A New Reduced-Dimension Iteration Two-Grid Crank–Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem
Abstract
:1. Introduction
2. The TGCNFE Method for the Unsaturated Soil Water Flow Equation
2.1. Variational Problem and Time Semi-Discrete CN Scheme
2.2. The TGCNFE Format in Functional Form
2.3. The TGCNFE Format in Matrix Form
3. The RDITGCNFE Format for the Unsaturated Soil Water Flow Equation
3.1. The Construction of POD Basis Vectors
- Step 1.
- Find two series of solution coefficient vectors, , of Problem 6 at the first L time steps and constitute two matrices, .
- Step 2.
- Find two series of orthonormal eigenvectors, rank, of matrices associated with two sets of positive eigenvalues, ().
- Step 3.
- Find two series of major orthonormal vectors, , of matrices by the formula to form two matrices, ( and ).
3.2. The Establishment of the RDITGCNFE Format
3.3. The Existence, Unconditional Stability, and Error Estimates of the RDITGCNFE Solutions
3.4. A Semi-RDITGCNFE Format
4. Two Sets of Numerical Tests
4.1. The Numerical Tests for the 8th Soil Parameters
- Step 1.
- When and , find two sets of initial 20 coefficient vectors of TGCNFE solutions , , ⋯, and , , ⋯, , and constitute two snapshot matrices, , , ⋯, and , , ⋯, .
- Step 2.
- Use the method in Section 3.1 to find two sets of eigenvalues and the corresponding two sets of orthonormal eigenvectors, , for matrices .
- Step 3.
- The result obtained by reckoning is , so it is necessary to take two sets of the first six orthonormal eigenvectors, , to constitute two sets of POD bases, , by formulas and .
- Step 4.
- Substitute the POD bases () and the above known data into Problem 7 and find the RDITGCNFE solutions of infiltration moisture content at h, 4 h, ⋯, 10 h, as shown the curves in Figure 1a.
4.2. The Numerical Tests for the 10th Soil Parameters
5. Conclusions and Discussions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Z.; Zeng, Q.; Dai, Y.J.; Wang, B. Numerical simulation of an unsaturated flow equation. Sci. China Ser. D 1998, 41, 429–436. [Google Scholar] [CrossRef]
- Bear, J. Dynamics of Fluids in Porous Media; American Elsevier Publishing Company: New York, NY, USA, 1972. [Google Scholar]
- Lei, Z.D.; Yang, S.X.; Xie, S.C. Soil Hydrodynamics; Tsinghua University Press: Beijing, China, 1988. (In Chinese) [Google Scholar]
- Rahimi, A.; Rahardjo, H.; Leong, E. Effect of range of soil-water characteristic curve measurements on estimation of permeability function. Eng. Geol. 2015, 185, 96–104. [Google Scholar] [CrossRef]
- Li, Y.; Vanapalli, S.K. Models for predicting the soil-water characteristic curves for coarse and fine-grained soils. J. Hydrol. 2022, 612, 128248. [Google Scholar] [CrossRef]
- Yoon, S.; Chang, S.; Park, D. Investigation of soil-water characteristic curves for compacted bentonite considering dry density. Prog. Nucl. Energ. 2022, 151, 104318. [Google Scholar] [CrossRef]
- Dai, Y.; Zeng, Q. A land surface model (IAP94) for climate studies, Part I: Formulation and validation in off-line experiments. Adv. Atmos. Sci. 1997, 14, 433–460. [Google Scholar]
- Ye, D.; Zeng, Q.; Guo, Y. Contemporary Climatic Research; Climatic Press: Beijing, China, 1991. (In Chinese) [Google Scholar]
- Xie, Z.; Zeng, Q.; Dai, Y.; Wang, B. Application of finite element method to unsaturated soil flow problem. Clim. Environ. Res. 1998, 28, 73–81. [Google Scholar]
- Luo, Z.D.; Xie, Z.; Zhu, J.; Zeng, Q. Mixed finite element method and numerical simulation for the unsaturated soil water flow problem. Math. Numer. Sin. 2003, 25, 113–128. [Google Scholar]
- Ghannadi, P.; Kourehli, S.S.; Nguyen, A. The Differential Evolution Algorithm: An Analysis of More than Two Decades of Application in Structural Damage Detection (2001–2022). In Data Driven Methods for Civil Structural Health Monitoring and Resilience; CRC Press: Boca Raton, FL, USA, 2024; pp. 14–57. [Google Scholar]
- Xu, J. A novel two-grid method for semilinear elliptic equations. SIAM J. Sci. Comput. 1994, 15, 231–237. [Google Scholar] [CrossRef]
- Shi, D.; Liu, Q. An efficient nonconforming finite element two-grid method for Allen-Cahn equation. Appl. Numer. Math. 2019, 98, 374–380. [Google Scholar] [CrossRef]
- Shi, D.; Wang, R. Unconditional superconvergence analysis of a two-grid finite element method for nonlinear wave equations. Appl. Numer. Mat. 2020, 150, 38–50. [Google Scholar] [CrossRef]
- Luo, Z.; Chen, G. Proper Orthogonal Decomposition Methods for Partial Differential Equations; Academic Press of Elsevier: London, UK, 2019. [Google Scholar]
- Alekseev, A.K.; Bistrian, D.A.; Bondarev, A.E.; Navon, I.M. On linear and nonlinear aspects of dynamic mode decomposition. Int. J. Numer. Meth. Fl. 2016, 82, 348–371. [Google Scholar] [CrossRef]
- Du, J.; Navon, I.M.; Zhu, J.; Fang, F.; Alekseev, A.K. Reduced order modeling based on POD of a parabolized Navier-Stokes equations model II Trust region POD 4D VAR data assimilation. Comput. Math. Appl. 2013, 65, 380–394. [Google Scholar] [CrossRef]
- Li, H.; Song, Z. A reduced-order energy-stability-preserving finite difference iterative scheme based on POD for the Allen-Cahn equation. J. Math. Anal. Appl. 2020, 491, 124245. [Google Scholar] [CrossRef]
- Li, H.; Song, Z. A reduced-order finite element method based on proper orthogonal decomposition for the Allen-Cahn model. J. Math. Anal. Appl. 2021, 500, 125103. [Google Scholar] [CrossRef]
- Teng, F.; Luo, Z.D. A natural boundary element reduced-dimension model for uniform high-voltage transmission line problem in an unbounded outer domain. Comput. Appl. Math. 2024, 43, 106. [Google Scholar] [CrossRef]
- Zhu, S.; Dede, L.; Quarteroni, A. Isogeometric analysis and proper orthogonal decomposition for parabolic problems. Numer. Math. 2017, 135, 333–370. [Google Scholar] [CrossRef]
- Kunisch, K.; Volkwein, S. Galerkin proper orthogonal decomposition methods for a general equation in fluid dynamischs. SIAM J. Numer. Anal. 2002, 40, 492–515. [Google Scholar] [CrossRef]
- Li, K.; Huang, T.Z.; Li, L.; Lanteri, S.; Xu, L.; Li, B. A Reduced-Order Discontinuous Galerkin Method Based on POD for Electromagnetic Simulation. IEEE Trans. Antennas Propag. 2018, 66, 242–254. [Google Scholar] [CrossRef]
- Hinze, M.; Kunkel, M. Residual based sampling in POD model order reduction of drift-diffusion equations in parametrized electrical networks. J. Appl. Math. Mech. 2012, 92, 91–104. [Google Scholar] [CrossRef]
- Stefanescu, R.; Navon, I.M. POD/DEIM nonlinear model order reduction of an ADI implicit shallow water equations model. J. Comput. Phys. 2013, 237, 95–114. [Google Scholar] [CrossRef]
- Zokagoa, J.M.; Soulaǐmani, A. A POD-based reduced-order model for free surface shallow water flows over real bathymetries for Monte-Carlo-type applications. Comput. Methods Appl. Mech. Eng. 2012, 221–222, 1–23. [Google Scholar] [CrossRef]
- Baiges, J.; Codina, R.; Idelsohn, S. Explicit reduced-order models for the stabilized finite element approximation of the incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fl. 2013, 72, 1219–1243. [Google Scholar] [CrossRef]
- Luo, Z.D. The reduced-order extrapolating method about the Crank–Nicolson finite element solution coefficient vectors for parabolic type equation. Mathematics 2020, 8, 1261. [Google Scholar] [CrossRef]
- Luo, Z.; Jiang, W. A reduced-order extrapolated technique about the unknown coefficient vectors of solutions in the finite element method for hyperbolic type equation. Appl. Numer. Math. 2020, 158, 123–133. [Google Scholar] [CrossRef]
- Zeng, Y.; Luo, Z. The reduced-dimension technique for the unknown solution coefficient vectors in the Crank–Nicolson finite element method for the Sobolev equation. J. Math. Anal. Appl. 2022, 513, 126207. [Google Scholar] [CrossRef]
- Luo, Z. A finite element reduced-dimension method for viscoelastic wave equation. Mathematics 2022, 10, 3066. [Google Scholar] [CrossRef]
- Luo, Z. The dimensionality reduction of Crank–Nicolson mixed finite element solution coefficient vectors for the unsteady Stokes equation. Mathematics 2022, 10, 2273. [Google Scholar] [CrossRef]
- Yang, X.; Luo, Z. An unchanged aasis function and preserving accuracy Crank-Nicolson finite element reduced-dimension method for symmetric tempered fractional diffusion equation. Mathematics 2022, 10, 3630. [Google Scholar] [CrossRef]
- Lumley, J.L. Coherent Structures in Turbulence, Transition and Turbulence; Meyer, R.E., Ed.; Academic Press: New York, NY, USA, 1981; pp. 215–242. [Google Scholar]
- Fukunaga, K. Introduction to Statistical Recognition; Academic Press: New York, NY, USA, 1990. [Google Scholar]
- Jolliffe, I. Principal Component Analysis; Springer: Berlin/Heidelberg, Germany, 2002. [Google Scholar]
- Luo, Z.D.; Li, Y.J. A preserving precision mixed finite element dimensionality reduction method for unsaturated flow problem. Mathematics 2022, 10, 4391. [Google Scholar] [CrossRef]
- Luo, Z. The Foundations and Applications of Mixed Finite Element Methods; Chinese Science Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Zhang, G.; Lin, Y. Notes on Functional Analysis; Peking University Press: Beijing, China, 2011. (In Chinese) [Google Scholar]
- Zhang, W. Finite Difference Methods for Patial Differential Equations in Science Computation; Higher Education Press: Beijing, China, 2006. (In Chinese) [Google Scholar]
- Babaei, M.; Kiarasi, F.; Asemi, K.; Dimitri, R.; Tornabene, F. Transient thermal stresses in FG porous rotating truncated cones reinforced by graphene platelets. Appl. Sci. 2022, 12, 3932. [Google Scholar] [CrossRef]
Soil Types | /(mm) | /(mms−1) | b | ||
---|---|---|---|---|---|
1 | 0.33 | 30 | 0.2000 | 3.5 | 0.088 |
2 | 0.36 | 30 | 0.0800 | 4.0 | 0.119 |
3 | 0.39 | 30 | 0.0032 | 4.5 | 0.151 |
4 | 0.42 | 200 | 0.0130 | 5.0 | 0.266 |
5 | 0.45 | 200 | 8.9 × 10−3 | 5.5 | 0.300 |
6 | 0.48 | 200 | 6.3 × 10−3 | 6.0 | 0.332 |
7 | 0.51 | 200 | 4.5 × 10−3 | 6.8 | 0.378 |
8 | 0.54 | 200 | 3.2 × 10−3 | 7.6 | 0.419 |
9 | 0.57 | 200 | 2.2 × 10−3 | 8.4 | 0.455 |
10 | 0.60 | 200 | 1.6 × 10−3 | 9.2 | 0.487 |
11 | 0.63 | 200 | 1.1 × 10−3 | 10.0 | 0.516 |
12 | 0.66 | 200 | 0.8 × 10−3 | 10.8 | 0.542 |
TGCNFE Solutions | RDITGCNFE Solutions | ||||
---|---|---|---|---|---|
Errors | CPU Runtime | Errors | CPU Runtime | ||
2 h | 720,000 | 6348 s | 121 s | ||
4 h | 1,440,000 | 12,697 s | 243 s | ||
6 h | 2,160,000 | 19,145 s | 362 s | ||
8 h | 2,880,000 | 25,394 s | 480 s | ||
10 h | 3,600,000 | 31,745 s | 598 s |
TGCNFE Solutions | RDITGCNFE Solutions | ||||
---|---|---|---|---|---|
Errors | CPU Runtime | Errors | CPU Runtime | ||
6 h | 2,160,000 | 6348 s | 361 s | ||
12 h | 4,320,000 | 19,046 s | 723 s | ||
18 h | 6,480,000 | 38,089 s | 1085 s | ||
24 h | 8,640,000 | 76,175 s | 1444 s | ||
30 h | 10,800,000 | 95,220 s | 1806 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hou, X.; Teng, F.; Luo, Z.; Fu, H. A New Reduced-Dimension Iteration Two-Grid Crank–Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem. Mathematics 2024, 12, 1726. https://doi.org/10.3390/math12111726
Hou X, Teng F, Luo Z, Fu H. A New Reduced-Dimension Iteration Two-Grid Crank–Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem. Mathematics. 2024; 12(11):1726. https://doi.org/10.3390/math12111726
Chicago/Turabian StyleHou, Xiaoli, Fei Teng, Zhendong Luo, and Hui Fu. 2024. "A New Reduced-Dimension Iteration Two-Grid Crank–Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem" Mathematics 12, no. 11: 1726. https://doi.org/10.3390/math12111726
APA StyleHou, X., Teng, F., Luo, Z., & Fu, H. (2024). A New Reduced-Dimension Iteration Two-Grid Crank–Nicolson Finite-Element Method for Unsaturated Soil Water Flow Problem. Mathematics, 12(11), 1726. https://doi.org/10.3390/math12111726