [Google Scholar] [CrossRef]
- Constantinopoulos, C.; Titsias, M.K.; Likas, A. Bayesian feature and model selection for Gaussian mixture models. IEEE Trans. Pattern Anal. Mach. Intell. 2006, 28, 1013–1018. [Google Scholar] [CrossRef]
- Chen, J.; Stern, M.; Wainwright, M.J.; Jordan, M.I. Kernel feature selection via conditional covariance minimization. Adv. Neural Inf. Process. Syst. 2017, 30, 6946–6955. [Google Scholar]
- Zhang, X.; Yao, Y. Tri-level attribute reduction in rough set theory. Expert Syst. Appl. 2022, 190, 116187. [Google Scholar] [CrossRef]
- Gao, Q.; Ma, L. A novel notion in rough set theory: Invariant subspace. Fuzzy Sets Syst. 2022, 440, 90–111. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, K.; Yang, X.; Yu, H.; Fujita, H.; Qian, Y. Accelerator for supervised neighborhood based attribute reduction. Int. J. Approx. Reason. 2020, 119, 122–150. [Google Scholar] [CrossRef]
- Liu, K.; Yang, X.; Yu, H.; Fujita, H.; Chen, X.; Liu, D. Supervised information granulation strategy for attribute reduction. Int. J. Mach. Learn. Cybern. 2020, 11, 2149–2163. [Google Scholar] [CrossRef]
- Kar, B.; Sarkar, B.K. A Hybrid Feature Reduction Approach for Medical Decision Support System. Math. Probl. Eng. 2022, 2022, 3984082. [Google Scholar] [CrossRef]
- Sun, L.; Zhang, J.; Ding, W.; Xu, J. Feature reduction for imbalanced data classification using similarity-based feature clustering with adaptive weighted K-nearest neighbors. Inf. Sci. 2022, 593, 591–613. [Google Scholar] [CrossRef]
- Sun, L.; Wang, X.; Ding, W.; Xu, J. TSFNFR: Two-stage fuzzy neighborhood-based feature reduction with binary whale optimization algorithm for imbalanced data classification. Knowl.-Based Syst. 2022, 256, 109849. [Google Scholar] [CrossRef]
- Xia, Z.; Chen, Y.; Xu, C. Multiview pca: A methodology of feature extraction and dimension reduction for high-order data. IEEE Trans. Cybern. 2021, 52, 11068–11080. [Google Scholar] [CrossRef]
- Su, Z.g.; Hu, Q.; Denoeux, T. A distributed rough evidential K-NN classifier: Integrating feature reduction and classification. IEEE Trans. Fuzzy Syst. 2020, 29, 2322–2335. [Google Scholar] [CrossRef]
- Ba, J.; Liu, K.; Ju, H.; Xu, S.; Xu, T.; Yang, X. Triple-G: A new MGRS and attribute reduction. Int. J. Mach. Learn. Cybern. 2022, 13, 337–356. [Google Scholar] [CrossRef]
- Liu, K.; Yang, X.; Yu, H.; Mi, J.; Wang, P.; Chen, X. Rough set based semi-supervised feature selection via ensemble selector. Knowl.-Based Syst. 2019, 165, 282–296. [Google Scholar] [CrossRef]
- Li, Z.; Kamnitsas, K.; Glocker, B. Analyzing overfitting under class imbalance in neural networks for image segmentation. IEEE Trans. Med. Imaging 2020, 40, 1065–1077. [Google Scholar] [CrossRef]
- Park, Y.; Ho, J.C. Tackling overfitting in boosting for noisy healthcare data. IEEE Trans. Knowl. Data Eng. 2019, 33, 2995–3006. [Google Scholar] [CrossRef]
- Ismail, A.; Sandell, M. A Low-Complexity Endurance Modulation for Flash Memory. IEEE Trans. Circuits Syst. II Express Briefs 2021, 69, 424–428. [Google Scholar] [CrossRef]
- Wang, P.X.; Yao, Y.Y. CE3: A three-way clustering method based on mathematical morphology. Knowl.-Based Syst. 2018, 155, 54–65. [Google Scholar] [CrossRef]
- Tang, Y.J.; Zhang, X. Low-complexity resource-shareable parallel generalized integrated interleaved encoder. IEEE Trans. Circuits Syst. I Regul. Pap. 2021, 69, 694–706. [Google Scholar] [CrossRef]
- Ding, W.; Nayak, J.; Naik, B.; Pelusi, D.; Mishra, M. Fuzzy and real-coded chemical reaction optimization for intrusion detection in industrial big data environment. IEEE Trans. Ind. Inform. 2020, 17, 4298–4307. [Google Scholar] [CrossRef]
- Jia, X.; Shang, L.; Zhou, B.; Yao, Y. Generalized attribute reduct in rough set theory. Knowl.-Based Syst. 2016, 91, 204–218. [Google Scholar] [CrossRef]
- Ju, H.; Yang, X.; Yu, H.; Li, T.; Yu, D.J.; Yang, J. Cost-sensitive rough set approach. Inf. Sci. 2016, 355, 282–298. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, J.; Pedrycz, W.; Dang, C. An efficient accelerator for attribute reduction from incomplete data in rough set framework. Pattern Recognit. 2011, 44, 1658–1670. [Google Scholar] [CrossRef]
- Ba, J.; Wang, P.; Yang, X.; Yu, H.; Yu, D. Glee: A granularity filter for feature selection. Eng. Appl. Artif. Intell. 2023, 122, 106080. [Google Scholar] [CrossRef]
- Gong, Z.; Liu, Y.; Xu, T.; Wang, P.; Yang, X. Unsupervised attribute reduction: Improving effectiveness and efficiency. Int. J. Mach. Learn. Cybern. 2022, 13, 3645–3662. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, K.; Song, J.; Yang, X.; Li, J.; Qian, Y. Accelerator for crosswise computing reduct. Appl. Soft Comput. 2021, 98, 106740. [Google Scholar] [CrossRef]
- Chen, Y.; Wang, P.; Yang, X.; Mi, J.; Liu, D. Granular ball guided selector for attribute reduction. Knowl.-Based Syst. 2021, 229, 107326. [Google Scholar] [CrossRef]
- Qian, W.; Xiong, C.; Qian, Y.; Wang, Y. Label enhancement-based feature selection via fuzzy neighborhood discrimination index. Knowl.-Based Syst. 2022, 250, 109119. [Google Scholar] [CrossRef]
- Wang, C.; Huang, Y.; Shao, M.; Hu, Q.; Chen, D. Feature selection based on neighborhood self-information. IEEE Trans. Cybern. 2019, 50, 4031–4042. [Google Scholar] [CrossRef] [PubMed]
- Jin, C.; Li, F.; Hu, Q. Knowledge change rate-based attribute importance measure and its performance analysis. Knowl.-Based Syst. 2017, 119, 59–67. [Google Scholar] [CrossRef]
- Qian, Y.; Liang, J.; Pedrycz, W.; Dang, C. Positive approximation: An accelerator for attribute reduction in rough set theory. Artif. Intell. 2010, 174, 597–618. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, D.; Xie, Z.; Li, X. EROS: Ensemble rough subspaces. Pattern Recognit. 2007, 40, 3728–3739. [Google Scholar] [CrossRef]
- Liu, K.; Li, T.; Yang, X.; Yang, X.; Liu, D.; Zhang, P.; Wang, J. Granular cabin: An efficient solution to neighborhood learning in big data. Inf. Sci. 2022, 583, 189–201. [Google Scholar] [CrossRef]
- Pashaei, E.; Pashaei, E. Hybrid binary COOT algorithm with simulated annealing for feature selection in high-dimensional microarray data. Neural Comput. Appl. 2023, 35, 353–374. [Google Scholar] [CrossRef]
- Tang, Y.; Su, H.; Jin, T.; Flesch, R.C.C. Adaptive PID Control Approach Considering Simulated Annealing Algorithm for Thermal Damage of Brain Tumor During Magnetic Hyperthermia. IEEE Trans. Instrum. Meas. 2023, 72, 1–8. [Google Scholar] [CrossRef]
- Hu, Q.; Pedrycz, W.; Yu, D.; Lang, J. Selecting discrete and continuous features based on neighborhood decision error minimization. IEEE Trans. Syst. Man Cybern. Part B (Cybern.) 2009, 40, 137–150. [Google Scholar]
- Yang, X.; Yao, Y. Ensemble selector for attribute reduction. Appl. Soft Comput. 2018, 70, 1–11. [Google Scholar] [CrossRef]
- Niu, J.; Chen, D.; Li, J.; Wang, H. A dynamic rule-based classification model via granular computing. Inf. Sci. 2022, 584, 325–341. [Google Scholar] [CrossRef]
- Yang, X.; Li, T.; Liu, D.; Fujita, H. A temporal-spatial composite sequential approach of three-way granular computing. Inf. Sci. 2019, 486, 171–189. [Google Scholar] [CrossRef]
- Han, Z.; Huang, Q.; Zhang, J.; Huang, C.; Wang, H.; Huang, X. GA-GWNN: Detecting anomalies of online learners by granular computing and graph wavelet convolutional neural network. Appl. Intell. 2022, 52, 13162–13183. [Google Scholar] [CrossRef]
- Xu, K.; Pedrycz, W.; Li, Z. Granular computing: An augmented scheme of degranulation through a modified partition matrix. Fuzzy Sets Syst. 2022, 440, 131–148. [Google Scholar] [CrossRef]
- Rao, X.; Liu, K.; Song, J.; Yang, X.; Qian, Y. Gaussian kernel fuzzy rough based attribute reduction: An acceleration approach. J. Intell. Fuzzy Syst. 2020, 39, 679–695. [Google Scholar] [CrossRef]
- Yang, B. Fuzzy covering-based rough set on two different universes and its application. Artif. Intell. Rev. 2022, 55, 4717–4753. [Google Scholar] [CrossRef]
- Sun, L.; Wang, T.; Ding, W.; Xu, J.; Lin, Y. Feature selection using Fisher score and multilabel neighborhood rough sets for multilabel classification. Inf. Sci. 2021, 578, 887–912. [Google Scholar] [CrossRef]
- Chen, Y.; Yang, X.; Li, J.; Wang, P.; Qian, Y. Fusing attribute reduction accelerators. Inf. Sci. 2022, 587, 354–370. [Google Scholar] [CrossRef]
- Liang, J.; Shi, Z. The information entropy, rough entropy and knowledge granulation in rough set theory. Int. J. Uncertain. Fuzziness Knowl.-Based Syst. 2004, 12, 37–46. [Google Scholar] [CrossRef]
- Xu, J.; Yang, J.; Ma, Y.; Qu, K.; Kang, Y. Feature selection method for color image steganalysis based on fuzzy neighborhood conditional entropy. Appl. Intell. 2022, 52, 9388–9405. [Google Scholar] [CrossRef]
- Sang, B.; Chen, H.; Yang, L.; Li, T.; Xu, W. Incremental feature selection using a conditional entropy based on fuzzy dominance neighborhood rough sets. IEEE Trans. Fuzzy Syst. 2021, 30, 1683–1697. [Google Scholar] [CrossRef]
- Américo, A.; Khouzani, M.; Malacaria, P. Conditional entropy and data processing: An axiomatic approach based on core-concavity. IEEE Trans. Inf. Theory 2020, 66, 5537–5547. [Google Scholar] [CrossRef]
- Gao, C.; Zhou, J.; Miao, D.; Yue, X.; Wan, J. Granular-conditional-entropy-based attribute reduction for partially labeled data with proxy labels. Inf. Sci. 2021, 580, 111–128. [Google Scholar] [CrossRef]
- Zhang, X.; Mei, C.; Chen, D.; Li, J. Feature selection in mixed data: A method using a novel fuzzy rough set-based information entropy. Pattern Recognit. 2016, 56, 1–15. [Google Scholar] [CrossRef]
- Ko, Y.C.; Fujita, H. An evidential analytics for buried information in big data samples: Case study of semiconductor manufacturing. Inf. Sci. 2019, 486, 190–203. [Google Scholar] [CrossRef]
- Huang, H.; Oh, S.K.; Wu, C.K.; Pedrycz, W. Double iterative learning-based polynomial based-RBFNNs driven by the aid of support vector-based kernel fuzzy clustering and least absolute shrinkage deviations. Fuzzy Sets Syst. 2022, 443, 30–49. [Google Scholar] [CrossRef]
- Yao, Y.; Zhao, Y.; Wang, J. On reduct construction algorithms. Trans. Comput. Sci. II 2008, 100–117. [Google Scholar]
- Chen, Z.; Liu, K.; Yang, X.; Fujita, H. Random sampling accelerator for attribute reduction. Int. J. Approx. Reason. 2022, 140, 75–91. [Google Scholar] [CrossRef]
- Fokianos, K.; Leucht, A.; Neumann, M.H. On integrated l 1 convergence rate of an isotonic regression estimator for multivariate observations. IEEE Trans. Inf. Theory 2020, 66, 6389–6402. [Google Scholar] [CrossRef]
- Wang, H.; Liao, H.; Ma, X.; Bao, R. Remaining useful life prediction and optimal maintenance time determination for a single unit using isotonic regression and gamma process model. Reliab. Eng. Syst. Saf. 2021, 210, 107504. [Google Scholar] [CrossRef]
- Balinski, M.L. A competitive (dual) simplex method for the assignment problem. Math. Program. 1986, 34, 125–141. [Google Scholar] [CrossRef]
- Ayer, M.; Brunk, H.D.; Ewing, G.M.; Reid, W.T.; Silverman, E. An empirical distribution function for sampling with incomplete information. Ann. Math. Stat. 1955, 26, 641–647. [Google Scholar] [CrossRef]
- Oh, H.; Nam, H. Maximum rate scheduling with adaptive modulation in mixed impulsive noise and additive white Gaussian noise environments. IEEE Trans. Wirel. Commun. 2021, 20, 3308–3320. [Google Scholar] [CrossRef]
- Hu, Q.; Yu, D.; Liu, J.; Wu, C. Neighborhood rough set based heterogeneous feature subset selection. Inf. Sci. 2008, 178, 3577–3594. [Google Scholar] [CrossRef]
- Wu, T.F.; Fan, J.C.; Wang, P.X. An improved three-way clustering based on ensemble strategy. Mathematics 2022, 10, 1457. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Song, J.; Fujita, H.; Yang, X.; Qian, Y. Attribute group for attribute reduction. Inf. Sci. 2020, 535, 64–80. [Google Scholar] [CrossRef]
- Ye, D.; Chen, Z.; Ma, S. A novel and better fitness evaluation for rough set based minimum attribute reduction problem. Inf. Sci. 2013, 222, 413–423. [Google Scholar] [CrossRef]
- Cover, T.; Hart, P. Nearest neighbor pattern classification. IEEE Trans. Inf. Theory 1967, 13, 21–27. [Google Scholar] [CrossRef]
- Breiman, L. Classification and Regression Trees; Routledge: Cambridge, MA, USA, 2017. [Google Scholar]
- Fu, C.; Zhou, S.; Zhang, D.; Chen, L. Relative Density-Based Intuitionistic Fuzzy SVM for Class Imbalance Learning. Entropy 2022, 25, 34. [Google Scholar] [CrossRef]
- Demšar, J. Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 2006, 7, 1–30. [Google Scholar]
- Rao, X.; Yang, X.; Yang, X.; Chen, X.; Liu, D.; Qian, Y. Quickly calculating reduct: An attribute relationship based approach. Knowl.-Based Syst. 2020, 200, 106014. [Google Scholar] [CrossRef]
- Cao, F.; Ye, H.; Wang, D. A probabilistic learning algorithm for robust modeling using neural networks with random weights. Inf. Sci. 2015, 313, 62–78. [Google Scholar] [CrossRef]
- Xu, S.; Ju, H.; Shang, L.; Pedrycz, W.; Yang, X.; Li, C. Label distribution learning: A local collaborative mechanism. Int. J. Approx. Reason. 2020, 121, 59–84. [Google Scholar] [CrossRef]
k | 1 | 2 | 3 | 4 | 5 | |
---|---|---|---|---|---|---|
25 | 14 | 10 | 20 | 22 | ||
0.4 | 0.5 | 0.6 | 0.3 | 0.5 | ||
39 | 30 | 22 | ||||
0.436 | 0.4 | 0.5 | ||||
39 | 52 | |||||
0.436 | 0.442 |
d | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
0.3305 | 0.4533 | 0.0240 | 0.0260 | 0.1378 | 0.0486 | 0.1105 | 0.1906 | 0.4186 | 0.2415 | 0.2608 | ||
0.3388 | 0.3466 | 0.0361 | 0.0153 | 0.0996 | 0.0486 | 0.1220 | 0.1791 | 0.4496 | 0.1348 | 0.2028 | ||
0.3057 | 0.2800 | 0.2168 | 0.0843 | 0.1029 | 0.0555 | 0.2211 | 0.2060 | 0.4883 | 0.3258 | 0.3623 | ||
0.3305 | 0.1400 | 0.1746 | 0.0391 | 0.0581 | 0.1388 | 0.2557 | 0.0852 | 0.4031 | 0.0730 | 0.5072 | ||
0.3223 | 0.2333 | 0.6024 | 0.2967 | 0.0382 | 0.1423 | 0.3640 | 0.1987 | 0.4418 | 0.1573 | 0.5797 | ||
0.3057 | 0.1667 | 0.1686 | 0.0659 | 0.0548 | 0.0694 | 0.3433 | 0.1299 | 0.4961 | 0.1966 | 0.4202 | ||
0.3305 | 0.3333 | 0.0120 | 0.0214 | 0.1063 | 0.0277 | 0.0276 | 0.1868 | 0.4961 | 0.1966 | 0.2173 | ||
0.3884 | 0.1333 | 0.3373 | 0.0184 | 0.1378 | 0.1180 | 0.2235 | 0.1887 | 0.4496 | 0.2977 | 0.3623 | ||
0.2314 | 0.0533 | 0.2409 | 0.0138 | 0.0581 | 0.1631 | 0.3156 | 0.0788 | 0.6356 | 0.1685 | 0.6376 | ||
0.1983 | 0.3866 | 0.2891 | 0.0092 | 0.0332 | 0.0972 | 0.1589 | 0.0402 | 0.4728 | 0.0955 | 0.6956 | ||
0.2479 | 0.1200 | 0.2530 | 0.0168 | 0.0664 | 0.1388 | 0.2672 | 0.1135 | 0.5813 | 0.1460 | 0.3623 | ||
0.2148 | 0.1600 | 0.2108 | 0.0644 | 0.0348 | 0.1145 | 0.2188 | 0.0788 | 0.4961 | 0.2134 | 0.6521 |
ID | Datasets | # Samples | # Features | # Labels | Domain | Feature Type |
---|---|---|---|---|---|---|
1 | Breast Cancer Wisconsin (Diagnostic) | 569 | 32 | 2 | Life | Real |
2 | Cardiotocography | 2126 | 21 | 10 | Medicine | Real |
3 | Contraceptive Method | 1473 | 9 | 3 | Life | Integer & Real |
4 | Diabetic Retinopathy Debrecen | 1151 | 19 | 2 | Biology | Integer & Real |
5 | Forest Type Mapping | 523 | 27 | 4 | Geography | Integer & Real |
6 | Ionosphere | 351 | 34 | 2 | Physical | Integer & Real |
7 | Libras Movement | 360 | 90 | 15 | N/A | Real |
8 | LSVT Voice Rehabilitation | 126 | 309 | 2 | Life | Real |
9 | Musk (Version 1) | 476 | 168 | 2 | Physical | Integer |
10 | Parkinson Multiple Sound Recording | 1208 | 26 | 2 | Medicine | Real |
11 | Pen-Based Recognition of Handwritten Digits | 10,992 | 16 | 10 | Computer | Integer |
12 | QSAR Biodegradation | 1055 | 41 | 2 | Biology | Integer & Real |
13 | Quality Assessment of Digital Colposcopies | 287 | 62 | 2 | Life | Real |
14 | Sonar | 208 | 60 | 2 | Physics | Real |
15 | SPECTF Heart | 267 | 44 | 2 | Biology | Real |
16 | Statlog (Image Segmentation) | 2310 | 18 | 7 | Geography | Real |
17 | Statlog (Vehicle Silhouettes) | 846 | 18 | 4 | Physical | Integer |
18 | Steel Plates Faults | 1941 | 33 | 2 | Physical | Integer & Real |
19 | Synthetic Control Chart Time Series | 600 | 60 | 6 | N/A | Real |
20 | Twonorm | 7400 | 20 | 2 | Historical | Real |
21 | Urban Land Cover | 675 | 147 | 9 | Geography | Real |
22 | Wall-Following Robot Navigation | 5456 | 24 | 4 | Computer | Real |
23 | Website Phishing | 1353 | 10 | 2 | Computer | Integer |
24 | Wine Quality | 6497 | 11 | 7 | Physical | Real |
25 | Wireless Indoor Localization | 2000 | 7 | 4 | Computer | Real |
ID | IRFFR | KCR | FGS | SI | AG | ESAR | NFEFR | |
---|---|---|---|---|---|---|---|---|
1 | 0.0536 | 0.7782 | 0.7163 | 0.4309 | 0.1933 | 0.2366 | 4.3213 | |
2 | 0.3441 | 28.8755 | 12.1876 | 9.9088 | 3.2336 | 3.7912 | 37.8901 | |
3 | 0.0688 | 0.9308 | 1.0216 | 0.4289 | 0.2293 | 0.2286 | 2.9642 | |
4 | 0.0937 | 1.7850 | 2.1746 | 0.7978 | 0.4394 | 0.4718 | 9.2432 | |
5 | 0.0285 | 1.1619 | 0.6590 | 0.7516 | 0.2087 | 0.2622 | 2.8259 | |
6 | 0.0207 | 0.3110 | 0.2639 | 0.4131 | 0.0776 | 0.1074 | 1.4439 | |
7 | 0.0877 | 1.3412 | 0.9288 | 1.6358 | 0.3757 | 0.4650 | 13.4194 | |
8 | 0.0692 | 0.9497 | 0.9542 | 0.7542 | 0.2887 | 0.3210 | 10.4971 | |
9 | 0.1662 | 3.3097 | 3.0787 | 2.2836 | 0.8185 | 0.9544 | 56.8696 | |
10 | 0.1316 | 2.8113 | 3.0106 | 1.3394 | 0.6109 | 0.7706 | 16.3750 | |
11 | 25.2519 | 251.1537 | 4083.2167 | 139.3251 | 80.3628 | 111.3182 | 864.9137 | |
12 | 0.1582 | 3.7813 | 4.2592 | 1.7390 | 0.8326 | 0.9802 | 28.2335 | |
13 | 0.0176 | 0.3975 | 0.3412 | 0.4415 | 0.1302 | 0.1509 | 1.8344 | |
14 | 0.0205 | 0.3544 | 0.3153 | 0.3123 | 0.0845 | 0.1121 | 1.4849 | |
15 | 0.0199 | 0.3656 | 0.3079 | 0.1735 | 0.0912 | 0.1174 | 1.6289 | |
16 | 0.3597 | 37.4184 | 9.7542 | 5.0382 | 2.6134 | 2.8379 | 26.8831 | |
17 | 0.0506 | 1.5741 | 0.9303 | 0.5577 | 0.2569 | 0.3081 | 3.6622 | |
18 | 0.1344 | 11.4536 | 7.1114 | 4.7126 | 2.3747 | 4.1211 | 22.7714 | |
19 | 0.2144 | 16.1564 | 3.1614 | 3.8465 | 2.4617 | 5.1545 | 49.2311 | |
20 | 18.5196 | 174.6279 | 838.6248 | 88.3156 | 56.7514 | 77.2156 | 557.3168 | |
21 | 0.3085 | 20.2897 | 5.9909 | 5.2205 | 2.8539 | 4.6020 | 76.5475 | |
22 | 2.7307 | 83.4015 | 167.8977 | 39.8466 | 11.0354 | 14.2905 | 263.3195 | |
23 | 0.0608 | 0.5849 | 0.8442 | 0.2917 | 0.1719 | 0.1667 | 2.9786 | |
24 | 2.5880 | 59.9067 | 148.2454 | 19.2041 | 9.1134 | 10.0511 | 98.9501 | |
25 | 0.1248 | 1.7158 | 2.4156 | 0.9829 | 0.5993 | 0.4756 | 8.1322 | |
AVE | 2.0649 | 28.2174 | 255.9365 | 13.1501 | 7.0484 | 9.5804 | 86.5495 | |
1 | 0.0452 | 0.5909 | 0.5424 | 0.3048 | 0.1488 | 0.1932 | 3.3916 | |
2 | 0.3431 | 26.1039 | 11.0641 | 9.6548 | 3.0425 | 3.5674 | 35.6682 | |
3 | 0.0694 | 0.9199 | 1.0003 | 0.4512 | 0.2255 | 0.2217 | 2.8017 | |
4 | 0.0931 | 1.6936 | 2.0875 | 0.7222 | 0.4199 | 0.4312 | 9.0950 | |
5 | 0.0292 | 0.8807 | 0.5102 | 0.7246 | 0.1662 | 0.2043 | 2.2947 | |
6 | 0.0202 | 0.2956 | 0.2449 | 0.4147 | 0.0696 | 0.0979 | 1.3670 | |
7 | 0.0736 | 1.3963 | 0.8492 | 1.4892 | 0.2840 | 0.3811 | 12.5079 | |
8 | 0.0661 | 0.9041 | 0.8549 | 0.7762 | 0.2701 | 0.2983 | 9.9450 | |
9 | 0.1650 | 3.2286 | 2.9890 | 2.4350 | 0.7940 | 0.9160 | 55.3699 | |
10 | 0.1308 | 2.2509 | 2.4461 | 1.1042 | 0.5276 | 0.6114 | 13.6189 | |
11 | 17.5276 | 268.2813 | 4033.1561 | 142.8134 | 83.4129 | 121.3421 | 871.3185 | |
12 | 0.1641 | 3.2625 | 3.6797 | 1.2514 | 0.7245 | 0.8604 | 25.0494 | |
13 | 0.0028 | 0.4147 | 0.2734 | 0.3857 | 0.1075 | 0.0635 | 1.9477 | |
14 | 0.0199 | 0.3360 | 0.3026 | 0.3273 | 0.0778 | 0.0989 | 1.4706 | |
15 | 0.0196 | 0.3436 | 0.2994 | 0.1520 | 0.0831 | 0.1029 | 1.5284 | |
16 | 0.3666 | 17.2910 | 9.8411 | 6.2131 | 2.5054 | 2.6535 | 26.5666 | |
17 | 0.0515 | 1.5593 | 0.9236 | 0.5482 | 0.2309 | 0.2957 | 3.5708 | |
18 | 0.1348 | 11.4658 | 7.0604 | 4.6848 | 2.3096 | 4.0948 | 22.8890 | |
19 | 0.2138 | 16.2287 | 3.0204 | 3.7783 | 2.3523 | 5.1122 | 48.4254 | |
20 | 12.1955 | 170.1989 | 1922.1891 | 80.7466 | 51.5930 | 70.7186 | 558.6663 | |
21 | 0.3085 | 19.9418 | 6.2093 | 12.2543 | 2.8679 | 4.2509 | 77.9080 | |
22 | 2.7500 | 78.1211 | 152.9137 | 40.2533 | 11.8096 | 13.1762 | 242.1188 | |
23 | 0.0629 | 0.5696 | 0.8556 | 0.2918 | 0.1695 | 0.1671 | 2.8427 | |
24 | 4.1455 | 81.0404 | 165.8189 | 29.7028 | 13.0710 | 14.3930 | 159.9506 | |
25 | 0.1127 | 1.6159 | 2.3784 | 0.9381 | 0.5337 | 0.4157 | 7.8566 | |
AVE | 1.5645 | 28.3574 | 253.2604 | 13.6967 | 7.1119 | 9.7867 | 87.9268 |
ID | IRFFR | KCR | FGS | SI | AG | ESAR | NFEFR | |
---|---|---|---|---|---|---|---|---|
1 | 0.0474 | 0.5990 | 0.5494 | 0.2736 | 0.1360 | 0.1867 | 3.5187 | |
2 | 0.3374 | 25.0034 | 10.6129 | 9.8791 | 2.8190 | 3.4207 | 32.9282 | |
3 | 0.0684 | 0.8996 | 0.9426 | 0.4494 | 0.2200 | 0.2126 | 2.6851 | |
4 | 0.0966 | 1.6500 | 2.0918 | 0.7303 | 0.3952 | 0.3970 | 8.8716 | |
5 | 0.0293 | 0.8955 | 0.5394 | 0.7472 | 0.1550 | 0.2005 | 2.2598 | |
6 | 0.0211 | 0.3043 | 0.2611 | 0.4264 | 0.0737 | 0.1026 | 1.3970 | |
7 | 0.0732 | 1.4337 | 0.7981 | 1.4789 | 0.2350 | 0.2868 | 12.3809 | |
8 | 0.0715 | 0.9460 | 0.9289 | 0.3575 | 0.2745 | 0.3130 | 10.0617 | |
9 | 0.1746 | 3.3834 | 3.1107 | 2.7393 | 0.8036 | 0.9633 | 57.5430 | |
10 | 0.1319 | 2.1473 | 2.3723 | 0.9770 | 0.4789 | 0.5942 | 13.1255 | |
11 | 16.1564 | 267.4983 | 4023.1564 | 138.4983 | 80.9853 | 119.2531 | 870.4638 | |
12 | 0.1642 | 3.1912 | 3.5769 | 1.3367 | 0.6314 | 0.8159 | 24.4300 | |
13 | 0.0059 | 0.3292 | 0.2229 | 0.3393 | 0.0179 | 0.0344 | 2.0627 | |
14 | 0.0200 | 0.3218 | 0.2730 | 0.3349 | 0.0755 | 0.0935 | 1.3827 | |
15 | 0.0206 | 0.3401 | 0.2887 | 0.1474 | 0.0741 | 0.0956 | 1.4982 | |
16 | 0.3571 | 16.8586 | 10.0374 | 6.8824 | 2.4172 | 2.5327 | 26.8768 | |
17 | 0.0519 | 1.4422 | 0.8571 | 0.5823 | 0.2200 | 0.2771 | 3.3948 | |
18 | 0.1372 | 11.3884 | 7.0711 | 4.6152 | 2.1914 | 4.1006 | 22.8787 | |
19 | 0.2055 | 16.1867 | 2.9679 | 3.6706 | 2.2534 | 5.1159 | 47.4915 | |
20 | 10.4985 | 168.6851 | 1901.9933 | 81.5166 | 58.6844 | 75.3100 | 540.0020 | |
21 | 0.3095 | 19.8291 | 6.4364 | 5.2514 | 2.7627 | 3.7103 | 81.5410 | |
22 | 2.8341 | 76.7897 | 152.5695 | 42.3649 | 9.9306 | 12.9020 | 237.2487 | |
23 | 0.0586 | 0.5311 | 0.8019 | 0.2688 | 0.1635 | 0.1563 | 2.5599 | |
24 | 4.3277 | 80.8440 | 171.6118 | 29.1230 | 13.0709 | 14.2647 | 161.9921 | |
25 | 0.1000 | 1.6625 | 2.2242 | 0.8286 | 0.4491 | 0.4181 | 8.1859 | |
AVE | 1.4519 | 28.1264 | 252.2518 | 13.3528 | 7.1807 | 9.8303 | 87.0712 | |
1 | 0.0477 | 0.5750 | 0.5143 | 0.2659 | 0.1271 | 0.1733 | 3.2591 | |
2 | 0.3416 | 24.3643 | 10.4060 | 9.7229 | 2.6469 | 3.3132 | 32.6536 | |
3 | 0.0692 | 0.8752 | 0.9655 | 0.4341 | 0.2196 | 0.2125 | 2.6402 | |
4 | 0.0936 | 1.5387 | 1.9316 | 0.6998 | 0.3433 | 0.3651 | 8.2427 | |
5 | 0.0297 | 0.8927 | 0.5093 | 0.7516 | 0.1552 | 0.2040 | 2.2548 | |
6 | 0.0201 | 0.2853 | 0.2343 | 0.3221 | 0.0634 | 0.0856 | 1.3058 | |
7 | 0.0591 | 1.3633 | 0.7513 | 1.4581 | 0.2067 | 0.1697 | 12.6555 | |
8 | 0.0678 | 0.8898 | 0.8115 | 0.3315 | 0.2606 | 0.2894 | 9.5256 | |
9 | 0.1871 | 3.4483 | 3.3549 | 2.6639 | 0.8415 | 0.9867 | 59.1489 | |
10 | 0.1420 | 2.2963 | 2.5092 | 0.9748 | 0.4825 | 0.6393 | 13.6530 | |
11 | 19.5612 | 277.1566 | 4057.2135 | 144.2356 | 80.9851 | 119.3544 | 871.1983 | |
12 | 0.1814 | 3.1453 | 3.5566 | 1.3475 | 0.5905 | 0.8007 | 23.6727 | |
13 | 0.0029 | 0.3144 | 0.1955 | 0.2347 | 0.0045 | 0.0695 | 2.0031 | |
14 | 0.0227 | 0.3232 | 0.2736 | 0.3419 | 0.0745 | 0.0939 | 1.3458 | |
15 | 0.0196 | 0.3147 | 0.2692 | 0.1352 | 0.0718 | 0.0885 | 1.4129 | |
16 | 0.5885 | 23.7795 | 18.6242 | 10.0813 | 3.3244 | 3.6619 | 45.9315 | |
17 | 0.0497 | 1.4368 | 0.8528 | 0.5397 | 0.2122 | 0.2552 | 3.3861 | |
18 | 0.1255 | 11.4535 | 6.9874 | 4.6026 | 2.1267 | 4.1127 | 23.1883 | |
19 | 0.1944 | 16.1517 | 2.9665 | 3.5403 | 2.2440 | 5.0574 | 46.6051 | |
20 | 9.7851 | 160.5344 | 1855.4531 | 78.2101 | 59.5111 | 71.1651 | 520.6933 | |
21 | 0.3118 | 18.6813 | 6.1723 | 5.1530 | 2.6032 | 3.3897 | 76.1348 | |
22 | 2.7809 | 73.5303 | 151.6155 | 41.7967 | 8.9678 | 12.0370 | 232.5254 | |
23 | 0.0588 | 0.5055 | 0.8270 | 0.2831 | 0.1672 | 0.1566 | 2.3377 | |
24 | 4.3872 | 80.4337 | 172.5754 | 30.0218 | 13.4168 | 14.1845 | 167.2978 | |
25 | 0.0908 | 1.6617 | 2.2339 | 0.7634 | 0.4651 | 0.3579 | 7.0799 | |
AVE | 1.5687 | 28.2381 | 252.0722 | 13.5565 | 7.2045 | 9.6490 | 86.8061 |
ID | IRFFR & KCR | IRFFR & FGS | IRFFR & SI | IRFFR & AG | IRFFR & ESAR | IRFFR & NFEFR | |
---|---|---|---|---|---|---|---|
1 | 0.9311 | 0.9252 | 0.8756 | 0.7227 | 0.7735 | 0.9876 | |
2 | 0.9881 | 0.9718 | 0.9653 | 0.8936 | 0.9092 | 0.9909 | |
3 | 0.9261 | 0.9327 | 0.8396 | 0.7000 | 0.6990 | 0.9768 | |
4 | 0.9475 | 0.9569 | 0.8826 | 0.7868 | 0.8014 | 0.9899 | |
5 | 0.9755 | 0.9568 | 0.9621 | 0.8634 | 0.8913 | 0.9899 | |
6 | 0.9334 | 0.9216 | 0.9499 | 0.7332 | 0.8073 | 0.9857 | |
7 | 0.9346 | 0.9056 | 0.9464 | 0.7666 | 0.8114 | 0.9935 | |
8 | 0.9271 | 0.9275 | 0.9082 | 0.7603 | 0.7844 | 0.9934 | |
9 | 0.9498 | 0.9460 | 0.9272 | 0.7969 | 0.8259 | 0.9971 | |
10 | 0.9532 | 0.9563 | 0.9017 | 0.7846 | 0.8292 | 0.9920 | |
11 | 0.8995 | 0.9938 | 0.8188 | 0.6858 | 0.7732 | 0.9708 | |
12 | 0.9582 | 0.9629 | 0.9090 | 0.8100 | 0.8386 | 0.9944 | |
13 | 0.9557 | 0.9484 | 0.9601 | 0.8648 | 0.8834 | 0.9904 | |
14 | 0.9422 | 0.9350 | 0.9344 | 0.7574 | 0.8171 | 0.9862 | |
15 | 0.9456 | 0.9354 | 0.8853 | 0.7818 | 0.8305 | 0.9878 | |
16 | 0.9904 | 0.9631 | 0.9286 | 0.8624 | 0.8733 | 0.9866 | |
17 | 0.9679 | 0.9456 | 0.9093 | 0.8030 | 0.8358 | 0.9862 | |
18 | 0.9883 | 0.9811 | 0.9715 | 0.9434 | 0.9674 | 0.9941 | |
19 | 0.9867 | 0.9322 | 0.9443 | 0.9129 | 0.9584 | 0.9956 | |
20 | 0.8939 | 0.9904 | 0.7903 | 0.6737 | 0.7602 | 0.9668 | |
21 | 0.9848 | 0.9485 | 0.9409 | 0.8919 | 0.9330 | 0.9960 | |
22 | 0.9673 | 0.9837 | 0.9315 | 0.7526 | 0.8089 | 0.9896 | |
23 | 0.8961 | 0.9280 | 0.7916 | 0.6463 | 0.6353 | 0.9796 | |
24 | 0.9568 | 0.9983 | 0.8652 | 0.7160 | 0.7425 | 0.9738 | |
25 | 0.9273 | 0.9483 | 0.8730 | 0.7918 | 0.7376 | 0.9847 | |
AVE | 0.9491 | 0.9518 | 0.9045 | 0.7881 | 0.8211 | 0.9872 | |
1 | 0.9235 | 0.9167 | 0.8517 | 0.6962 | 0.7660 | 0.9867 | |
2 | 0.9869 | 0.9690 | 0.9645 | 0.8872 | 0.9038 | 0.9904 | |
3 | 0.9246 | 0.9306 | 0.8462 | 0.6922 | 0.6870 | 0.9752 | |
4 | 0.9450 | 0.9554 | 0.8711 | 0.7783 | 0.7841 | 0.9898 | |
5 | 0.9668 | 0.9428 | 0.9597 | 0.8243 | 0.8571 | 0.9873 | |
6 | 0.9317 | 0.9175 | 0.9513 | 0.7098 | 0.7937 | 0.9852 | |
7 | 0.9473 | 0.9133 | 0.9506 | 0.7408 | 0.8069 | 0.9941 | |
8 | 0.9269 | 0.9227 | 0.9148 | 0.7553 | 0.7784 | 0.9934 | |
9 | 0.9489 | 0.9448 | 0.9322 | 0.7922 | 0.8199 | 0.9970 | |
10 | 0.9419 | 0.9465 | 0.8815 | 0.7521 | 0.7861 | 0.9904 | |
11 | 0.9347 | 0.9957 | 0.8773 | 0.7899 | 0.8556 | 0.9799 | |
12 | 0.9497 | 0.9554 | 0.8689 | 0.7735 | 0.8093 | 0.9934 | |
13 | 0.9932 | 0.9898 | 0.9927 | 0.9740 | 0.9559 | 0.9986 | |
14 | 0.9408 | 0.9342 | 0.9392 | 0.7442 | 0.7988 | 0.9865 | |
15 | 0.9430 | 0.9345 | 0.8711 | 0.7641 | 0.8095 | 0.9872 | |
16 | 0.9788 | 0.9627 | 0.9410 | 0.8537 | 0.8618 | 0.9862 | |
17 | 0.9670 | 0.9442 | 0.9061 | 0.7770 | 0.8258 | 0.9856 | |
18 | 0.9882 | 0.9809 | 0.9712 | 0.9416 | 0.9671 | 0.9941 | |
19 | 0.9868 | 0.9292 | 0.9434 | 0.9091 | 0.9582 | 0.9956 | |
20 | 0.9283 | 0.9937 | 0.8490 | 0.7636 | 0.8275 | 0.9782 | |
21 | 0.9845 | 0.9503 | 0.9748 | 0.8924 | 0.9274 | 0.9960 | |
22 | 0.9648 | 0.9820 | 0.9317 | 0.7671 | 0.7913 | 0.9886 | |
23 | 0.8896 | 0.9265 | 0.7844 | 0.6289 | 0.6236 | 0.9779 | |
24 | 0.9488 | 0.9750 | 0.8604 | 0.6828 | 0.7120 | 0.9741 | |
25 | 0.9303 | 0.9526 | 0.8799 | 0.7888 | 0.7289 | 0.9857 | |
AVE | 0.9509 | 0.9506 | 0.9086 | 0.7872 | 0.8174 | 0.9879 |
ID | IRFFR & KCR | IRFFR & FGS | IRFFR & SI | IRFFR & AG | IRFFR & ESAR | IRFFR & NFEFR | |
---|---|---|---|---|---|---|---|
1 | 0.9209 | 0.9137 | 0.8268 | 0.6515 | 0.7461 | 0.9865 | |
2 | 0.9865 | 0.9682 | 0.9658 | 0.8803 | 0.9014 | 0.9898 | |
3 | 0.9240 | 0.9274 | 0.8478 | 0.6891 | 0.6783 | 0.9745 | |
4 | 0.9415 | 0.9538 | 0.8677 | 0.7556 | 0.7567 | 0.9891 | |
5 | 0.9673 | 0.9457 | 0.9608 | 0.8110 | 0.8539 | 0.9870 | |
6 | 0.9307 | 0.9192 | 0.9505 | 0.7137 | 0.7943 | 0.9849 | |
7 | 0.9489 | 0.9083 | 0.9505 | 0.6885 | 0.7448 | 0.9941 | |
8 | 0.9244 | 0.9230 | 0.8000 | 0.7395 | 0.7716 | 0.9929 | |
9 | 0.9484 | 0.9439 | 0.9363 | 0.7827 | 0.8187 | 0.9970 | |
10 | 0.9386 | 0.9444 | 0.8650 | 0.7246 | 0.7780 | 0.9900 | |
11 | 0.9396 | 0.9960 | 0.8833 | 0.8005 | 0.8645 | 0.9814 | |
12 | 0.9485 | 0.9541 | 0.8772 | 0.7399 | 0.7987 | 0.9933 | |
13 | 0.9821 | 0.9735 | 0.9826 | 0.6704 | 0.8285 | 0.9971 | |
14 | 0.9378 | 0.9267 | 0.9403 | 0.7351 | 0.7861 | 0.9855 | |
15 | 0.9394 | 0.9286 | 0.8602 | 0.7220 | 0.7845 | 0.9863 | |
16 | 0.9788 | 0.9644 | 0.9481 | 0.8523 | 0.8590 | 0.9867 | |
17 | 0.9640 | 0.9394 | 0.9109 | 0.7641 | 0.8127 | 0.9847 | |
18 | 0.9880 | 0.9806 | 0.9703 | 0.9374 | 0.9665 | 0.9940 | |
19 | 0.9873 | 0.9308 | 0.9440 | 0.9088 | 0.9598 | 0.9957 | |
20 | 0.9378 | 0.9945 | 0.8712 | 0.8211 | 0.8606 | 0.9806 | |
21 | 0.9844 | 0.9519 | 0.9411 | 0.8880 | 0.9166 | 0.9962 | |
22 | 0.9631 | 0.9814 | 0.9331 | 0.7146 | 0.7803 | 0.9881 | |
23 | 0.8897 | 0.9269 | 0.7820 | 0.6416 | 0.6251 | 0.9771 | |
24 | 0.9465 | 0.9748 | 0.8514 | 0.6689 | 0.6966 | 0.9733 | |
25 | 0.9398 | 0.9550 | 0.8793 | 0.7773 | 0.7608 | 0.9878 | |
AVE | 0.9503 | 0.9491 | 0.9018 | 0.7631 | 0.8058 | 0.9877 | |
1 | 0.9170 | 0.9073 | 0.8206 | 0.6247 | 0.7248 | 0.9854 | |
2 | 0.9860 | 0.9672 | 0.9649 | 0.8709 | 0.8969 | 0.9895 | |
3 | 0.9209 | 0.9283 | 0.8406 | 0.6849 | 0.6744 | 0.9738 | |
4 | 0.9392 | 0.9515 | 0.8662 | 0.7274 | 0.7436 | 0.9886 | |
5 | 0.9667 | 0.9417 | 0.9605 | 0.8086 | 0.8544 | 0.9868 | |
6 | 0.9295 | 0.9142 | 0.9376 | 0.6830 | 0.7652 | 0.9846 | |
7 | 0.9566 | 0.9213 | 0.9595 | 0.7141 | 0.6517 | 0.9953 | |
8 | 0.9238 | 0.9165 | 0.7955 | 0.7398 | 0.7657 | 0.9929 | |
9 | 0.9457 | 0.9442 | 0.9298 | 0.7777 | 0.8104 | 0.9968 | |
10 | 0.9382 | 0.9434 | 0.8543 | 0.7057 | 0.7779 | 0.9896 | |
11 | 0.9294 | 0.9952 | 0.8644 | 0.7585 | 0.8361 | 0.9775 | |
12 | 0.9423 | 0.9490 | 0.8654 | 0.6928 | 0.7734 | 0.9923 | |
13 | 0.9908 | 0.9852 | 0.9876 | 0.3556 | 0.9583 | 0.9986 | |
14 | 0.9298 | 0.9170 | 0.9336 | 0.6953 | 0.7583 | 0.9831 | |
15 | 0.9377 | 0.9272 | 0.8550 | 0.7270 | 0.7785 | 0.9861 | |
16 | 0.9753 | 0.9684 | 0.9416 | 0.8230 | 0.8393 | 0.9872 | |
17 | 0.9654 | 0.9417 | 0.9079 | 0.7658 | 0.8053 | 0.9853 | |
18 | 0.9890 | 0.9820 | 0.9727 | 0.9410 | 0.9695 | 0.9946 | |
19 | 0.9880 | 0.9345 | 0.9451 | 0.9134 | 0.9616 | 0.9958 | |
20 | 0.9390 | 0.9947 | 0.8749 | 0.8356 | 0.8625 | 0.9812 | |
21 | 0.9833 | 0.9495 | 0.9395 | 0.8802 | 0.9080 | 0.9959 | |
22 | 0.9622 | 0.9817 | 0.9335 | 0.6899 | 0.7690 | 0.9880 | |
23 | 0.8837 | 0.9289 | 0.7923 | 0.6483 | 0.6245 | 0.9748 | |
24 | 0.9455 | 0.9746 | 0.8539 | 0.6730 | 0.6907 | 0.9738 | |
25 | 0.9454 | 0.9594 | 0.8811 | 0.8048 | 0.7463 | 0.9872 | |
AVE | 0.9492 | 0.9490 | 0.8991 | 0.7416 | 0.7978 | 0.9874 |
ID | ||||||
---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.0628 | 0.1769 | 0.3337 | 0.0521 | 0.1324 | 0.2892 |
2 | 0.3614 | 2.4125 | 2.9180 | 0.3407 | 2.6281 | 2.7269 |
3 | 0.0560 | 0.1306 | 0.2900 | 0.1177 | 0.1268 | 0.2862 |
4 | 0.0928 | 0.2987 | 0.5697 | 0.1453 | 0.3036 | 0.5502 |
5 | 0.0616 | 0.1744 | 0.3232 | 0.0565 | 0.1917 | 0.1507 |
6 | 0.0510 | 0.1712 | 0.1932 | 0.0155 | 0.1640 | 0.1852 |
7 | 0.4165 | 1.6451 | 1.2564 | 0.3827 | 1.6113 | 1.2226 |
8 | 0.0752 | 0.2814 | 0.3545 | 0.0802 | 0.1643 | 0.3359 |
9 | 0.1561 | 0.6201 | 1.2469 | 0.2057 | 0.5956 | 1.2224 |
10 | 0.1343 | 0.4787 | 0.8931 | 0.1300 | 0.3954 | 0.8098 |
11 | 16.2186 | 76.8057 | 99.5899 | 17.5167 | 51.8558 | 125.6400 |
12 | 0.1499 | 0.6312 | 0.8640 | 0.2179 | 0.5231 | 0.7559 |
13 | 0.3156 | 1.2615 | 1.0561 | 0.3887 | 1.3346 | 1.1292 |
14 | 0.0362 | 0.0771 | 0.0891 | 0.0242 | 0.0852 | 0.0824 |
15 | 0.0203 | 0.0790 | 0.1890 | 0.0543 | 0.0953 | 0.1809 |
16 | 0.3712 | 2.2313 | 3.0115 | 0.3655 | 2.1233 | 2.9035 |
17 | 0.0496 | 0.2182 | 0.3856 | 0.0741 | 0.1922 | 0.3596 |
18 | 1.2015 | 3.1645 | 2.9131 | 1.1425 | 3.1055 | 2.8541 |
19 | 0.2156 | 0.9115 | 1.2198 | 0.2294 | 0.9253 | 1.2336 |
20 | 11.7702 | 50.6085 | 78.1043 | 12.2331 | 35.4501 | 72.9459 |
21 | 0.3213 | 2.6717 | 2.6661 | 0.3802 | 2.6857 | 2.6801 |
22 | 2.7791 | 10.0723 | 17.7285 | 2.7587 | 6.8465 | 18.5027 |
23 | 0.0747 | 0.1382 | 0.5356 | 0.1073 | 0.1358 | 0.5332 |
24 | 2.5812 | 8.5460 | 9.7298 | 4.2021 | 12.5036 | 13.6874 |
25 | 0.1252 | 0.6667 | 0.5871 | 0.1928 | 0.7343 | 0.6547 |
AVE | 1.5079 | 6.5789 | 10.0019 | 1.6566 | 4.9964 | 10.0769 |
ID | ||||||
---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.0887 | 0.1196 | 0.2764 | 0.0733 | 0.1107 | 0.2675 |
2 | 0.4025 | 2.4046 | 2.5034 | 0.4111 | 2.2325 | 2.3313 |
3 | 0.0982 | 0.1213 | 0.2807 | 0.0790 | 0.1209 | 0.2803 |
4 | 0.1327 | 0.2789 | 0.5255 | 0.0807 | 0.2270 | 0.4736 |
5 | 0.1023 | 0.1805 | 0.1395 | 0.0339 | 0.1807 | 0.1397 |
6 | 0.0708 | 0.1681 | 0.1893 | 0.0255 | 0.1578 | 0.1790 |
7 | 0.3220 | 1.5506 | 1.1619 | 0.3736 | 1.6022 | 1.2135 |
8 | 0.1098 | 0.1687 | 0.3403 | 0.0920 | 0.1548 | 0.3264 |
9 | 0.2361 | 0.6052 | 1.2320 | 0.1684 | 0.6431 | 1.2699 |
10 | 0.1998 | 0.3467 | 0.7611 | 0.2117 | 0.3503 | 0.7647 |
11 | 16.2165 | 49.4282 | 123.2124 | 19.5709 | 49.428 | 123.2122 |
12 | 0.2431 | 0.4300 | 0.6628 | 0.1811 | 0.3891 | 0.6219 |
13 | 0.2893 | 1.2352 | 1.0298 | 0.2976 | 1.2435 | 1.0381 |
14 | 0.0301 | 0.0829 | 0.0801 | 0.0120 | 0.0819 | 0.0791 |
15 | 0.0907 | 0.0863 | 0.1719 | 0.0242 | 0.0840 | 0.1696 |
16 | 0.3899 | 2.0351 | 2.8153 | 0.6680 | 2.9423 | 3.7225 |
17 | 0.0894 | 0.1813 | 0.3487 | 0.0802 | 0.1735 | 0.3409 |
18 | 1.1215 | 3.0845 | 2.8331 | 1.0330 | 2.9960 | 2.7446 |
19 | 0.2395 | 0.9354 | 1.2437 | 0.2970 | 0.9929 | 1.3012 |
20 | 10.5013 | 42.5415 | 80.0373 | 9.7713 | 43.3682 | 80.8640 |
21 | 0.3760 | 2.5805 | 2.5749 | 0.3225 | 2.4210 | 2.4154 |
22 | 2.8621 | 4.9675 | 16.6237 | 2.7941 | 4.0047 | 15.6609 |
23 | 0.1231 | 0.1298 | 0.5272 | 0.1149 | 0.1335 | 0.5309 |
24 | 4.4067 | 12.5035 | 13.6873 | 4.3774 | 12.8494 | 14.0332 |
25 | 0.1370 | 0.6785 | 0.5989 | 0.0373 | 0.5788 | 0.4992 |
AVE | 1.5552 | 5.0738 | 10.1543 | 1.6452 | 5.0987 | 10.1792 |
ID | ||||||||
---|---|---|---|---|---|---|---|---|
IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | |
1 | 0.6450 | 0.8118 | 0.6065 | 0.8198 | 0.2584 | 0.6791 | 0.3379 | 0.7260 |
2 | 0.8502 | 0.8761 | 0.8704 | 0.8751 | 0.8326 | 0.8392 | 0.8159 | 0.8237 |
3 | 0.5712 | 0.8069 | 0.0718 | 0.5887 | 0.1904 | 0.6502 | 0.3466 | 0.7182 |
4 | 0.6893 | 0.8371 | 0.5214 | 0.7359 | 0.5242 | 0.7475 | 0.6445 | 0.8296 |
5 | 0.6468 | 0.8094 | 0.7053 | 0.6251 | 0.4332 | 0.2667 | 0.8124 | 0.7573 |
6 | 0.7021 | 0.7360 | 0.9055 | 0.9163 | 0.5788 | 0.6260 | 0.8384 | 0.8575 |
7 | 0.7468 | 0.6685 | 0.7625 | 0.6870 | 0.7923 | 0.7229 | 0.7668 | 0.6921 |
8 | 0.7328 | 0.7879 | 0.5119 | 0.7612 | 0.3491 | 0.6773 | 0.4057 | 0.7181 |
9 | 0.7483 | 0.8748 | 0.6546 | 0.8317 | 0.6099 | 0.8084 | 0.7381 | 0.8674 |
10 | 0.7194 | 0.8496 | 0.6712 | 0.8395 | 0.4237 | 0.7375 | 0.3957 | 0.7232 |
11 | 0.7888 | 0.8371 | 0.6622 | 0.8606 | 0.6719 | 0.8684 | 0.6041 | 0.8412 |
12 | 0.7625 | 0.8265 | 0.5834 | 0.7117 | 0.4347 | 0.6332 | 0.5346 | 0.7088 |
13 | 0.7498 | 0.7012 | 0.7088 | 0.6558 | 0.7658 | 0.7191 | 0.7607 | 0.7133 |
14 | 0.5305 | 0.5937 | 0.7160 | 0.7063 | 0.6369 | 0.6242 | 0.8535 | 0.8483 |
15 | 0.7430 | 0.8926 | 0.4302 | 0.6998 | -0.0510 | 0.4724 | 0.7119 | 0.8573 |
16 | 0.8336 | 0.8767 | 0.8279 | 0.8741 | 0.8084 | 0.8615 | 0.7730 | 0.8206 |
17 | 0.7727 | 0.8714 | 0.6145 | 0.7939 | 0.5069 | 0.7436 | 0.5378 | 0.7647 |
18 | 0.6203 | 0.5876 | 0.6321 | 0.5997 | 0.6364 | 0.6041 | 0.6552 | 0.6236 |
19 | 0.7635 | 0.8232 | 0.7521 | 0.8140 | 0.7440 | 0.8074 | 0.7009 | 0.7717 |
20 | 0.7674 | 0.8493 | 0.6549 | 0.8323 | 0.7532 | 0.8688 | 0.7747 | 0.8792 |
21 | 0.8797 | 0.8795 | 0.8584 | 0.8581 | 0.8543 | 0.8540 | 0.8668 | 0.8665 |
22 | 0.7241 | 0.8432 | 0.5971 | 0.8509 | 0.4238 | 0.8278 | 0.3023 | 0.8216 |
23 | 0.4595 | 0.8605 | 0.2099 | 0.7988 | 0.0516 | 0.7665 | 0.1393 | 0.7836 |
24 | 0.6980 | 0.7347 | 0.6639 | 0.6930 | 0.6476 | 0.6780 | 0.6593 | 0.6881 |
25 | 0.8122 | 0.7867 | 0.7374 | 0.7055 | 0.7981 | 0.7712 | 0.9356 | 0.9253 |
AVE | 0.7183 | 0.8009 | 0.6372 | 0.7654 | 0.5470 | 0.7142 | 0.6365 | 0.7851 |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8984 | 0.9154 | 0.9159 | 0.9201 | 0.9267 | 0.9146 | 0.8873 | 0.9036 | 0.8983 | 0.9005 | 0.8534 | 0.8503 |
2 | 0.5501 | 0.5261 | 0.5121 | 0.5074 | 0.4144 | 0.3927 | 0.5128 | 0.3497 | 0.3291 | 0.4840 | 0.3137 | 0.2751 |
3 | 0.4033 | 0.4306 | 0.4301 | 0.4186 | 0.4274 | 0.4175 | 0.4018 | 0.4122 | 0.4119 | 0.4111 | 0.4032 | 0.4044 |
4 | 0.5665 | 0.5544 | 0.5522 | 0.5884 | 0.5373 | 0.5389 | 0.5674 | 0.5280 | 0.5278 | 0.5866 | 0.5318 | 0.5328 |
5 | 0.7421 | 0.5516 | 0.7401 | 0.7361 | 0.6795 | 0.6357 | 0.7532 | 0.4725 | 0.5476 | 0.7540 | 0.7548 | 0.7990 |
6 | 0.7598 | 0.7820 | 0.8308 | 0.8183 | 0.7805 | 0.7424 | 0.7696 | 0.7526 | 0.6507 | 0.7341 | 0.7700 | 0.7345 |
7 | 0.8310 | 0.8218 | 0.8049 | 0.8437 | 0.7850 | 0.8500 | 0.8250 | 0.7843 | 0.7817 | 0.8008 | 0.7680 | 0.7418 |
8 | 0.7437 | 0.6897 | 0.6815 | 0.7133 | 0.7121 | 0.7347 | 0.6609 | 0.6917 | 0.6419 | 0.6685 | 0.6529 | 0.6795 |
9 | 0.7744 | 0.7813 | 0.7625 | 0.7334 | 0.5849 | 0.5724 | 0.7508 | 0.5855 | 0.5752 | 0.7346 | 0.5795 | 0.5710 |
10 | 0.6341 | 0.5945 | 0.6430 | 0.6212 | 0.5462 | 0.5431 | 0.6099 | 0.5423 | 0.5382 | 0.6058 | 0.5368 | 0.5221 |
11 | 0.8011 | 0.7988 | 0.7850 | 0.7015 | 0.7145 | 0.7102 | 0.6632 | 0.6988 | 0.6712 | 0.6742 | 0.6868 | 0.6403 |
12 | 0.7030 | 0.7480 | 0.6999 | 0.7134 | 0.7204 | 0.7451 | 0.6183 | 0.6276 | 0.6098 | 0.6156 | 0.6197 | 0.6387 |
13 | 0.8812 | 0.9022 | 0.9154 | 0.7901 | 0.6404 | 0.8611 | 0.7761 | 0.5783 | 0.8488 | 0.7156 | 0.5718 | 0.7685 |
14 | 0.6848 | 0.6552 | 0.6911 | 0.6485 | 0.6145 | 0.6403 | 0.5652 | 0.5658 | 0.5765 | 0.5880 | 0.5652 | 0.5815 |
15 | 0.7295 | 0.7178 | 0.7161 | 0.6886 | 0.6898 | 0.6832 | 0.8041 | 0.7733 | 0.7710 | 0.7401 | 0.7302 | 0.7368 |
16 | 0.7604 | 0.7071 | 0.8358 | 0.7618 | 0.5641 | 0.7149 | 0.7507 | 0.4432 | 0.6725 | 0.7028 | 0.6866 | 0.5991 |
17 | 0.5907 | 0.5639 | 0.5359 | 0.5712 | 0.4740 | 0.4804 | 0.5463 | 0.4162 | 0.4126 | 0.5170 | 0.3825 | 0.3773 |
18 | 0.8365 | 0.8294 | 0.8161 | 0.7814 | 0.7880 | 0.8224 | 0.7617 | 0.7663 | 0.7525 | 0.7296 | 0.7260 | 0.7261 |
19 | 0.6563 | 0.5959 | 0.6340 | 0.6178 | 0.5803 | 0.5793 | 0.6512 | 0.6603 | 0.6346 | 0.6139 | 0.5507 | 0.5957 |
20 | 0.8316 | 0.8810 | 0.8454 | 0.7988 | 0.8270 | 0.8136 | 0.7780 | 0.7733 | 0.7790 | 0.7280 | 0.7302 | 0.7080 |
21 | 0.6058 | 0.5030 | 0.5375 | 0.5569 | 0.4856 | 0.5661 | 0.5326 | 0.4416 | 0.4872 | 0.5525 | 0.4675 | 0.4905 |
22 | 0.8116 | 0.7351 | 0.7132 | 0.7684 | 0.6447 | 0.5109 | 0.7592 | 0.5665 | 0.4491 | 0.7631 | 0.5315 | 0.4636 |
23 | 0.7651 | 0.8704 | 0.8718 | 0.7461 | 0.8495 | 0.8511 | 0.7865 | 0.8207 | 0.8284 | 0.7315 | 0.7624 | 0.7642 |
24 | 0.4354 | 0.4409 | 0.4165 | 0.4023 | 0.4147 | 0.4177 | 0.4351 | 0.4063 | 0.4100 | 0.4118 | 0.3814 | 0.3787 |
25 | 0.5829 | 0.5779 | 0.5905 | 0.5994 | 0.5422 | 0.5770 | 0.5889 | 0.5420 | 0.5282 | 0.5715 | 0.5187 | 0.5205 |
AVE | 0.7032 | 0.6870 | 0.6991 | 0.6819 | 0.6377 | 0.6526 | 0.6702 | 0.6041 | 0.6133 | 0.6534 | 0.6030 | 0.6040 |
↑ 2.36% | ↑ 0.59% | ↑ 6.93% | ↑ 4.49% | ↑ 10.94% | ↑ 9.28% | ↑ 8.36% | ↑ 8.18% |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8908 | 0.9094 | 0.9093 | 0.9083 | 0.9300 | 0.9291 | 0.8913 | 0.9114 | 0.9109 | 0.8643 | 0.8928 | 0.8923 |
2 | 0.5899 | 0.6323 | 0.6239 | 0.5484 | 0.5141 | 0.4942 | 0.5528 | 0.4352 | 0.4446 | 0.5281 | 0.4028 | 0.3634 |
3 | 0.4204 | 0.4401 | 0.4409 | 0.4153 | 0.4275 | 0.4282 | 0.4140 | 0.4158 | 0.4121 | 0.4150 | 0.4035 | 0.4037 |
4 | 0.5799 | 0.5662 | 0.5736 | 0.5836 | 0.5507 | 0.5650 | 0.5742 | 0.5296 | 0.5351 | 0.5820 | 0.5231 | 0.5368 |
5 | 0.7590 | 0.5812 | 0.7893 | 0.7493 | 0.5441 | 0.7317 | 0.7240 | 0.5185 | 0.6637 | 0.6696 | 0.5104 | 0.6359 |
6 | 0.7658 | 0.7955 | 0.8170 | 0.7850 | 0.8038 | 0.7455 | 0.7844 | 0.8016 | 0.7091 | 0.8193 | 0.7953 | 0.7384 |
7 | 0.8318 | 0.8156 | 0.8011 | 0.8398 | 0.7809 | 0.8453 | 0.8194 | 0.7817 | 0.7823 | 0.7994 | 0.7626 | 0.7423 |
8 | 0.7201 | 0.6749 | 0.6731 | 0.6801 | 0.6513 | 0.6363 | 0.6893 | 0.7129 | 0.6539 | 0.7069 | 0.6281 | 0.6575 |
9 | 0.7366 | 0.6295 | 0.6567 | 0.7185 | 0.6281 | 0.6322 | 0.6451 | 0.6415 | 0.6363 | 0.6252 | 0.6314 | 0.6366 |
10 | 0.6012 | 0.6112 | 0.6117 | 0.5946 | 0.5666 | 0.5621 | 0.6113 | 0.5594 | 0.5400 | 0.5654 | 0.5488 | 0.5247 |
11 | 0.9166 | 0.9256 | 0.9102 | 0.9006 | 0.8560 | 0.8610 | 0.8571 | 0.7974 | 0.8082 | 0.8144 | 0.7624 | 0.7833 |
12 | 0.7132 | 0.6553 | 0.6413 | 0.6522 | 0.6107 | 0.5783 | 0.6179 | 0.6023 | 0.5736 | 0.5563 | 0.5632 | 0.5613 |
13 | 0.7820 | 0.8960 | 0.9116 | 0.7862 | 0.6363 | 0.8564 | 0.7705 | 0.5757 | 0.8494 | 0.7142 | 0.5664 | 0.7690 |
14 | 0.7277 | 0.6499 | 0.6496 | 0.6917 | 0.6028 | 0.6542 | 0.6514 | 0.5672 | 0.5884 | 0.6892 | 0.5709 | 0.5962 |
15 | 0.7216 | 0.7117 | 0.7180 | 0.7056 | 0.7004 | 0.7024 | 0.7716 | 0.7604 | 0.7884 | 0.7325 | 0.7174 | 0.7316 |
16 | 0.7921 | 0.7614 | 0.9191 | 0.8102 | 0.6893 | 0.8852 | 0.7900 | 0.5658 | 0.8819 | 0.7682 | 0.5040 | 0.8148 |
17 | 0.6467 | 0.6397 | 0.6025 | 0.6146 | 0.6026 | 0.6013 | 0.5996 | 0.5247 | 0.5267 | 0.6030 | 0.5174 | 0.4734 |
18 | 0.8073 | 0.8232 | 0.8123 | 0.7775 | 0.7839 | 0.8177 | 0.7561 | 0.7637 | 0.7531 | 0.7282 | 0.7206 | 0.7266 |
19 | 0.6571 | 0.5897 | 0.6302 | 0.6139 | 0.5762 | 0.5746 | 0.6456 | 0.6577 | 0.6352 | 0.6125 | 0.5453 | 0.5962 |
20 | 0.8971 | 0.8971 | 0.9324 | 0.8644 | 0.8441 | 0.8512 | 0.8534 | 0.8136 | 0.8469 | 0.8370 | 0.7874 | 0.8169 |
21 | 0.7123 | 0.6362 | 0.6697 | 0.6873 | 0.6256 | 0.7017 | 0.6811 | 0.5990 | 0.6578 | 0.6905 | 0.6185 | 0.6744 |
22 | 0.9135 | 0.9410 | 0.9261 | 0.8936 | 0.8827 | 0.5917 | 0.9024 | 0.8516 | 0.5419 | 0.8940 | 0.8120 | 0.5406 |
23 | 0.8041 | 0.8348 | 0.8350 | 0.7710 | 0.7751 | 0.7730 | 0.7639 | 0.6853 | 0.6863 | 0.7071 | 0.6416 | 0.6545 |
24 | 0.4675 | 0.4959 | 0.4760 | 0.4711 | 0.4752 | 0.4781 | 0.4665 | 0.4553 | 0.4565 | 0.4425 | 0.4204 | 0.4246 |
25 | 0.5837 | 0.5717 | 0.5867 | 0.5955 | 0.5381 | 0.5723 | 0.5833 | 0.5394 | 0.5288 | 0.5701 | 0.5133 | 0.5210 |
AVE | 0.7215 | 0.7074 | 0.7247 | 0.7063 | 0.6638 | 0.6827 | 0.6967 | 0.6427 | 0.6564 | 0.6774 | 0.6144 | 0.6326 |
↑ 1.99% | ↓ 0.044% | ↑ 6.40% | ↑ 3.46% | ↑ 8.40% | ↑ 6.14% | ↑ 10.25% | ↑ 7.08% |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8872 | 0.8960 | 0.8917 | 0.9058 | 0.9212 | 0.9208 | 0.8802 | 0.9207 | 0.9230 | 0.8686 | 0.8607 | 0.8559 |
2 | 0.6241 | 0.6475 | 0.6552 | 0.6073 | 0.5848 | 0.5800 | 0.5855 | 0.5512 | 0.5536 | 0.5872 | 0.5614 | 0.5597 |
3 | 0.6080 | 0.5873 | 0.5904 | 0.5909 | 0.5718 | 0.5714 | 0.5570 | 0.5408 | 0.5402 | 0.5687 | 0.5408 | 0.5402 |
4 | 0.5699 | 0.5634 | 0.5738 | 0.5819 | 0.5318 | 0.5605 | 0.5658 | 0.5152 | 0.5089 | 0.5627 | 0.5057 | 0.5033 |
5 | 0.7480 | 0.8147 | 0.7952 | 0.7378 | 0.6509 | 0.7189 | 0.7320 | 0.6439 | 0.6334 | 0.7375 | 0.6283 | 0.6016 |
6 | 0.8180 | 0.8073 | 0.7882 | 0.8262 | 0.7746 | 0.8335 | 0.8019 | 0.7575 | 0.7624 | 0.7920 | 0.7550 | 0.7246 |
7 | 0.6433 | 0.5814 | 0.6173 | 0.6003 | 0.5699 | 0.5628 | 0.6281 | 0.6335 | 0.6153 | 0.6051 | 0.5377 | 0.5785 |
8 | 0.6932 | 0.5833 | 0.5794 | 0.6532 | 0.5757 | 0.5717 | 0.6728 | 0.5660 | 0.5647 | 0.6751 | 0.5622 | 0.5598 |
9 | 0.6020 | 0.5812 | 0.5822 | 0.5882 | 0.5405 | 0.5346 | 0.5804 | 0.5322 | 0.5261 | 0.5852 | 0.5242 | 0.5032 |
10 | 0.8327 | 0.8337 | 0.8188 | 0.8035 | 0.7915 | 0.7828 | 0.7777 | 0.7478 | 0.7516 | 0.7213 | 0.7064 | 0.6955 |
11 | 0.6703 | 0.5880 | 0.5996 | 0.6688 | 0.5526 | 0.5399 | 0.6851 | 0.5485 | 0.5236 | 0.6288 | 0.5221 | 0.5029 |
12 | 0.6580 | 0.5853 | 0.6048 | 0.6433 | 0.5753 | 0.5826 | 0.6134 | 0.5825 | 0.5634 | 0.6095 | 0.5304 | 0.5376 |
13 | 0.7323 | 0.7129 | 0.7330 | 0.7289 | 0.7503 | 0.7456 | 0.7238 | 0.7380 | 0.7595 | 0.7077 | 0.7145 | 0.7400 |
14 | 0.7682 | 0.8877 | 0.8987 | 0.7726 | 0.6300 | 0.8446 | 0.7530 | 0.5515 | 0.8295 | 0.7068 | 0.5588 | 0.7513 |
15 | 0.6738 | 0.6666 | 0.6748 | 0.6704 | 0.6309 | 0.6469 | 0.6199 | 0.5754 | 0.5959 | 0.6198 | 0.5558 | 0.5551 |
16 | 0.7935 | 0.8149 | 0.7994 | 0.7639 | 0.7776 | 0.8059 | 0.7386 | 0.7395 | 0.7332 | 0.7208 | 0.7130 | 0.7089 |
17 | 0.7112 | 0.6052 | 0.6568 | 0.6895 | 0.6647 | 0.7209 | 0.6790 | 0.6418 | 0.6721 | 0.6646 | 0.6360 | 0.6697 |
18 | 0.8704 | 0.8736 | 0.7496 | 0.8465 | 0.8284 | 0.7322 | 0.8496 | 0.7779 | 0.6261 | 0.8449 | 0.7292 | 0.6319 |
19 | 0.8529 | 0.8105 | 0.8169 | 0.7975 | 0.7029 | 0.6985 | 0.7501 | 0.6029 | 0.5987 | 0.6764 | 0.5628 | 0.5568 |
20 | 0.5760 | 0.5869 | 0.5908 | 0.5814 | 0.5824 | 0.5875 | 0.5757 | 0.5683 | 0.5773 | 0.5687 | 0.5691 | 0.5638 |
21 | 0.8175 | 0.8125 | 0.7906 | 0.8274 | 0.7796 | 0.8336 | 0.8075 | 0.7628 | 0.7680 | 0.7933 | 0.7564 | 0.7304 |
22 | 0.7677 | 0.8929 | 0.9011 | 0.7738 | 0.6350 | 0.8447 | 0.7586 | 0.5568 | 0.8351 | 0.7081 | 0.5602 | 0.7571 |
23 | 0.7930 | 0.8201 | 0.8018 | 0.7651 | 0.7826 | 0.8060 | 0.7442 | 0.7448 | 0.7388 | 0.7221 | 0.7144 | 0.7147 |
24 | 0.6428 | 0.5866 | 0.6197 | 0.6015 | 0.5749 | 0.5629 | 0.6337 | 0.6388 | 0.6209 | 0.6064 | 0.5391 | 0.5843 |
25 | 0.5694 | 0.5686 | 0.5762 | 0.5831 | 0.5368 | 0.5606 | 0.5714 | 0.5205 | 0.5145 | 0.5640 | 0.5071 | 0.5091 |
AVE | 0.7169 | 0.7083 | 0.7082 | 0.7044 | 0.6607 | 0.6860 | 0.6914 | 0.6383 | 0.6535 | 0.6738 | 0.6141 | 0.6254 |
↑ 1.21% | ↑ 1.23% | ↑ 6.61% | ↑ 2.68% | ↑ 8.32% | ↑ 5.80% | ↑ 9.72% | ↑ 7.74% |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8929 | 0.9085 | 0.9102 | 0.9109 | 0.8883 | 0.8886 | 0.8765 | 0.9045 | 0.8912 | 0.8931 | 0.8359 | 0.8229 |
2 | 0.6087 | 0.6048 | 0.6071 | 0.5933 | 0.5820 | 0.5891 | 0.5803 | 0.5947 | 0.6007 | 0.5796 | 0.6090 | 0.6326 |
3 | 0.6276 | 0.6029 | 0.6024 | 0.6227 | 0.5750 | 0.5738 | 0.6028 | 0.5524 | 0.5529 | 0.6145 | 0.5479 | 0.5456 |
4 | 0.6010 | 0.5895 | 0.5926 | 0.5854 | 0.5275 | 0.5373 | 0.5876 | 0.5312 | 0.5285 | 0.5787 | 0.5196 | 0.5267 |
5 | 0.7518 | 0.7038 | 0.7572 | 0.7199 | 0.6240 | 0.6156 | 0.7238 | 0.6067 | 0.5555 | 0.7254 | 0.5926 | 0.5493 |
6 | 0.7677 | 0.8002 | 0.8724 | 0.8584 | 0.7930 | 0.8462 | 0.7683 | 0.7670 | 0.6680 | 0.7984 | 0.7730 | 0.8045 |
7 | 0.8289 | 0.8161 | 0.7987 | 0.8370 | 0.7811 | 0.8417 | 0.8212 | 0.7808 | 0.7795 | 0.7985 | 0.7592 | 0.7410 |
8 | 0.6849 | 0.6621 | 0.6435 | 0.6329 | 0.6013 | 0.5775 | 0.6401 | 0.6385 | 0.5951 | 0.5637 | 0.6001 | 0.6031 |
9 | 0.7439 | 0.5455 | 0.5457 | 0.7173 | 0.5295 | 0.5146 | 0.7197 | 0.5228 | 0.5239 | 0.6905 | 0.5342 | 0.5323 |
10 | 0.6563 | 0.5962 | 0.5965 | 0.6047 | 0.5253 | 0.5199 | 0.6048 | 0.5294 | 0.5336 | 0.6103 | 0.5362 | 0.5316 |
11 | 0.8885 | 0.8821 | 0.8747 | 0.8543 | 0.8360 | 0.8402 | 0.8029 | 0.7763 | 0.7802 | 0.7620 | 0.7358 | 0.7104 |
12 | 0.6780 | 0.5965 | 0.6353 | 0.6822 | 0.5932 | 0.5798 | 0.7045 | 0.6114 | 0.5967 | 0.6641 | 0.5874 | 0.6669 |
13 | 0.7791 | 0.8965 | 0.9092 | 0.7834 | 0.6365 | 0.8528 | 0.7723 | 0.5748 | 0.8466 | 0.7133 | 0.5630 | 0.7677 |
14 | 0.7231 | 0.6345 | 0.6262 | 0.6751 | 0.5848 | 0.5667 | 0.6023 | 0.5946 | 0.5608 | 0.6129 | 0.5606 | 0.5369 |
15 | 0.7484 | 0.7578 | 0.7640 | 0.7664 | 0.7445 | 0.7480 | 0.7764 | 0.7904 | 0.7524 | 0.7593 | 0.7555 | 0.7999 |
16 | 0.7515 | 0.8297 | 0.6526 | 0.7305 | 0.5816 | 0.6990 | 0.7127 | 0.5836 | 0.6686 | 0.6517 | 0.6020 | 0.6273 |
17 | 0.6455 | 0.6265 | 0.6379 | 0.6449 | 0.5729 | 0.5611 | 0.5997 | 0.5572 | 0.5680 | 0.5950 | 0.5469 | 0.5591 |
18 | 0.8044 | 0.8237 | 0.8099 | 0.7747 | 0.7841 | 0.8141 | 0.7579 | 0.7628 | 0.7503 | 0.7273 | 0.7172 | 0.7253 |
19 | 0.6542 | 0.5902 | 0.6278 | 0.6111 | 0.5764 | 0.5710 | 0.6474 | 0.6568 | 0.6324 | 0.6116 | 0.5419 | 0.5949 |
20 | 0.7396 | 0.7443 | 0.7758 | 0.7018 | 0.7365 | 0.7153 | 0.6890 | 0.6889 | 0.6862 | 0.6579 | 0.6501 | 0.6387 |
21 | 0.6368 | 0.5674 | 0.5895 | 0.6404 | 0.6129 | 0.6069 | 0.6018 | 0.5789 | 0.5707 | 0.6165 | 0.5866 | 0.5777 |
22 | 0.7666 | 0.7081 | 0.7152 | 0.7128 | 0.6171 | 0.7126 | 0.7065 | 0.5834 | 0.6013 | 0.7095 | 0.5654 | 0.6123 |
23 | 0.7397 | 0.8793 | 0.8779 | 0.7265 | 0.8417 | 0.8491 | 0.7737 | 0.7879 | 0.7981 | 0.6763 | 0.7230 | 0.7206 |
24 | 0.5792 | 0.5884 | 0.5910 | 0.5823 | 0.5742 | 0.5765 | 0.5811 | 0.5715 | 0.5737 | 0.5759 | 0.5791 | 0.5851 |
25 | 0.5808 | 0.5722 | 0.5843 | 0.5927 | 0.5383 | 0.5687 | 0.5851 | 0.5385 | 0.5260 | 0.5692 | 0.5099 | 0.5197 |
AVE | 0.7152 | 0.7011 | 0.7039 | 0.7025 | 0.6503 | 0.6706 | 0.6895 | 0.6434 | 0.6456 | 0.6702 | 0.6213 | 0.6373 |
↑ 2.01% | ↑ 1.61% | ↑ 8.03% | ↑ 4.76% | ↑ 7.17% | ↑ 6.82% | ↑ 7.87% | ↑ 5.16% |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8916 | 0.8967 | 0.8887 | 0.9044 | 0.9202 | 0.9195 | 0.8846 | 0.9257 | 0.9256 | 0.8712 | 0.8643 | 0.8637 |
2 | 0.6285 | 0.6482 | 0.6522 | 0.6059 | 0.5838 | 0.5787 | 0.5899 | 0.5562 | 0.5562 | 0.5898 | 0.5650 | 0.5675 |
3 | 0.6124 | 0.5880 | 0.5874 | 0.5895 | 0.5708 | 0.5701 | 0.5614 | 0.5458 | 0.5428 | 0.5713 | 0.5444 | 0.5480 |
4 | 0.5743 | 0.5641 | 0.5708 | 0.5805 | 0.5308 | 0.5592 | 0.5702 | 0.5202 | 0.5115 | 0.5653 | 0.5093 | 0.5111 |
5 | 0.7524 | 0.8154 | 0.7922 | 0.7364 | 0.6499 | 0.7176 | 0.7364 | 0.6489 | 0.6360 | 0.7401 | 0.6319 | 0.6094 |
6 | 0.8224 | 0.8080 | 0.7852 | 0.8248 | 0.7736 | 0.8322 | 0.8063 | 0.7625 | 0.7650 | 0.7946 | 0.7586 | 0.7324 |
7 | 0.8219 | 0.8132 | 0.7876 | 0.8260 | 0.7786 | 0.8323 | 0.8119 | 0.7678 | 0.7706 | 0.7959 | 0.7600 | 0.7382 |
8 | 0.6477 | 0.5821 | 0.6143 | 0.5989 | 0.5689 | 0.5615 | 0.6325 | 0.6385 | 0.6179 | 0.6077 | 0.5413 | 0.5863 |
9 | 0.6976 | 0.5840 | 0.5764 | 0.6518 | 0.5747 | 0.5704 | 0.6772 | 0.5710 | 0.5673 | 0.6777 | 0.5658 | 0.5676 |
10 | 0.6064 | 0.5819 | 0.5792 | 0.5868 | 0.5395 | 0.5333 | 0.5848 | 0.5372 | 0.5287 | 0.5878 | 0.5278 | 0.5110 |
11 | 0.8371 | 0.8344 | 0.8158 | 0.8021 | 0.7905 | 0.7815 | 0.7821 | 0.7528 | 0.7542 | 0.7239 | 0.7100 | 0.7033 |
12 | 0.6747 | 0.5887 | 0.5966 | 0.6674 | 0.5516 | 0.5386 | 0.6895 | 0.5535 | 0.5262 | 0.6314 | 0.5257 | 0.5107 |
13 | 0.7721 | 0.8936 | 0.8981 | 0.7724 | 0.6340 | 0.8434 | 0.7630 | 0.5618 | 0.8377 | 0.7107 | 0.5638 | 0.7649 |
14 | 0.6624 | 0.5860 | 0.6018 | 0.6419 | 0.5743 | 0.5813 | 0.6178 | 0.5875 | 0.5660 | 0.6121 | 0.5340 | 0.5454 |
15 | 0.7367 | 0.7136 | 0.7300 | 0.7275 | 0.7493 | 0.7443 | 0.7282 | 0.7430 | 0.7621 | 0.7103 | 0.7181 | 0.7478 |
16 | 0.7726 | 0.8884 | 0.8957 | 0.7712 | 0.6290 | 0.8433 | 0.7574 | 0.5565 | 0.8321 | 0.7094 | 0.5624 | 0.7591 |
17 | 0.6782 | 0.6673 | 0.6718 | 0.6690 | 0.6299 | 0.6456 | 0.6243 | 0.5804 | 0.5985 | 0.6224 | 0.5594 | 0.5629 |
18 | 0.7974 | 0.8208 | 0.7988 | 0.7637 | 0.7816 | 0.8047 | 0.7486 | 0.7498 | 0.7414 | 0.7247 | 0.7180 | 0.7225 |
19 | 0.6472 | 0.5873 | 0.6167 | 0.6001 | 0.5739 | 0.5616 | 0.6381 | 0.6438 | 0.6235 | 0.6090 | 0.5427 | 0.5921 |
20 | 0.7979 | 0.8156 | 0.7964 | 0.7625 | 0.7766 | 0.8046 | 0.7430 | 0.7445 | 0.7358 | 0.7234 | 0.7166 | 0.7167 |
21 | 0.7156 | 0.6059 | 0.6538 | 0.6881 | 0.6637 | 0.7196 | 0.6834 | 0.6468 | 0.6747 | 0.6672 | 0.6396 | 0.6775 |
22 | 0.8748 | 0.8743 | 0.7466 | 0.8451 | 0.8274 | 0.7309 | 0.8540 | 0.7829 | 0.6287 | 0.8475 | 0.7328 | 0.6397 |
23 | 0.8573 | 0.8112 | 0.8139 | 0.7961 | 0.7019 | 0.6972 | 0.7545 | 0.6079 | 0.6013 | 0.6790 | 0.5664 | 0.5646 |
24 | 0.5804 | 0.5876 | 0.5878 | 0.5800 | 0.5814 | 0.5862 | 0.5801 | 0.5733 | 0.5799 | 0.5713 | 0.5727 | 0.5716 |
25 | 0.5738 | 0.5693 | 0.5732 | 0.5817 | 0.5358 | 0.5593 | 0.5758 | 0.5255 | 0.5171 | 0.5666 | 0.5107 | 0.5169 |
AVE | 0.7213 | 0.7090 | 0.7052 | 0.7030 | 0.6597 | 0.6847 | 0.6958 | 0.6434 | 0.6560 | 0.6764 | 0.6177 | 0.6332 |
↑ 1.73% | ↑ 2.28% | ↑ 6.56% | ↑ 2.67% | ↑ 8.14% | ↑ 6.07% | ↑ 9.50% | ↑ 6.82% |
ID | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | IRFFR | QRSAR | DBSAR | |
1 | 0.8908 | 0.9170 | 0.9150 | 0.9070 | 0.9380 | 0.9259 | 0.8924 | 0.9123 | 0.9117 | 0.8616 | 0.8939 | 0.8957 |
2 | 0.5899 | 0.6399 | 0.6296 | 0.5471 | 0.5221 | 0.4910 | 0.5539 | 0.4361 | 0.4454 | 0.5254 | 0.4039 | 0.3668 |
3 | 0.4204 | 0.4477 | 0.4466 | 0.4140 | 0.4355 | 0.4250 | 0.4151 | 0.4167 | 0.4129 | 0.4123 | 0.4046 | 0.4071 |
4 | 0.5799 | 0.5738 | 0.5793 | 0.5823 | 0.5587 | 0.5618 | 0.5753 | 0.5305 | 0.5359 | 0.5793 | 0.5242 | 0.5402 |
5 | 0.7590 | 0.5888 | 0.7950 | 0.7480 | 0.5521 | 0.7285 | 0.7251 | 0.5194 | 0.6645 | 0.6669 | 0.5115 | 0.6393 |
6 | 0.7658 | 0.8031 | 0.8227 | 0.7837 | 0.8118 | 0.7423 | 0.7855 | 0.8025 | 0.7099 | 0.8166 | 0.7964 | 0.7418 |
7 | 0.7201 | 0.6825 | 0.6788 | 0.6788 | 0.6593 | 0.6331 | 0.6904 | 0.7138 | 0.6547 | 0.7042 | 0.6292 | 0.6609 |
8 | 0.7366 | 0.6371 | 0.6624 | 0.7172 | 0.6361 | 0.6290 | 0.6462 | 0.6424 | 0.6371 | 0.6225 | 0.6325 | 0.6400 |
9 | 0.6012 | 0.6188 | 0.6174 | 0.5933 | 0.5746 | 0.5589 | 0.6124 | 0.5603 | 0.5408 | 0.5627 | 0.5499 | 0.5281 |
10 | 0.9166 | 0.9332 | 0.9159 | 0.8993 | 0.8640 | 0.8578 | 0.8582 | 0.7983 | 0.8090 | 0.8117 | 0.7635 | 0.7867 |
11 | 0.7132 | 0.6629 | 0.6470 | 0.6509 | 0.6187 | 0.5751 | 0.6190 | 0.6032 | 0.5744 | 0.5536 | 0.5643 | 0.5647 |
12 | 0.7277 | 0.6575 | 0.6553 | 0.6904 | 0.6108 | 0.6510 | 0.6525 | 0.5681 | 0.5892 | 0.6865 | 0.5720 | 0.5996 |
13 | 0.7216 | 0.7193 | 0.7237 | 0.7043 | 0.7084 | 0.6992 | 0.7727 | 0.7613 | 0.7892 | 0.7298 | 0.7185 | 0.7350 |
14 | 0.7921 | 0.7690 | 0.9248 | 0.8089 | 0.6973 | 0.8820 | 0.7911 | 0.5667 | 0.8827 | 0.7655 | 0.5051 | 0.8182 |
15 | 0.6467 | 0.6473 | 0.6082 | 0.6133 | 0.6106 | 0.5981 | 0.6007 | 0.5256 | 0.5275 | 0.6003 | 0.5185 | 0.4768 |
16 | 0.8971 | 0.9047 | 0.9381 | 0.8631 | 0.8521 | 0.8480 | 0.8545 | 0.8145 | 0.8477 | 0.8343 | 0.7885 | 0.8203 |
17 | 0.7123 | 0.6438 | 0.6754 | 0.6860 | 0.6336 | 0.6985 | 0.6822 | 0.5999 | 0.6586 | 0.6878 | 0.6196 | 0.6778 |
18 | 0.9135 | 0.9486 | 0.9318 | 0.8923 | 0.8907 | 0.5885 | 0.9035 | 0.8525 | 0.5427 | 0.8913 | 0.8131 | 0.5440 |
19 | 0.8041 | 0.8424 | 0.8407 | 0.7697 | 0.7831 | 0.7698 | 0.7650 | 0.6862 | 0.6871 | 0.7044 | 0.6427 | 0.6579 |
20 | 0.4675 | 0.5035 | 0.4817 | 0.4698 | 0.4832 | 0.4749 | 0.4676 | 0.4562 | 0.4573 | 0.4398 | 0.4215 | 0.4280 |
21 | 0.8318 | 0.8232 | 0.8068 | 0.8385 | 0.7889 | 0.8421 | 0.8205 | 0.7826 | 0.7831 | 0.7967 | 0.7637 | 0.7457 |
22 | 0.7820 | 0.9036 | 0.9173 | 0.7849 | 0.6443 | 0.8532 | 0.7716 | 0.5766 | 0.8502 | 0.7115 | 0.5675 | 0.7724 |
23 | 0.8073 | 0.8308 | 0.8180 | 0.7762 | 0.7919 | 0.8145 | 0.7572 | 0.7646 | 0.7539 | 0.7255 | 0.7217 | 0.7300 |
24 | 0.6571 | 0.5973 | 0.6359 | 0.6126 | 0.5842 | 0.5714 | 0.6467 | 0.6586 | 0.6360 | 0.6098 | 0.5464 | 0.5996 |
25 | 0.5837 | 0.5793 | 0.5924 | 0.5942 | 0.5461 | 0.5691 | 0.5844 | 0.5403 | 0.5296 | 0.5674 | 0.5144 | 0.5244 |
AVE | 0.7215 | 0.7150 | 0.7304 | 0.7050 | 0.6718 | 0.6795 | 0.6978 | 0.6435 | 0.6572 | 0.6747 | 0.6155 | 0.6360 |
↑ 0.91% | ↑ 1.22% | ↑ 4.94% | ↑ 3.75% | ↑ 8.44% | ↑ 6.18% | ↑ 9.62% | ↑ 6.08% |
Win/Tie/Loss | ||||||||
---|---|---|---|---|---|---|---|---|
IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | |
KNN | (16/0/9) | (15/0/10) | (22/0/3) | (20/0/5) | (19/0/6) | (21/0/4) | (21/0/4) | (17/0/8) |
CART | (17/0/8) | (19/0/6) | (20/0/5) | (15/0/10) | (19/0/6) | (21/0/4) | (23/0/2) | (20/0/5) |
SVM | (12/0/13) | (10/0/15) | (18/0/7) | (16/0/9) | (19/0/6) | (21/0/4) | (22/0/3) | (18/0/7) |
Win/Tie/Loss | ||||||||
---|---|---|---|---|---|---|---|---|
IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | IRFFR vs. QRSAR | IRFFR vs. DBSAR | |
KNN | (16/0/9) | (15/0/10) | (16/0/9) | (15/0/10) | (16/0/9) | (18/0/7) | (19/0/6) | (19/0/6) |
CART | (13/1/11) | (11/0/14) | (19/0/6) | (16/0/9) | (19/0/6) | (21/0/4) | (22/0/3) | (20/0/5) |
SVM | (15/0/10) | (13/0/12) | (20/0/5) | (15/0/10) | (19/0/6) | (20/0/5) | (23/0/2) | (21/0/4) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yin, Z.; Fan, Y.; Wang, P.; Chen, J. Parallel Selector for Feature Reduction. Mathematics 2023, 11, 2084. https://doi.org/10.3390/math11092084
Yin Z, Fan Y, Wang P, Chen J. Parallel Selector for Feature Reduction. Mathematics. 2023; 11(9):2084. https://doi.org/10.3390/math11092084
Chicago/Turabian StyleYin, Zhenyu, Yan Fan, Pingxin Wang, and Jianjun Chen. 2023. "Parallel Selector for Feature Reduction" Mathematics 11, no. 9: 2084. https://doi.org/10.3390/math11092084
APA StyleYin, Z., Fan, Y., Wang, P., & Chen, J. (2023). Parallel Selector for Feature Reduction. Mathematics, 11(9), 2084. https://doi.org/10.3390/math11092084