Geary’s c for Multivariate Spatial Data
Abstract
:1. Introduction
2. Preliminaries
3. Multivariate Global and Local Geary’s
- (i)
- (ii)
- (iii)
- (iv)
- User-defined MATLAB/GNU Octave function for calculating (resp. c) based on (26) (resp. (27)) is provided in Appendix B.1 (resp. Appendix B.2).
4. Additional Remarks
4.1. Local Geary Matrix
4.2. Relationship to Graph Signal Processing
5. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Some of the Proofs
Appendix A.1. Proof of (16)
Appendix A.2. Proof of Proposition 1
Appendix A.3. Proof of Proposition 3
Appendix A.4. Proof of (28)
Appendix A.5. Proof of Proposition 8
Appendix B. User-Defined Functions
Appendix B.1. A Function for Calculating ci Based on (26)
- function c_i=calc_c_i (Y, W, i)
- end
Appendix B.2. A Function for Calculating c Based on (27)
- function c=calc _ c (Y,W)
- end
References
- Geary, R.C. The contiguity ratio and statistical mapping. Inc. Stat. 1954, 5, 115–145. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. The problem of spatial autocorrelation. In Studies in Regional Science; Scott, A.J., Ed.; Pion: London, UK, 1969; pp. 25–55. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial autocorrelation: A review of existing and new measures with applications. Econ. Geogr. 1970, 46, 269–292. [Google Scholar] [CrossRef]
- Cliff, A.D.; Ord, J.K. Spatial Autocorrelation; Pion: London, UK, 1973. [Google Scholar]
- Cliff, A.D.; Ord, J.K. Spatial Processes: Models and Applications; Pion: London, UK, 1981. [Google Scholar]
- Von Neumann, J. Distribution of the ratio of the mean square successive difference to the variance. Ann. Math. Stat. 1941, 12, 367–395. [Google Scholar] [CrossRef]
- Yamada, H. Spatial smoothing using graph Laplacian penalized filter. Spat. Stat. 2024, 60, 100799. [Google Scholar] [CrossRef]
- Anselin, L. Local indicators of spatial association—LISA. Geogr. Anal. 1995, 27, 93–115. [Google Scholar] [CrossRef]
- Wartenberg, D. Multivariate spatial correlation: A method for exploratory geographical analysis. Geogr. Anal. 1985, 17, 263–283. [Google Scholar] [CrossRef]
- Jombart, T.; Devillard, S.; Dufour, A.-B.; Pontier, D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity 2008, 101, 92–103. [Google Scholar] [CrossRef]
- Anselin, L. A local Indicator of multivariate spatial association: Extending Geary’s c. Geogr. Anal. 2019, 51, 131–248. [Google Scholar] [CrossRef]
- Lin, J. Comparison of Moran’s I and Geary’s c in multivariate spatial pattern analysis. Geogr. Anal. 2023, 55, 685–702. [Google Scholar] [CrossRef]
- Yamada, H. Geary’s c and spectral graph theory. Mathematics 2021, 9, 2465. [Google Scholar] [CrossRef]
- Yamada, H. Geary’s c and spectral graph theory: A complement. Mathematics 2023, 11, 4228. [Google Scholar] [CrossRef]
- Yamada, H. Moran’s I for Multivariate Spatial Data. ResearchGate 2024. Available online: https://www.researchgate.net/publication/381256732_Moran’s_I_for_Multivariate_Spatial_Data (accessed on 5 June 2024).
- Moran, P.A.P. Notes on continuous stochastic phenomena. Biometrika 1950, 37, 17–23. [Google Scholar] [CrossRef]
- Maruyama, Y. An alternative to Moran’s I for spatial autocorrelation. arXiv 2015, arXiv:1501.06260. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Random effects specifications in eigenvector spatial filtering: A simulation study. J. Geogr. Syst. 2015, 17, 311–331. [Google Scholar] [CrossRef]
- Seya, H.; Murakami, D.; Tsutsumi, M.; Yamagata, Y. Application of LASSO to the eigenvector selection problem in eigenvector-based spatial filtering. Geogr. Anal. 2015, 47, 284–299. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Eigenvector spatial filtering for large data sets: Fixed and random effects approaches. Geogr. Anal. 2019, 51, 23–49. [Google Scholar] [CrossRef]
- Murakami, D.; Griffith, D.A. Spatially varying coefficient modeling for large datasets: Eliminating N from spatial regressions. Spat. Stat. 2019, 30, 39–64. [Google Scholar] [CrossRef]
- Murakami, D.; Yoshida, T.; Seya, H.; Griffith, D.A.; Yamagata, Y. A Moran coefficient-based mixed effects approach to investigate spatially varying relationships. Spat. Stat. 2017, 19, 68–89. [Google Scholar] [CrossRef]
- Nishi, H.; Asami, Y.; Baba, H.; Shimizu, C. Scalable spatiotemporal regression model based on Moran’s eigenvectors. Int. J. Geogr. Inf. Sci. 2023, 37, 162–188. [Google Scholar] [CrossRef]
- Yamada, H. A unified perspective on some autocorrelation measures in different fields: A note. Open Math. 2023, 21, 20220574. [Google Scholar] [CrossRef]
- Yamada, H. A new perspective about Moran’s coefficient: Revisited. Mathematics 2024, 12, 253. [Google Scholar] [CrossRef]
- Estrada, E.; Knight, P. A First Course in Network Theory; Oxford University Press: Oxford, UK, 2015. [Google Scholar]
- Gallier, J. Spectral theory of unsigned and signed graphs. Applications to graph clustering: A survey. arXiv 2016, arXiv:1601.04692. [Google Scholar] [CrossRef]
- Hammond, D.K.; Vandergheynst, P.; Gribonval, R. Wavelets on graphs via spectral graph theory. Appl. Comput. Harmon. Anal. 2011, 30, 129–150. [Google Scholar] [CrossRef]
- Shuman, D.I.; Narang, S.K.; Frossard, P.; Ortega, A.; Vandergheynst, P. The emerging field of signal processing on graphs: Extending high-dimensional data analysis to networks and other irregular domains. IEEE Signal Process. Mag. 2013, 30, 83–98. [Google Scholar] [CrossRef]
- De Jong, P.; Sprenger, C.; van Veen, F. On extreme values of Moran’s I and Geary’s c. Geogr. Anal. 1984, 16, 17–24. [Google Scholar] [CrossRef]
- Seber, G.A.F. A Matrix Handbook for Statisticians; Wiley: Hoboken, NJ, USA, 2008. [Google Scholar]
- Anderson, T.W. The Statistical Analysis of Time Series; John Wiley and Sons: New York, NY, USA, 1971. [Google Scholar]
- Nakatsukasa, Y.; Saito, N.; Woei, E. Mysteries around the graph Laplacian eigenvalue 4. Linear Algebra Its Appl. 2013, 438, 3231–3246. [Google Scholar] [CrossRef]
- Dong, X.; Thanou, D.; Frossard, P.; Vandergheynst, P. Learning Laplacian matrix in smooth graph signal representations. IEEE Trans. Signal Process. 2016, 64, 6160–6173. [Google Scholar] [CrossRef]
- Dong, X.; Thanou, D.; Rabbat, M.; Frossard, P. Learning graphs from data: A signal representation perspective. IEEE Signal Process. Mag. 2019, 36, 44–63. [Google Scholar] [CrossRef]
- Humbert, P.; Bars, B.L.; Oudre, L.; Kalogeratos, A.; Vayatis, N. Learning Laplacian matrix from graph signals with sparse spectral representation. J. Mach. Learn. Res. 2021, 22, 1–47. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yamada, H. Geary’s c for Multivariate Spatial Data. Mathematics 2024, 12, 1820. https://doi.org/10.3390/math12121820
Yamada H. Geary’s c for Multivariate Spatial Data. Mathematics. 2024; 12(12):1820. https://doi.org/10.3390/math12121820
Chicago/Turabian StyleYamada, Hiroshi. 2024. "Geary’s c for Multivariate Spatial Data" Mathematics 12, no. 12: 1820. https://doi.org/10.3390/math12121820
APA StyleYamada, H. (2024). Geary’s c for Multivariate Spatial Data. Mathematics, 12(12), 1820. https://doi.org/10.3390/math12121820