Innovative Approach for the Determination of a DC Motor’s and Drive’s Parameters Using Evolutionary Methods and Different Measured Current and Angular Speed Responses
Abstract
:1. Introduction
- The supply/control unit was considered in the mathematical model with a measured voltage. Not only the current and speed responses but also the armature supply voltage must be measured in our approach. In this way, no block model is needed of the supply/control unit. Such an approach was not found in the literature to the best of our knowledge.
- We compared three evolutionary methods, DE (using three strategies), ABC and TLBO, with the aim to find the most suitable one. The methods were compared considering the SU and also SUD responses.
- Different numerical integrations (first, second, third and fourth order) were tested considering precision and calculation time.
- The results for different sampling times of the measured responses were tested to determine the appropriate sampling time according to the speed-up time.
- The calculations were made in such a way that, for each sampling time, all four integration methods are used, and with that the relation was analyzed between the sampling time and the integration method.
- The repeatability of the measurement was analyzed. For each of the 10 repeated measurements, the parameters were determined and compared with each other. In this way, it was determined if the measurement was sufficiently reliable that it was not necessary to repeat it.
- Determination was carried out of the parameters for different length measured signals. These were full signal, signal without a pre-trigger, start only, start + same time operation, and start + operation for twice the start time.
2. Mathematical Model and Measurements
2.1. Mathematical Model
- Only the DC motor is considered. Inertia J is the inertia of the motor and Tload is the friction of the motor.
- The DC motor and working machine with no load were considered. Inertia J is the inertia of the motor + inertia of the working machine, and Tload is the friction of the motor + friction of the working machine.
- The DC motor and working machine with load were considered. Inertia J is the inertia of the motor + the inertia of the working machine. Tload is the friction of the motor + the friction of the working machine + load.
2.2. Numerical Solution of a System of Differential Equations
2.3. Objective Function
2.4. Measurements
- Supply/Control unit: SIEMENS AG, (Munich, Germany), SIMOREG DC-Master 6RA7013-6DV62-0-Z.
- DC motor with separate cooling: SIEMENS AG, (Munich, Germany), 1GG5104-0ED40-6VV1.
- Pulse encoder: HUBNER (Berlin, Germany), P0G 9D 1024.
- Motor used for the load simulation: SIEMENS AG, (Munich, Germany), 1LA7139-4AA10-Z FDB0.
- The “Trace” function was used for the measurements, which is a part of the SIEMENS AG, (Munich, Germany) “Drive Monitor” software, version V05.05.02.00_00.00.02.99, release V05.05.02.00_27.00.00.00.
- Different sampling times were used, which were 3.3 ms, 6.6 ms, 16.5 ms and 33 ms.
- Not only speed up of the drive was considered but also speed down.
- Different parts of the measured signal were used: full signal, signal without a pre-trigger, speed up only, speed up + same time stationary operation, speed up + stationary operation for twice the start time.
3. Used Evolutionary Methods and Algorithm
- DE: 2000 iterations, determined by (FEs/population size)
- TLBO: 1000 iterations, determined by (FEs/2 × population size) due to the two phases of the TLBO algorithm.
- ABC: ≤2000 iterations, determined by (FEs/population size + scout bees) due to the fact that the scout bee was not employed for every iteration and dynamic counting must be used.
4. Parameters’ Determination
4.1. Test Measurements
4.2. Results for M1U, M2U, M1UD and M2UD
4.3. Convergence of the Methods
- The accuracy of the results was comparable for all test cases and used methods. The deviations in the Ra calculation compared to the known values are as follows: M1U 25%, M2UD 19%, M1UD 19% and M2U 19%. For the La calculations, the deviations stood at M1U 23%, M2U 22%, M1UD 10% and M2UD 15%. Slightly smaller deviations were noticeable in the case of M1UD and M2UD, but we could not characterize them as essential.
- When comparing the methods, it is noticeable that DE/rand/1/exp and TLBO were the most robust, as they gave exactly the same result for each of the 50 calculations, which was not the case for DE/best/1/exp, DE/best/1/bin and ABC.
- Comparing the convergence of the methods, it can be observed that DE/best/1/exp and DE/best/1/bin were the fastest. DE/rand/1/exp and TLBO were slower and ABC was the slowest.
- Based on Table 8, it can be seen that the DE methods for all three strategies were three to four times faster than TLBO and ABC.
5. Analysis of the Interaction of the Order of Integration Method and Sampling Time
- For the sampling time 3.3 ms, the OF for the first-order method was 5.7 ∙ 10−4, and all the other methods were in the range from 4.8 to 5 ∙ 10−4. A small difference of the simulated values can be seen in Figure 8, where the simulated values for the first- and fourth-order methods are presented. All the calculated parameters were correct.
- For the sampling time 6.6 ms, the OF for the first-order method was 5.8 ∙ 10−4, and all the other methods were in the range from 3.4 to 3.8 ∙ 10−4. The parameters calculated with the first-order method showed a larger deviation than with the other methods. A difference of the simulated values can be seen in Figure 9, where the simulated values for the first- and fourth-order methods are presented.
- For the sampling time 16.5 ms, the OF for the first-order method was 1.5 ∙ 10−3, and all the other methods were in the range from 5.4 to 5.8 ∙ 10−4. In the case of the first-order method, the calculated parameters were not correct. In the case of the second-order method, Ra and La were not accurate. In the case of the third- and fourth-order methods, La was not accurate. In Figure 10 it can be seen that only two measuring points were present at the speed up of the motor. Nevertheless, we can use the second-, third- and fourth-order methods to estimate the parameters. A big difference of the simulated values can be seen in Figure 10, where the simulated values are presented for the first-and fourth-order methods.
- For the sampling time 33 ms, the OF for the first-order method was 4.5 ∙ 10−3, and all the other methods were in the range from 1.1 to 1.9 ∙ 10−3. The calculated values of the parameters were not calculated well enough with respect to the known values.
6. Repeatability of Parameters’ Determination
7. Analysis of the Influence of Measurement Length
- The whole measurement, which contained a pre-trigger, speed up and continuous operation. The whole signal consisted of 400 measurement points.
- A signal with no pre-trigger that contained speed up and continuous operation. The length of the signal with no pre-trigger was 362 measured points.
- Only speed up, which contained 56 measured points with a time duration of 0.35 s. The length of the signal was 56 measured points.
- Speed up with a time duration of 0.35 s and continuous operation with the same time duration of 0.35 s. The length of the signal was 109 measured points.
- Speed up with a time duration of 0.35 s and continuous operation with a time duration of 0.70 s. The length of the signal was 162 measured points.
8. Validation Based on the Simulated Input Data
9. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hadef, M.; Mekideche, M.R. Parameter identification of a separately excited dc motor via inverse problem methodology. Turk. J. Electr. Eng. Comp. Sci. 2009, 17, 99–106. [Google Scholar] [CrossRef]
- Wu, W. DC Motor Parameters Identification Using Speed Step Response. Model. Simul. Eng. 2012, 2012, 189757. [Google Scholar] [CrossRef]
- Adewusi, S. Modeling and Parameters Identification of a DC Motor Using Constraint Optimization Technique. IOSR J. Mech. Civ. Eng. 2016, 13, 46–56. [Google Scholar]
- Gao, D.; Wu, S.; Yu, J.; Wang, M.; Wang, Y. Parameter identification of DC motor model based on improved dynamic forgetting factor recursive least squares method. In Proceedings of the 2022 IEEE 8th International Conference on Smart Instrumentation, Measurement and Applications (ICSIMA), Melaka, Malaysia, 26–28 September 2022; pp. 282–286. [Google Scholar]
- Ivanov, D.V.; Sandler, I.L.; Chertykovtseva, N.V.; Mitroshin, D.I.; Ivanova, O.S.; Kormakov, A.A. Identification of Parameters of DC Motor of Independent Excitation by Noisy Data. In Proceedings of the 2021 3rd International Conference on Control Systems, Mathematical Modeling, Automation and Energy Efficiency (SUMMA), Lipetsk, Russia, 10–12 November 2021; pp. 194–198. [Google Scholar]
- Li, M.; Ma, Y. Parameter Identification of DC Motor based on Compound Least Square Method. In Proceedings of the 2020 IEEE 5th Information Technology and Mechatronics Engineering Conference (ITOEC), Chongqing, China, 12–14 June 2020; pp. 1107–1111. [Google Scholar]
- Awoda, M.L.; Ramzy, S.A. Parameter Estimation of a Permanent Magnets DC motor. Iraqi J. Electr. Electron. Eng. 2019, 15, 28–36. [Google Scholar] [CrossRef]
- Arshad, S.; Qamar, S.; Jabbar, T.; Malik, A. Parameter Estimation of a DC Motor Using Ordinary Least Squares and Recursive Least Squares Algorithms. In Proceedings of the 8th International Conference on Frontiers of Information Technology, Islamabad, Pakistan, 12–13 December 2010. [Google Scholar]
- Hadef, M.; Bourouina, A.; Mekideche, M. Parameter identification of a DC motor via moments method. Iran. J. Electr. Comput. Eng. 2008, 7, 159–163. [Google Scholar]
- Amiri, M.S.; Ibrahim, M.F.; Ramli, R. Optimal parameter estimation for a DC motor using genetic algorithm. Int. J. Power Electron. Drive Syst. 2020, 11, 1047–1054. [Google Scholar] [CrossRef]
- Dupuis, A.; Ghribi, M.; Kaddouri, A. Multiobjective genetic estimation of DC motor parameters and load torque. In Proceedings of the 2004 IEEE International Conference on Industrial Technology, 2004. IEEE ICIT ’04., Hammamet, Tunisia, 8–10 December 2004; Volume 3, pp. 1511–1514. [Google Scholar]
- Rodríguez-Molina, A.; Villarreal-Cervantes, M.G.; Aldape-Pérez, M. Optimal Adaptive Control of a DC Motor Using Differential Evolution Variants. In Proceedings of the 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER), Honolulu, HI, USA, 31 July–4 August 2017; pp. 283–288. [Google Scholar]
- Puangdownreong, D.; Hlungnamtip, S.; Thammarat, C.; Nawikavatan, A. Application of flower pollination algorithm to parameter identification of DC motor model. In Proceedings of the IEEE International Electrical Engineering Congress (IEECON), Pattaya, Thailand, 8–10 March 2017; pp. 1–4. [Google Scholar]
- Hafez, I.; Dhaouadi, R. Parameter Identification of DC Motor Drive Systems using Particle Swarm Optimization. In Proceedings of the 2021 International Conference on Engineering and Emerging Technologies (ICEET), Istanbul, Turkey, 27–28 October 2021; pp. 1–6. [Google Scholar]
- Veček, N.; Mernik, M.; Črepinšek, M. A chess rating system for evolutionary algorithms: A new method for the comparison and ranking of evolutionary algorithms. Inf. Sci. 2014, 277, 656–679. [Google Scholar] [CrossRef]
- Das, S.; Suganthan, P.N. Differential Evolution: A Survay of the State-of-the-Art. IEEE Trans. Evol. Comput. 2011, 15, 4–31. [Google Scholar] [CrossRef]
- Mokan, M.; Sharma, K.; Sharma, H.; Verma, C. Gbest guided differential evolution. In Proceedings of the 9th International Conference on Industrial and Information Systems, Gwalior, India, 15–17 December 2014; pp. 1–6. [Google Scholar]
- He, R.J.; Yang, Z.Y. Differential evolution with adaptive mutation and parameter control using Levy probability distribution. J. Comput. Sci. Technol. 2012, 27, 1035–1055. [Google Scholar] [CrossRef]
- Mohamed, A.W.; Sabry, H.Z.; Elaziz, T.A. Real parameter optimization by an effective differential evolution algorithm. Egipt. Inform. J. 2013, 14, 27–53. [Google Scholar] [CrossRef]
- Reed, H.M.; Nichols, J.M.; Earls, C.J. A modified differential evolution algorithm for damage identification in submerged shell structures. Mech. Syst. Signal Process. 2013, 39, 396–408. [Google Scholar] [CrossRef]
- Chattopadhyay, S.; Sanyal, S.K. Optimization of Control Parameters of Differential Evolution Technique for the Design of FIR Pulse-shaping Filter in QPSK Modulated System. J. Common. 2011, 6, 558–570. [Google Scholar] [CrossRef]
- Saruhan, H. Differential evolution and simulated annealing algorithms for mechanical systems design. Eng. Sci. Technol. Int. J. 2014, 17, 131–136. [Google Scholar] [CrossRef]
- Mallipeddi, R.; Suganthan, P.N.; Pan, Q.K.; Tasgeriren, M.F. Differential evolution algorithm with ensemble of parameters and mutation strategies. Appl. Soft Comput. 2011, 11, 1679–1696. [Google Scholar] [CrossRef]
- Rocca, P.; Oliveri, G.; Massa, A. Differential Evolution as Applied to Electromagnetics. IEEE Trans. Antennas Propag. 2011, 50, 38–49. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. On the performance of artificial bee colony (ABC) algorithm. Appl. Soft Comput. 2008, 8, 687–697. [Google Scholar] [CrossRef]
- Mernik, M.; Liu, S.H.; Karaboga, D.; Črepinšek, M. On clarifying misconceptions when comparing variants of the Artificial Bee Colony Algorithm by offering a new implementation. Inf. Sci. 2015, 291, 115–127. [Google Scholar] [CrossRef]
- Kiran, M.S.; Gündüz, M. The Analysis of Peculiar Control Parameters of Artificial Bee Colony Algorithm on the Numerical Optimization Problems. Int. J. Comput. Commn. 2014, 2, 127–136. [Google Scholar] [CrossRef]
- Özyon, S.; Aydin, D. Incremental artificial bee colony with local search to economic dispatch problems with ramp rate limits and prohibited operating zones. Energ. Convers. Manag. 2013, 65, 397–407. [Google Scholar] [CrossRef]
- Dwivedl, A.K.; Ghosh, S.; Londhe, N.D. Modified artificial bee colony optimisation based FIR filter design with experimental validation using field-programmable gate array. IET Signal Process. 2016, 10, 955–964. [Google Scholar] [CrossRef]
- Jing, B.; Hong, L. Improved Artificial Bee Colony Algorithm and Application in Path Planning of Crowd Animation. Int. J. Control Autom. 2015, 8, 53–66. [Google Scholar] [CrossRef]
- Yan, G.; Li, C. An Effective Refinement Artificial Bee Colony Optimization Algorithm Based on Chaotic Search and Application for PID Control Tuning. J. Comput. Inf. Syst. 2011, 7, 3309–3316. [Google Scholar]
- Ozturk, C.; Karaboga, D. A novel clustering approach: Artificial Bee Colony (ABC) algorithm. Appl. Soft Comput. 2011, 11, 652–657. [Google Scholar]
- Karaboga, B.; Akay, B. A Comparative Study of Artificial Bee Colony Algorithm. Appl. Math. Comput. 2009, 214, 108–132. [Google Scholar] [CrossRef]
- Karaboga, D.; Basturk, B. A powerful and efficient algorithm for numerical function optimization: Artificial bee colony (ABC) algorithm. J. Glob. Optim. 2007, 39, 459–471. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-Learning-Based Optimization: An optimization method for continuous non-linear large scale problems. Inf. Sci. 2012, 183, 1–15. [Google Scholar] [CrossRef]
- Črepinšek, M.; Liu, S.H.; Mernik, L. A note on leaching-learning-based optimization algorithm. Int. Sci. 2012, 212, 79–93. [Google Scholar]
- Črepinšek, M.; Liu, S.H.; Mernik, L.; Mernik, M. Is a comparison of results meaningful from the inexact replications of computational experiments. Soft Comp. 2016, 20, 223–235. [Google Scholar] [CrossRef]
- Sahu, B.K.; Pati, S.; Mohanty, P.K.; Panda, S. Teaching-learning based optimization algorithm based fuzzy-PID controller for automatic generation control of multi-area power system. Appl. Soft Compt. 2015, 27, 240–249. [Google Scholar] [CrossRef]
- Pickard, J.K.; Carreter, J.A.; Bhavsar, V.C. On the convergence and original bias of the Teaching-Learning-Based-Optimization algorithm. Appl. Soft Comp. 2016, 46, 115–127. [Google Scholar] [CrossRef]
- Baghlani, A.; Makiabadi, M.H. Teaching-learning based optimization algorithm for shape and size optimization of truss structures with dynamic frequency constraints. IJST Trans. Civ. Eng. 2013, 37, 409–421. [Google Scholar]
- Waghmare, G. Comments on A note on teachnig-learning-based optimization algorithm. Inf. Sci. 2013, 229, 159–169. [Google Scholar] [CrossRef]
- Rao, R.V.; Patel, V. An elitist teaching-learning-based optimization algorithm for solving complex constrained optimization problems. Int. J. Ind. Eng. Comput. 2012, 3, 535–560. [Google Scholar] [CrossRef]
- Rao, R.V.; Savsani, V.J.; Vakharia, D.P. Teaching-learning-based optimization: A novel method for constrained mechanical design optimization problems. Comput. Aided Des. 2011, 43, 303–315. [Google Scholar] [CrossRef]
Parameter | Lower Limit | Upper Limit |
---|---|---|
Motor’s resistance Ra (Ω) | 0 | 100 |
Motor’s inductance La (H) | 0 | 100 |
Motor’s constant cm (Vs) | 0 | 5 |
Drive’s inertia J (kg∙m2) | 0 | 1 |
Constant part of friction and load Tla (Nm) | 0 | 20 |
Linear part of friction and load Tlb (Nm∙s) | 0 | 9.55 ∙ 10−2 (20 Nm torque at speed 209 s−1; 182 s−1 is motor-rated speed) |
Square part of friction and load Tlc (Nm∙s2) | 0 | 4.56 ∙ 10−4 (20 Nm torque at speed 209 s−1; 182 s−1 is motor-rated speed) |
Measured Input Data | ||||
---|---|---|---|---|
Value | M1U | M2U | M1UD | M2UD |
tspeed_up (s) | 0 | 0.5 | 0 | 0.5 |
tspeed_down (s) | / | / | 0 | 0.5 |
ωfinal (s−1) | 182 | 182 | 182 | 182 |
ia_limit (A) | 12.48 (120% of Ia_rated) | 12.48 (120% of Ia_rated) | 12.48 (120% of Ia_rated) | 12.48 (120% of Ia_rated) |
Load (Nm) | no load | no load | no load | no load |
Number of measured points | 400 | 400 | 400 | 400 |
t (s) | Measured ua (V) | Measured ia (A) | Measured ω (s−1) | Known Ra (Ω) | Calculated cm (Vs) |
---|---|---|---|---|---|
0.5 | 254.76 | 0.605 | 181.66 | 5.66 | 1.384 |
1 | 255.08 | 0.780 | 182.81 | 5.66 | 1.371 |
1.5 | 251.64 | 0.636 | 181.62 | 5.66 | 1.366 |
2 | 246.26 | 0.674 | 181.20 | 5.66 | 1.338 |
Average cm determined, based on 286 measured points for steady state operation from 0.5 s | 1.356 |
OF and Parameters | Method | ||||||
---|---|---|---|---|---|---|---|
Known Value | DE/best/1/exp | DE/rand/1/exp | DE/best/1/bin | TLBO | ABC | ||
OF | B | - | 3.8094 · 10−4 | 3.8094 · 10−4 | 3.8094 · 10−4 | 3.8094 · 10−4 | 3.8127 · 10−4 |
W | - | 3.9247 · 10−4 | 3.8094 · 10−4 | 3.9247 · 10−4 | 3.8094 · 10−4 | 3.8094 · 10−4 | |
M | - | 3.8164 · 10−4 | 3.8094 · 10−4 | 3.8141 · 10−4 | 3.8094 · 10−4 | 3.8097 · 10−4 | |
SD | - | 2.7376 · 10−6 | 5.4210 · 10−20 | 2.2589 · 10−6 | 5.4210 · 10−20 | 6.7087 · 10−8 | |
Ra (Ω) | M | 5.66 | 4.214 | 4.213 | 4.214 | 4.213 | 4.213 |
La (H) | M | 0.0472 | 0.0583 | 0.0583 | 0.0583 | 0.0583 | 0.0583 |
cm (Vs) | M | 1.356 | 1.360 | 1.360 | 1.360 | 1.360 | 1.360 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.578 · 10−2 | 2.576 · 10−2 | 2.577 · 10−2 | 2.576 · 10−2 | 2.576 · 10−2 |
Tla (Nm) | M | ≈0 | 0.0 | 3.764 · 10−16 | 0.0 | 5.684 · 10−16 | 0.0 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.530 · 10−3 | 4.819 · 10−3 | 4.626 · 10−3 | 4.819 · 10−3 | 4.811 · 10−3 |
Tlc (Nms2) | M | ≈0 | 6.244 · 10−6 | 6.871 · 10−20 | 1.052 · 10−5 | 1.984 · 10−19 | 4.0320 · 10−8 |
OF and Parameters | Method | ||||||
---|---|---|---|---|---|---|---|
Known Value | DE/best/1/exp | DE/rand/1/exp | DE/best/1/bin | TLBO | ABC | ||
OF | B | - | 3.3639 · 10−4 | 3.3639 · 10−4 | 3.3639 · 10−4 | 3.3639 · 10−4 | 3.4054 · 10−4 |
W | - | 3.5599 · 10−4 | 3.3639 · 10−4 | 3.5600 · 10−4 | 3.3639 · 10−4 | 3.3640 · 10−4 | |
M | - | 3.3757 · 10−4 | 3.3639 · 10−4 | 3.3757 · 10−4 | 3.3639 · 10−4 | 3.3685 · 10−4 | |
SD | - | 4.6540 · 10−6 | 5.4210 · 10−20 | 4.6540 · 10−6 | 5.4210 · 10−20 | 9.0725 · 10−7 | |
Ra (Ω) | M | 5.66 | 4.530 | 4.530 | 4.530 | 4.530 | 4.533 |
La (H) | M | 0.0472 | 0.0577 | 0.0577 | 0.0577 | 0.0577 | 0.0578 |
cm (Vs) | M | 1.356 | 1.358 | 1.358 | 1.358 | 1.358 | 1.358 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.534 · 10−2 | 2.531 · 10−2 | 2.534 · 10−2 | 2.531 · 10−2 | 2.531 · 10−2 |
Tla (Nm) | M | ≈0 | 1.466 · 10−4 | 5.309 · 10−14 | 1.466 · 10−4 | 1.385 · 10−13 | 6.868 · 10−3 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.432 · 10−3 | 4.715 · 10−3 | 4.432 · 10−3 | 4.715 · 10−3 | 4.6025 · 10−3 |
Tlc (Nms2) | M | ≈0 | 1.539 · 10−6 | 6.710 · 10−20 | 1.539 · 10−6 | 1.911 · 10−19 | 3.9619 · 10−7 |
OF and Parameters | Method | ||||||
---|---|---|---|---|---|---|---|
Known Value | DE/best/1/exp | DE/rand/1/exp | DE/best/1/bin | TLBO | ABC | ||
OF | B | - | 8.0983 · 10−4 | 8.0983 · 10−4 | 8.0983 · 10−4 | 8.0983 · 10−4 | 8.0983 · 10−4 |
W | - | 8.6327 · 10−4 | 8.0983 · 10−4 | 8.6327 · 10−4 | 8.0983 · 10−4 | 8.0983 · 10−4 | |
M | - | 8.1090 · 10−4 | 8.0983 · 10−4 | 8.1304 · 10−4 | 8.0983 · 10−4 | 8.0983 · 10−4 | |
SD | - | 7.4820 · 10−6 | 3.2526 · 10−19 | 1.2691 · 10−5 | 3.2526 · 10−19 | 3.2526 · 10−19 | |
Ra (Ω) | M | 5.66 | 4.551 | 4.551 | 4.551 | 4.551 | 4.551 |
La (H) | M | 0.0472 | 0.0522 | 0.0522 | 0.0522 | 0.0522 | 0.0522 |
cm (Vs) | M | 1.356 | 1.354 | 1.354 | 1.354 | 1.354 | 1.354 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.561 · 10−2 | 2.561 · 10−2 | 2.561 · 10−2 | 2.561 · 10−2 | 2.561 · 10−2 |
Tla (Nm) | M | ≈0 | 2.093 · 10−26 | 2.383 · 10−16 | 2.771 · 10−17 | 3.553 · 10−16 | 1.214 · 10−15 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 9.509 · 10−5 | 3.320 · 10−18 | 2.853 · 10−4 | 2.392 · 10−17 | 0.0 |
Tlc (Nms2) | M | ≈0 | 2.775 · 10−5 | 2.831 · 10−5 | 2.661 · 10−5 | 2.831 · 10−5 | 2.831 · 10−5 |
OF and Parameters | Method | ||||||
---|---|---|---|---|---|---|---|
Known Value | DE/best/1/exp | DE/rand/1/exp | DE/best/1/bin | TLBO | ABC | ||
OF | B | - | 4.9342 · 10−4 | 4.9432 · 10−4 | 4.9432 · 10−4 | 4.9432 · 10−4 | 4.9432 · 10−4 |
W | - | 6.0877 · 10−4 | 4.9432 · 10−4 | 6.0877 · 10−4 | 4.9432 · 10−4 | 4.9432 · 10−4 | |
M | - | 4.9890 · 10−4 | 4.9432 · 10−4 | 5.0119 · 10−4 | 4.9432 · 10−4 | 4.9432 · 10−4 | |
SD | - | 2.2426 · 10−5 | 1.0842 · 10−19 | 2.7178 · 10−5 | 1.0842 · 10−19 | 6.8147 · 10−13 | |
Ra (Ω) | M | 5.66 | 4.536 | 4.535 | 4.536 | 4.535 | 4.535 |
La (H) | M | 0.0472 | 0.0541 | 0.0541 | 0.0541 | 0.0541 | 0.0541 |
cm (Vs) | M | 1.356 | 1.359 | 1.359 | 1.359 | 1.359 | 1.359 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.490 · 10−2 | 2.490 · 10−2 | 2.490 · 10−2 | 2.490 · 10−2 | 2.490 · 10−2 |
Tla (Nm) | M | ≈0 | 2.856 · 10−3 | 2.911 · 10−15 | 4.284 · 10−3 | 9.344 · 10−15 | 0.0 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.979 · 10−3 | 5.187 · 10−3 | 4.876 · 10−3 | 5.187 · 10−3 | 5.187 · 10−3 |
Tlc (Nms2) | M | ≈0 | 1.097 · 10−6 | 5.645 · 10−20 | 1.645 · 10−6 | 1.612 · 10−19 | 0.0 |
Measured Data | Method | |||||
---|---|---|---|---|---|---|
DE/best/1/exp | DE/rand/1/exp | DE/best/1/bin | TLBO | ABC | ||
M1U | M t(s) | 9.653 | 9.212 | 8.739 | 33.111 | 36.121 |
M2U | M t(s) | 9.166 | 9.095 | 9.301 | 33.367 | 35.734 |
M1UD | M t(s) | 9.099 | 9.036 | 9.322 | 33.677 | 36.738 |
M2UD | M t(s) | 9.035 | 9.663 | 8.679 | 33.917 | 36.603 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | RK First Order | RK Secons Order | RK Third Order | RK Fourth Order | ||
OF | B | - | 5.7374 · 10−4 | 4.8270 · 10−4 | 4.9176 · 10−4 | 5.0743 · 10−3 |
W | - | 5.7374 · 10−4 | 4.8270 · 10−4 | 4.9176 · 10−4 | 5.0743 · 10−4 | |
M | - | 5.7374 · 10−4 | 4.8270 · 10−4 | 4.9176 · 10−4 | 5.0743 · 10−4 | |
SD | - | 0.0 | 5.4210 · 10−20 | 1.0842 · 10−19 | 1.0842 · 10−19 | |
Ra (Ω) | M | 5.66 | 4.318 | 4.108 | 4.144 | 4.160 |
La (H) | M | 0.0472 | 0.0564 | 0.0515 | 0.0536 | 0.0549 |
cm (Vs) | M | 1.356 | 1.362 | 1.364 | 1.364 | 1.364 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.542 · 10−2 | 2.560 · 10−2 | 2.557 · 10−2 | 2.555 · 10−2 |
Tla (Nm) | M | ≈0 | 4.114 · 10−16 | 4.571 · 10−16 | 4.374 · 10−16 | 3.113 · 10−16 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 5.107 · 10−3 | 5.087 · 10−3 | 5.099 · 10−3 | 5.109 · 10−3 |
Tlc (Nms2) | M | ≈0 | 5.226 · 10−20 | 7.082 · 10−20 | 6.399 · 10−5 | 9.638 · 10−20 |
t (s) | M | - | 6.491 | 7.176 | 8.876 | 8.785 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | RK First Order | RK Second Order | RK Third Order | RK Fourth Order | ||
OF | B | - | 5.8057 · 10−4 | 3.4525 · 10−4 | 3.5215 · 10−4 | 3.8094 · 10−4 |
W | - | 5.8057 · 10−4 | 3.4525 · 10−4 | 3.5215 · 10−4 | 3.8094 · 10−4 | |
M | - | 5.8057 · 10−4 | 3.4525 · 10−4 | 3.5215 · 10−4 | 3.8094 · 10−4 | |
SD | - | 1.0842 · 10−19 | 5.4210 · 10−20 | 5.4210 · 10−20 | 5.4210 · 10−20 | |
Ra (Ω) | M | 5.66 | 4.546 | 4.067 | 4.176 | 4.213 |
La (H) | M | 0.0472 | 0.0643 | 0.0504 | 0.0548 | 0.0583 |
cm (Vs) | M | 1.356 | 1.357 | 1.360 | 1.360 | 1.360 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.548 · 10−2 | 2.604 · 10−2 | 2.583 · 10−2 | 2.576 · 10−2 |
Tla (Nm) | M | ≈0 | 6.767 · 10−16 | 3.563 · 10−5 | 3.939 · 10−16 | 3.764 · 10−16 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.824 · 10−3 | 4.798 · 10−3 | 4.807 · 10−3 | 4.819 · 10−3 |
Tlc (Nms2) | M | ≈0 | 4.580 · 10−20 | 4.712 · 10−20 | 4.271 · 10−19 | 6.871 · 10−20 |
t (s) | M | - | 7.453 | 7.085 | 8.139 | 9.212 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | RK First Order | RK Second Order | RK Third Order | RK Fourth Order | ||
OF | B | - | 1.5423 · 10−3 | 5.4764 · 10−4 | 5.4974 · 10−4 | 5.7259 · 10−4 |
W | - | 1.5423 · 10−3 | 5.4764 · 10−4 | 5.4974 · 10−4 | 5.7259 · 10−4 | |
M | - | 1.5423 · 10−3 | 5.4764 · 10−4 | 5.4974 · 10−4 | 5.7259 · 10−4 | |
SD | - | 1.5423 · 10−19 | 0.0 | 1.0842 · 10−19 | 1.0842 · 10−19 | |
Ra (Ω) | M | 5.66 | 5.452 | 3.760 | 4.127 | 4.237 |
La (H) | M | 0.0472 | 0.1293 | 0.0667 | 0.0759 | 0.0883 |
cm (Vs) | M | 1.356 | 1.368 | 1.376 | 1.375 | 1.374 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.239 · 10−2 | 2.697 · 10−2 | 2.551 · 10−2 | 2.522 · 10−2 |
Tla (Nm) | M | ≈0 | 1.897 · 10−1 | 1.883 · 10−2 | 2.216 · 10−2 | 5.566 · 10−15 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 7.837 · 10−17 | 4.927 · 10−3 | 4.924 · 10−3 | 5.064 · 10−3 |
Tlc (Nms2) | M | ≈0 | 2.212 · 10−5 | 9.463 · 10−19 | 9.258 · 10−19 | 6.246 · 10−18 |
t (s) | M | - | 8.703 | 7.313 | 7.799 | 9.196 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | RK First Order | RK Second Order | RK Third Order | RK Fourth Order | ||
OF | B | - | 4.5163 · 10−3 | 1.1598 · 10−3 | 1.9605 · 10−3 | 1.1697 · 10−3 |
W | - | 4.5163 · 10−3 | 1.1598 · 10−3 | 1.2945 · 10−3 | 1.1697 · 10−3 | |
M | - | 4.5163 · 10−3 | 1.1598 · 10−3 | 1.9160 · 10−3 | 1.1697 · 10−3 | |
SD | - | 8.6736 · 10−19 | 0.0 | 1.2690 · 10−4 | 2.1684 · 10−19 | |
Ra (Ω) | M | 5.66 | 8.049 | 3.320 | 4.076 | 5.011 |
La (H) | M | 0.0472 | 0.2936 | 0.0664 | 0.109 | 0.0764 |
cm (Vs) | M | 1.356 | 1.349 | 1.367 | 1.365 | 1.361 |
J (kgm2) | M | ≈3.725 · 10−2 | 1.969 · 10−2 | 3.479 · 10−2 | 2.431 · 10−2 | 2.486 · 10−2 |
Tla (Nm) | M | ≈0 | 3.625 · 10−1 | 1.269 · 10−1 | 2.486 · 10−1 | 1.115 · 10−1 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.443 · 10−17 | 6.333 · 10−17 | 3.339 · 10−3 | 5.411 · 10−17 |
Tlc (Nms2) | M | ≈0 | 1.554 · 10−5 | 2.223 · 10−5 | 8.088 · 10−7 | 2.262 · 10−5 |
t (s) | M | - | 6.945 | 7.578 | 8.038 | 9.603 |
OF and Parameters | Method | DE/rand/1/exp | |||||
---|---|---|---|---|---|---|---|
Known Value | First Meas. | Second Meas. | Third Meas. | Fourth Meas. | Fifth Meas. | ||
OF | B | - | 3.8094 · 10−4 | 2.9718 · 10−4 | 3.2691 · 10−4 | 3.5838 · 10−4 | 2.9635 · 10−4 |
W | - | 3.8094 · 10−4 | 2.9718 · 10−4 | 3.2691 · 10−4 | 3.5838 · 10−4 | 2.9635 · 10−4 | |
M | - | 3.8094 · 10−4 | 2.9718 · 10−4 | 3.2691 · 10−4 | 3.5838 · 10−4 | 2.9635 · 10−4 | |
SD | - | 5.4210 · 10−20 | 5.4210 · 10−20 | 5.4210 · 10−20 | 0.0 | 5.4210 · 10−20 | |
Ra (Ω) | M | 5.66 | 4.213 | 4.249 | 4.189 | 4.319 | 4.230 |
La (H) | M | 0.0472 | 0.0583 | 0.0543 | 0.0599 | 0.0533 | 0.0541 |
cm (Vs) | M | 1.356 | 1.360 | 1.359 | 1.360 | 1.359 | 1.359 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.576 · 10−2 | 2.582 · 10−2 | 2.585 · 10−2 | 2.580 · 10−2 | 2.588 · 10−2 |
Tla (Nm) | M | ≈0 | 3.764 · 10−16 | 2.340 · 10−16 | 3.327 · 10−16 | 3.102 · 10−16 | 1.540 · 10−16 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.819 · 10−3 | 4.834 · 10−3 | 4.838 · 10−3 | 4.723 · 10−3 | 4.765 · 10−3 |
Tlc (Nms2) | M | ≈0 | 6.871 · 10−20 | 8.843 · 10−20 | 3.989 · 10−20 | 5.079 · 10−20 | 4.787 · 10−20 |
t (s) | M | - | 9.212 | 8.795 | 8.668 | 9.135 | 8.919 |
OF and Parameters | Method | DE/rand/1/exp | |||||
---|---|---|---|---|---|---|---|
Known Value | 6th Meas. | 7th Meas. | 8th Meas. | 9th Meas. | 10th Meas. | ||
OF | B | - | 3.1850 · 10−4 | 3.9034 · 10−4 | 3.1248 · 10−4 | 3.2844 · 10−4 | 3.2252 · 10−4 |
W | - | 3.1850 · 10−4 | 3.9034 · 10−4 | 3.1248 · 10−4 | 3.2844 · 10−4 | 3.2252 · 10−4 | |
M | - | 3.1850 · 10−4 | 3.9034 · 10−4 | 3.1248 · 10−4 | 3.2844 · 10−4 | 3.2252 · 10−4 | |
SD | - | 0.0 | 1.0842 · 10−19 | 5.4210 · 10−20 | 1.0842 · 10−19 | 5.4210 · 10−20 | |
Ra (Ω) | M | 5.66 | 4.251 | 4.267 | 4.206 | 4.240 | 4.258 |
La (H) | M | 0.0472 | 0.0546 | 0.0574 | 0.0563 | 0.0589 | 0.0596 |
cm (Vs) | M | 1.356 | 1.359 | 1.358 | 1.359 | 1.359 | 1.359 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.580 · 10−2 | 2.578 · 10−2 | 2.584 · 10−2 | 2.585 · 10−2 | 2.583 · 10−2 |
Tla (Nm) | M | ≈0 | 2.023 · 10−16 | 2.606 · 10−16 | 2.883 · 10−16 | 2.284 · 10−16 | 3.962 · 10−16 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.740 · 10−3 | 4.729 · 10−3 | 4.744 · 10−3 | 4.752 · 10−3 | 4.721 · 10−3 |
Tlc (Nms2) | M | ≈0 | 8.943 · 10−20 | 8.483 · 10−20 | 4.873 · 10−20 | 7.036 · 10−20 | 6.796 · 10−20 |
t (s) | M | - | 8.657 | 9.233 | 8.875 | 9.202 | 8.919 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | Lowest | Highest | Mean | SD | % dev. to Mean | |
OF | - | 2.9635 · 10−4 | 3.9034 · 10−4 | 3.3320 · 10−4 | 3.1073 · 10−5 | −11.06% to +17.15% |
Ra (Ω) | 5.66 | 4.189 | 4.319 | 4.242 | 3.4588 · 10−2 | −1.25% to +1.82% |
La (H) | 0.0472 | 0.0533 | 0.0600 | 0.0567 | 2.3667 · 10−3 | −6.00% to +5.82% |
cm (Vs) | 1.356 | 1.358 | 1.360 | 1.359 | 4.4725 · 10−4 | −0.07% to +0.07% |
J (kgm2) | ≈3.725 · 10−2 | 2.576 · 10−2 | 2.588 · 10−2 | 2.582 · 10−2 | 3.4700 · 10−5 | −0.25% to +0.23% |
Tla (Nm) | ≈0 | 0.0 | 3.569 · 10−15 | 2.783 · 10−16 | 5.3603 · 10−16 | - |
Tlb (Nms) | ≈4.8 · 10−3 | 4.721 · 10−3 | 4.838 · 10−3 | 4.766 · 10−3 | 4.3791 · 10−5 | −0.94% to +1.51% |
Tlc (Nms2) | ≈0 | 0.0 | 8.511 · 10−19 | 6.570 · 10−20 | 1.1562 · 10−19 | - |
t (s) | - | 7.563 | 11.063 | 8.961 | 4.5968 · 10−1 | −15.60% to 23.46% |
OF and Parameters | Method | ||||||
---|---|---|---|---|---|---|---|
Known Value | Whole Meas. | No Pre-Trigger | Start Only | 0.35 s Start + 0.35 s Operation | 0.35 s Start + 0.70 s Operation | ||
OF | B | - | 3.8094 · 10−4 | 4.2093 · 10−4 | 1.8684 · 10−3 | 1.0974 · 10−3 | 7.9138 · 10−4 |
W | - | 3.8094 · 10−4 | 4.2093 · 10−4 | 1.8684 · 10−3 | 1.0974 · 10−3 | 7.9138 · 10−4 | |
M | - | 3.8094 · 10−4 | 4.2093 · 10−4 | 1.8684 · 10−3 | 1.0974 · 10−3 | 7.9138 · 10−4 | |
SD | - | 5.4210 · 10−20 | 0.0 | 2.1684 · 10−19 | 2.1684 · 10−19 | 2.1584 · 10−19 | |
Ra (Ω) | M | 5.66 | 4.213 | 4.213 | 4.276 | 4.206 | 4.208 |
La (H) | M | 0.0472 | 0.0583 | 0.0583 | 0.0578 | 0.0579 | 0.0580 |
cm (Vs) | M | 1.356 | 1.360 | 1.360 | 1.340 | 1.356 | 1.358 |
J (kgm2) | M | ≈3.725 · 10−2 | 2.576 · 10−2 | 2.576 · 10−2 | 2.534 · 10−2 | 2.559 · 10−2 | 2.569 · 10−2 |
Tla (Nm) | M | ≈0 | 3.764 · 10−16 | 1.544 · 10−15 | 5.264 · 10−16 | 5.692 · 10−16 | 1.083 · 10−15 |
Tlb (Nms) | M | ≈4.8 · 10−3 | 4.819 · 10−3 | 4.819 · 10−3 | 3.087 · 10−3 | 5.060 · 10−3 | 4.927 · 10−3 |
Tlc (Nms2) | M | ≈0 | 6.871 · 10−20 | 7.404 · 10−20 | 3.234 · 10−20 | 5.122 · 10−20 | 7.601 · 10−20 |
t (s) | M | - | 9.212 | 9.557 | 6.309 | 6.894 | 7.043 |
Data | 400 | 362 | 56 | 109 | 162 |
OF and Parameters | Method | DE/rand/1/exp | ||||
---|---|---|---|---|---|---|
Known Value | Lowest | Highest | Mean | SD | % dev. to Mean | |
OF | - | 3.8094 · 10−4 | 1.8684 · 10−3 | 9.1182 · 10−4 | 5.4532 · 10−4 | −58.22% to +104.91% |
Ra (Ω) | 5.66 | 4.206 | 4.276 | 4.223 | 2.6351 · 10−2 | −0.40 to +1.24% |
La (H) | 0.0472 | 0.0578 | 0.0583 | 0.0581 | 2.1877 · 10−4 | −0.52% to +0.34% |
cm (Vs) | 1.356 | 1.340 | 1.360 | 1.355 | 7.4982 · 10−3 | −1.11% to +0.37% |
J (kgm2) | ≈3.725 · 10−2 | 2.534 · 10−2 | 2.576 · 10−2 | 2.563 · 10−2 | 1.5774 · 10−4 | −1.13% to +0.51% |
Tla (Nm) | ≈0 | 0.0 | 1.323 · 10−14 | 8.197 · 10−16 | 1.6478 · 10−15 | - |
Tlb (Nms) | ≈4.8 · 10−3 | 3.087 · 10−3 | 5.060 · 10−3 | 4.542 · 10−3 | 7.3313 · 10−4 | −32.03% to +11.40% |
Tlc (Nms2) | ≈0 | 0.0 | 6.757 · 10−19 | 6.046 · 10−20 | 1.0705 · 10−19 | - |
t (s) | - | 5.719 | 11.563 | 7.803 | 1.4173 | −26.71% to +48.19 |
OF and Parameters | DE/rand/1/exp | ||
---|---|---|---|
Parameters Used for Generation of the Responses | Calculated Parameters | ||
OF | B | - | 2.9207 · 10−18 |
W | - | 2.9207 · 10−18 | |
M | - | 2.9207 · 10−18 | |
SD | - | 5.4553 · 10−27 | |
Ra (Ω) | M | 5.66 | 5.66 |
La (H) | M | 0.0472 | 0.0472 |
cm (Vs) | M | 1.356 | 1.356 |
J (kgm2) | M | 3.725 · 10−2 | 3.725 · 10−2 |
Tla (Nm) | M | 0 | 4.03 · 10−13 |
Tlb (Nms) | M | 4.8 · 10−3 | 4.80 · 10−3 |
Tlc (Nms2) | M | 0 | 1.22 · 10−12 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jesenik, M.; Ravber, M.; Trbušić, M. Innovative Approach for the Determination of a DC Motor’s and Drive’s Parameters Using Evolutionary Methods and Different Measured Current and Angular Speed Responses. Mathematics 2024, 12, 42. https://doi.org/10.3390/math12010042
Jesenik M, Ravber M, Trbušić M. Innovative Approach for the Determination of a DC Motor’s and Drive’s Parameters Using Evolutionary Methods and Different Measured Current and Angular Speed Responses. Mathematics. 2024; 12(1):42. https://doi.org/10.3390/math12010042
Chicago/Turabian StyleJesenik, Marko, Miha Ravber, and Mislav Trbušić. 2024. "Innovative Approach for the Determination of a DC Motor’s and Drive’s Parameters Using Evolutionary Methods and Different Measured Current and Angular Speed Responses" Mathematics 12, no. 1: 42. https://doi.org/10.3390/math12010042
APA StyleJesenik, M., Ravber, M., & Trbušić, M. (2024). Innovative Approach for the Determination of a DC Motor’s and Drive’s Parameters Using Evolutionary Methods and Different Measured Current and Angular Speed Responses. Mathematics, 12(1), 42. https://doi.org/10.3390/math12010042